
1

A Synchronization Scheme for Stored Multimedia
Streams

Werner Geyer1, Christoph Bernhardt, Ernst Biersack
Institut Eurécom2

Abstract: Multimedia streams such as audio and video impose tight temporal
constraints due to their continuous nature. Often, different multimedia streams
must be played out in a synchronized way. We present a scheme to ensure the
continuous and synchronous playout of stored multimedia streams. We propose
a protocol for the synchronized playback and we compute the buffer required to
achieve both, the continuity within a single substream and the synchronization
between related substreams. The scheme is very general because it only makes a
single assumption, namely that the jitter is bounded.

1 Introduction

1.1 Motivation

Advances in communication technology lead to new applications in the domain of
multimedia. Emerging high-speed, fiber-optic networks make it feasible to provide
multimedia services such as Video On-Demand, Tele-Shopping or Distance Learning.
These applications typically integrate different types of media such as audio, video,
text or images. Customers of such a service retrieve the digitally stored media from a
video server [Ber95] for playback.

1.2 Multimedia Synchronization

Multimedia refers to the integration of different types of data streams including
both continuous media streams (audio and video) and discrete media streams (text,
data, images). Between the information units of these streams a certain temporal rela-
tionship exists. Multimedia systems must maintain this relationship when storing,
transmitting and presenting the data. Commonly, the process of maintaining the tem-
poral order of one or several media streams is called multimedia synchronization
[Eff93].

Continuous media are characterized by a well-defined temporal relationship
between subsequent data units. Information is only conveyed when media quanta are
presented continuously in time. As for video/audio the temporal relationship is dic-
tated by the sampling rate. The problem of maintaining continuity within a single
stream is referred to as intra-stream synchronization. Moreover, there exist temporal

1 Now with: Praktische Informatik IV, University of Mannheim, 68131 Mannheim, Ger-
many, geyer@pi4.informatik.uni-mannheim.de

2 2229 Route des Crêtes, 06904 Sophia-Antipolis — France, Phone: +33 93002611,
FAX: +33 93002627, email: {bernhard,erbi}@eurecom.fr

In B. Butscher, E. Moeller, and H. Pusch, editors, Interactive Distributed Multi-
media Systems and Services (European Workshop IDMS’96, Berlin, Germany),
volume 1045 of LNCS, pages 277–295. Springer Verlag, Heidelberg, Germany,
March 1996

2

relationships between media-units of related streams, for instance, an audio and video
stream. The preservation of these temporal constraints is called inter-stream synchro-
nization. To solve the problem of stream synchronization we have to regard both issues
which are tightly coupled.

One can distinguish between life synchronization for life media streams and syn-
thetic synchronization for stored media streams [Ste93a]. In the former case, the cap-
turing and playback must be performed almost at the same time, while in the latter
case, samples are recorded, stored and played back at a later point of time. For life syn-
chronization, e.g. in teleconferencing, the tolerable end-to-end delay is in the order of
a few hundred milliseconds only. Synthetic synchronization of recorded media stream
is easier to achieve than life synchronization: higher end-to-end delays are tolerable,
and the fact that sources can be influenced proves to be very advantageous as will be
shown later. It is, for instance, possible to adjust playback speed or to schedule the
start-up times of streams as needed. However, as resources are limited, it is desirable
for both kinds of synchronization to keep the buffers required as small as possible.
[Koe94]

1.3 Related Work

Escobar et al. [Esc94] and Rothermel et al. [Rot95b] propose a scheme that
requires globally synchronized clocks. Their synchronization mechanism relies on
time stamps to determine the different kind of delays each stream experiences, using
time stamps. At the receiver different delays are equalized to the maximum delay by
buffering. Rothermel enhances this basic mechanism with a buffer level control and a
master-slave concept.

Rangan et al. [Ran93] present a synchronization technique based on feedback. Syn-
chronization is done at the senders side, assuming that the receiver stations send back
the number of the currently displayed media-unit. Asynchrony can be discovered by
the use of so-called relative time stamps (RTS). Synchrony is restored by deleting or
duplicating media-units. Trigger packets are exchanged periodically so to calculate the
relative time deviation between sender and receiver. Agarval et al. [Aga94] adopt the
idea of Rangan and enhance the scheme by dropping the assumption of bounded jitter.

Our synchronization scheme is inspired by the work of Santoso [San93] intra-
stream synchronization and the work of Ishibashi et al. [Ish95] on intra-stream syn-
chronization and inter-stream synchronization. Ishibashi proposes a time-stamp-based
synchronization and applies a concept based on delay estimations to perform synchro-
nization in case of unknown delay. Once intra-stream synchronization is established,
inter-stream synchronization can be maintained with a certain probability. Corrective
actions are taken by skipping/pausing. The scheme assumes no clock drift.

1.4 Context of the Synchronization Problem

The synchronization problem addressed in this paper is motivated by our work on
scalable video servers. We have designed and implemented a video server, called
server array, consisting of n server nodes . A video is distributed over all server

3

nodes using a technique called sub-frame striping: Each video frame is partitioned
into n equal size parts, called sub-frames, that are stored on the n different servers. If

 denotes the set of sub-frames for frame , then:

The server array with the synchronization mechanisms presented in this paper has
been fully implemented as a prototype [Ber95].

During playback, each server node is continuously transmitting its (sub-frames) to
the client. The transfer is scheduled so, that all striping blocks that are part of the same
frame are completely received by the client at the deadline of the corresponding frame.
The client reassembles the frame by combining the sub-frames from all server nodes.
An example for n=3 with each server sending with a rate of r frames per second is
depicted in figure 1.

2 Synchronization Protocol

2.1 Overview

We propose a synchronization scheme for stored media that achieves both, suitable
intra- and inter-stream synchronization. The scheme is receiver-based and does not
assume global clocks. To initiate the playback of a stream in a synchronized manner
we introduce a start-up protocol. Our protocol has been mainly influenced by the
ideas of Ishibashi [Ish95] with respect to intra- and inter-stream synchronization.
Based on Santoso’s work [San93] we derive buffer requirements and playout deadlines
to assure inter- and intra-stream synchronization. For re-synchronization, we adopt
scheme similar to the one described by Koehler and Rothermel [Koe94], [Rot95c].

Fig. 1. Temporal Relationship for Sub-Frame Striping.

Fi ci 1, … ci n,, ,{ }= fi ci j,
j 1…n=
∪ fi=

Substream 0

Substream 1

Substream 2

sub-frame ci,0

sub-frame ci,1

sub-frame ci,2

1/r

time

Frame fi

sub-frame ci+1,0

sub-frame ci+1,1

sub-frame ci+1,2

1/r

Frame fi+1

4

We derive our synchronization scheme by step-wise refinement: We first develop a
solution for the case of zero jitter and then relax this assumption requiring bounded jit-
ter only. We present two models:

Model 1 covers the problem of different but fixed delays on the network connec-
tions for each substream. We propose a synchronization protocol that compensates for
these delays by computing well-defined starting times for each server. The protocol
allows to initiate the synchronized playback of a media stream that is composed of
several substreams.

Model 2 takes into account the jitter experienced by media-units travelling from
the source to the destination. Jitter is assumed to be bounded. To smoothen out jitter,
elastic buffers are required. Our scheme guarantees a smooth playback of the stream
and has very low buffer requirements. Model 2 covers intra-stream synchronization as
well as inter-stream synchronization.

For the proposed synchronization scheme, we assume that a client D is receiving
sub-streams from different servers3. Client and servers are interconnected via a net-
work (see figure 2).

Each of the servers denoted by S delivers an independent substream of media-
units (sometimes referred to as frames in the following). The production rate is driven
by the server clock. Arriving media-units are buffered in FIFO queues at the destina-
tion D. The playout of the entire stream, composed of the substreams, is driven by the
destination’s clock.

3 It is also possible that a single server sends multiple substreams to a client. Our model is
more general and covers this case too.

Fig. 2. Distributed Architecture for the Synchronization Scheme.

S

S

S

Network D

5

While the use of globally synchronized clocks facilitates synchronization, our syn-
chronization scheme does not assume the presence of a global time or synchronized
clocks.

2.2 Sources of Asynchrony

Several sources of asynchrony exist in the configuration described in the previous
section. These are:

• Different delays: the assumption of independent network connections imposes
different delays. A synchronization scheme has to compensate for these differ-
ences in order to display the continuous media stream in a timely order.
Beside the network delay, media-units experience a delay for the reasons of
packet-size/depacketizing, the processing through the lower protocol layers, and
the buffering on the client site.
The variation of delay is defined as jitter.

• Network jitter: asynchronous transfer destroys synchrony. Jitter arises in interme-
diate nodes for the reason of buffering.

• End-system jitter: packetizing and depacketizing of media-units with different
size due to encoding introduces jitter as well as passing media-units through the
lower protocol layers.

• Clock drift between the clocks in the servers and in the client is present because
we do not assume global clocks.

• Change of the average delay: the synchronization scheme has to be adaptive with
respect to a change of the average delay.

• Server drop outs due to process scheduling are a realistic assumption when using
non-real-time operating systems. At the same time, the consideration of drop outs
covers the overload probability of statistical admission control strategies to a cer-
tain amount.

2.3 Assumptions

Our synchronization mechanism uses time stamps. Each time a media-unit4 is
scheduled by a server, it is stamped with the current local time. This enables the client
to calculate statistics, such as for the roundtrip delay, jitter, or inter-arrival times.
Moreover, we assume that each media-unit carries a sequence number for determin-
ing media-unit order.

In contrast to other approaches, buffer requirements or fill levels are always stated
in terms of media-units or time, instead of the amount of allocated memory. This con-
sideration is preferred because synchronization is a problem of time and for continuous
media, time is represented implicitly by the media-units of a stream. This seems rea-
sonable because media-unit sizes vary due to encoding algorithms like JPEG or MPEG
[Koe94]. However, notice that a mapping of media-units to the allocation of bytes

4 We will also use the abbreviation mu for media-unit.

6

must be carried out for implementation purposes. Taking the largest media-unit of a
stream as an estimate wastes a lot of memory, especially when using MPEG compres-
sion. Sophisticated solutions of mapping are subject of future work. In the following,
we will use the term buffer slot to denote the buffer space for one media-unit.

Since processing time, e.g. for protocol actions does not concern the actual syn-
chronization problem we will neglect it whereas an implementation has to take it into
account. Finally, we assume that control messages are reliably transferred.

Model Parameters.

n number of server nodes in the server array

N number of media-units of a stream

i,j, media-unit index i, j, = 0, ..., N-1

k server index k = 0, ..., n-1

Ij index set of n subsequent media-units starting with media-unit j

Sk denotes server node k providing substream k

D denotes the destination or client node

si initial sending time of media-unit i in server time [sec]

synchronized sending time of media-unit i in server time [sec]

ai arrival time of media-unit i in client time [sec]

di roundtrip delay5 for media-unit i measured at client site [sec]

dmax maximum roundtrip delay [sec]

maximum roundtrip delay for all j element of Ij [sec]

tstart starting time of the synchronization protocol [sec]

tref reference time for the start-up calculation [sec]

reference time regarding the set of media-units given by Ij [sec]

ti expected arrival of the media-unit i at the client site [sec]

arrival time difference between media-unit i and j [sec]

A set of media-units that needs to be played out at the same time is referred to as
synchronization group.

We assume that media-units are distributed in a round robin fashion across the
involved server nodes. Hence, we can identify the storage location of a media-unit by
its media-unit number6, i.e.

Server Si mod n stores the media-unit i. (1)

5 The roundtrip delay comprises the delay for a control message that requests a media-unit
and the delay for delivering the media-unit

6 This implies that each substream will send media-units at the same rate. An extension of
the scheme to different media-unit rate, each one being the integer multiple of a base rate
is straight forward.

υ υ

si
c

d
max j,

tref
j

δij

7

The leads to the following formulation of the synchronization problem:
The client must playout the media-units of all subsets Ij , with j mod n = 0, at the same
time.

2.4 Model 1: Start-Up Synchronization

Introduction

Under the assumption of constant delay and zero jitter, we solve the synchroniza-
tion problem by assuring that the first n media-units, which form a synchronization
group, arrive at the same time at the client. We therefore need

(2)

The major problem addressed by model 1 is the compensation for different delays
due to the independence of the different substreams. For instance, the geographical
distance from server to client may be different for each server. Thus, starting transmis-
sion of media-units in a synchronized order would lead to different arrival times at the
client with the result of asynchrony. Usually, this is compensated by delaying media-
units at the client site [Esc94]. Depending on the location of the sources large buffers
may be required.

In order to avoid buffering to achieve the equalization of different delays, we take
advantage of the fact that stored media offers more flexibility: The idea is to initiate
playout at the servers such that media-units arrive at the sink site in a synchronous
manner. This is performed by shifting the starting times of the servers on the time axis
in correlation to the network delay of their connection to the client. The proposed start-
up protocol consists of two phases.

• In the first phase, called evaluation phase, roundtrip delays for each substream are
calculated, while

• In the second phase, called synchronization phase, the starting time for each
server is calculated and transmitted back to the servers.

The model is based on the assumption of a constant end-to-end delay without any
jitter. We further exclude changing network conditions, server drop-outs, and clock
drift. In such a scenario, synchronization needs to be done once at the beginning and is
maintained afterwards automatically.

We need to introduce some more notation to express interdependencies between
the parameters of the model. We then give a description of the start-up protocol flow
and prove its correctness. We close the section with an example for the protocol.

The starting time tstart of the protocol equals the beginning of the first phase. With-
out loss of generality let

(3)

ti t0 i I0∈∀=

tstart 0=

8

To begin with, we regard the first n media-units of a stream given by I0 that are dis-
tributed across the n servers. The roundtrip delay di for the media-unit i is given by the
difference between its arrival time ai and the starting time of the synchronization pro-
tocol

(4)

Equation (5) computes the maximum of the roundtrip delay for all n substreams

(5)

The second phase of the protocol begins at time tref , which is determined by the
last of the first n media-units that arrives.

(6)

The difference between the arrival times of arbitrary media-units i and j is needed
to calculate the starting times of the servers. We define the difference as follows.

(7)

Start-Up Protocol

The synchronization protocol for starting playback on the server sites is launched
after all involved parties are ready for playback. It can be divided into two phases:
evaluation phase and synchronization phase. The goal of the first phase is to compute
the roundtrip delays for each connection, while the second phase calcu-
lates the starting times and propagates them back to the servers. During start-up, the
client sends two different kinds of control messages to the servers:

• Eval_Request(i): Client D requests media-unit i from Server Si , .
• Sync_Request(i,): Client D transmits the starting time to server Si.

(a) Evaluation Phase

• At local time tstart, client D sends an Eval_Request(i) to Server Si, .
• Server Si receives the Eval_Request(i) at local time si, .
• Server Si sends media-unit i time-stamped with si immediately back to client D,

.
• At local time ai, client D receives media-unit i from Server Si, .
• At local time tref, client D has received the last media-unit.

The roundtrip delay and
the relative distance between media-unit arrivals are
computed.

di ai tstart i j I0∈,∀–=

d
max

max di i I0∈{ }=

tref max ai i I0∈{ }=

δij ai aj i j,∀–=

di i I0∈∀

i I0∈∀
si

c
si

c

i I0∈∀
i I0∈∀

i I0∈∀
i I0∈∀

di ai tstart i I0∈∀–=
δij ai aj i j I0∈,∀–=

9

(b) Synchronization Phase

• At local time tref, client D computes t0 as ,
the maximum round trip time as ,
the index that determines t0 as , and
the delay differences as

• With these results the starting time of Server Si is calculated in server time
.

• Client D sends a Sync_Request(i,) to server Si, .
• At local time server Si receives the Sync_Request(i,),

.
• At local time , server Si starts scheduling of the substream by sending media-

unit i, .
• At local time ti, client D receives media-unit i, .

At any time, only one synchronization group of n media-units must be buffered at
the client; after the complete reception the media-units are played out immediately. To
show the correctness of our mechanism we discuss the

• Calculation of t0
• Calculation of

(a) Calculation of the Earliest Possible Playout Time t0 for the First Media-unit

We need to choose t0 such that all media-units can be delivered and played
out in time, i.e they will arrive at their deadline ti given by (2). It is obvious that media-
unit delivered by server Si can not be expected earlier than . Hence, the
substream with the largest delay determines t0.

Theorem 1: Let .
Then all media-units can be delivered and played out in time.

Proof: Since the earliest possible arrival time for media-unit is we
need to show that .
Let
⇒
(2) ⇒
⇒
⇒ t0 does not violate the arrival times of other substreams
To show that t0 is minimal, we assume that
⇒
(2) ⇒
⇒ ■

For the calculation of the future starting times , , we define the substream
 determining t0 as follows:

t0 max tref di i I0∈+{ }=
d

max
max di i I0∈{ }=

ν υ j I0 tref dj t0=+∈{ }=
δν i aν ai , i I0∈∀–=

si
c

si d
max δυ i i I0∈∀,+ +=

si
c

i I0∈∀
si di tref ai–()+ + si

c

i I0∈∀
si

c

i I0∈∀
i I0∈∀

si
c

i I0∈

i I0∈ tref di+

t0 max tref di i I0∈+{ }=

i I0∈ tref di+
ti tref di i I0∈∀+≥

t0 max tref di i I0∈+{ }=
t0 tref di+ i I0∈∀≥

ti t0 tref di i I0∈∀+≥=
ti tref di i I0∈∀+≥

t̃0 t0<∃
i0 I0with t̃0 tref di0

+<∈∃
t̃0 ti0

tref di0
+<=

contradiction to the earliest possible arrival time.
si

c
i I0∈∀

ν

10

(8)

(b) Calculation of the Synchronized Sending Time of Media-unit i for Server Si

Substream can be considered critical since it determines the starting times of all
other initial substreams. It is therefore considered as a reference point to which all
other substreams are adjusted. Clearly, the future starting time of substream i is
composed of the initial starting time si plus the maximum roundtrip delay dmax. This
sum is corrected by the relative arrival time distance between media-unit i and
media-unit . This gives the starting time that provides a simultaneous arrival of the
media-units of substream i and these of substream . The calculation based on (8),
(7), (4) is stated in the following theorem.

Theorem 2: Let .
Then media-unit will arrive at client time ti.

Proof: For each : At client time tref , is sent back to server Si which
receives it at server time (see figure 3). If Si sent media-unit i immediately
back to D, it would arrive at client time . The term is corrected by

.
Media-unit i will arrive at D at client time

=
(3) =
=
(theorem 1) =
(2) = ■

One can easily imagine situations where synchronization is needed not only at the
beginning of a stream. A typical example is the VCR function pause. After having
paused it becomes necessary to resynchronize again, starting with the media-unit sub-
sequent to the last one displayed. The described scheme can be generalized to any
series of subsequent media-units requested by the client.

Example of the Start-Up Protocol

The following example in figure 3 illustrates model 1. We assume n = 3, i.e. three
servers, with one substream each. The calculated starting values are shown in table 1.

For each server and for the client D a time axis is provided. Arrows indicate control
messages or media-units, respectively, that are transferred between client and servers.

With we get .
Substream 2 experiences the longest roundtrip delay dmax and determines therefore

tref. Substream 2 is critical because it cannot be started earlier than s2 + 12. As indi-
cated on the time axis for server 0, substream 0 could be started earlier but is delayed
to arrive at the same time as substream 2.

ν j I0 tref dj t0=+∈{ }=

si
c

υ

si
c

δυ i

υ
υ

si
c

si d
max δυ i ∀ i I0∈,+ +=

i I0∈
i I0∈ si

c

si d
max+

tref di+ si d
max+

δυ i

tref di δυ i+ +
tref ai tstart–() aυ ai–()+ +

tref aυ+
tref dυ+

t0

ti

t0 max tref di i I0∈+{ } max 23 18 24, ,{ } 24== = υ 2=

11

Fig. 3. Example of the Start-Up Synchronization Protocol Flow.

Server ai di tref

S0 11 11 12 1 s0 + 13

S1 6 6 12 6 s1 + 18

S2 12 12 12 0 s2 + 12

Table 1. Example for the Start-Up Calculations.

D S2S0 S1

a2 = tref

a1

a0

t0 = t1 = t2

s2

s1

s0

s2
c

s1
c

s0
c

tstart

dmax

dmax

dmax

δ02 1=

E
va

lu
at

io
n

Ph
as

e
Sy

nc
hr

on
is

at
io

n
Ph

as
e

δ2i si
c

12

2.5 Model 2: Intra- and Inter-Stream Synchronization

Introduction

Model 1 shows how to cope with different delays for each substream. However,
synchronization is performed under the assumption that jitter does not exist. Model 2
loosens this assumption and takes into account end-system jitter and network jitter. For
our considerations, we regard the accumulated value of all sources of jitter described
in section . Furthermore, we assume that the jitter is bounded.

When subject to jitter, media-units will not arrive in a synchronized manner
although they have been sent in a correct timely order. The temporal relationship
within one substream is destroyed and time gaps between arriving media-units vary
according to the occurred jitter. Thus, an isochronous playback cannot be achieved if
arriving media-units of a substream would be played out immediately. Furthermore,
jitter may distort the relationship between media-units of a synchronization group.
Hence, intra-stream synchronization as well as inter-stream synchronization is dis-
turbed. To smoothen out the effects of jitter, media-units have to be delayed at the sink
such that a continuous playback can be guaranteed. Consequently playout buffers cor-
responding to the amount of jitter are required.

The main point addressed by model 2 is intra- and interstream synchronization and
the calculation of the required buffer space. First, we regard the synchronization of a
single substream. Based on a rule of Santoso [San93] we formulate a theorem that
states a well defined playout time for a substream such that intra-stream synchroniza-
tion can be guaranteed. Using this so-called playout deadline we derive the required
buffer space. Smooth playout cannot be guaranteed if starting before playout deadline.
Starting at a later time would require more buffer space.

Afterwards, we will extend our considerations to the synchronization of multiple
substreams. The main idea in order to achieve inter-stream synchronization is to main-
tain intra-stream synchronization for each substream [Ish95]. Each one of the sub-
streams is assumed to have a different jitter bound. In this case, buffer reservation
according to a single substream is not sufficient anymore as inter-stream synchroniza-
tion will be disturbed for the reason of differences in the jitter bounds. Additional buff-
ering is required to compensate for this. Furthermore, the playout deadline is modified
with respect to multiple substreams.

Finally, we examine the effects of the start-up protocol (model 1) on buffer require-
ments in the case of jitter. The application of model 1 to initiate playback of the servers
in a synchronized manner can introduce an error for the reason of jitter. We give a
worst case estimate for the error and additional buffer requirements are computed
accordingly.

We begin with an extension of the model parameters used so far.

Model Parameters

k substream or server index, k = 0, ... , n-1

r requested display rate of each substream at client site [mu/sec]

13

maximum delay for substream k [sec]

minimum delay for substream k [sec]

average delay for substream k [sec]

jitter for substream k [sec]

maximum jitter of all substreams [sec]

maximum upper deviation from due to jitter for substream k [sec]

maximum lower deviation from due to jitter for substream k [sec]

maximum upper deviation of all substreams [sec]

buffer requirement for substream k on sink site [mu]

buffer requirement for substream k on sink site with shifting [mu]

buffer requirement for substream k on sink site with max. jitter [mu]

B total buffer requirement for a synchronization group [mu]

BS total buffer requirement for a synchronization groupwith shifting [mu]

BM total buffer requirement for a synchronization group with max. jitter [mu]

Throughout this paper we assume bounded jitter and we use the definition of jitter
given by Rangan et al. [Ran92] who define jitter as the difference between the maxi-
mum delay and the minimum delay7.

(9)

(10)

In addition to this, we need a jitter bounds defined as the deviation from the aver-
age delay . Jitter is in general not distributed symmetrically. Thus, and must
not be equal. For further considerations, we assume interdependencies as follows.

(11)

(12)

(13)

(14)

Synchronized Playout for a Single Substream

To guarantee the timely presentation of a single stream subject to jitter, it is neces-
sary to buffer arriving media-units at the sink to compensate the jitter. The buffer is
emptied at a constant rate for displaying the media-units.

7 Jitter is often defined as the variation of network delay.

dk
max

dk
min

dk

∆k

∆max

∆k
+

dk

∆k
-

dk

∆max+

bk

bk
S

bk
M

∆k dk
max

dk
min

k∀–=

∆max
max ∆k k 0…n 1–{ }∈{ }=

dk ∆k
+ ∆k

-

∆k ∆k
+ ∆k

-+ k∀=

dk
max

dk ∆k
+

k∀+=

dk
min

dk ∆k
-– k∀=

∆max+
max ∆k

+
k 0…n 1–{ }∈{ }=

14

Santoso [San93] has already shown that the temporal relationship within one con-
tinuous media stream can be preserved by delaying the output of the first media-unit
for seconds. Based on this theorem, both the playout deadline and the
buffer requirements are be derived. The deadline given by Santoso (case a) can be low-
ered in some situations (case b).

Theorem 3: Smooth playout for a substream k can be guaranteed in case of bounded
jitter whenever either one of the following two starting conditions holds
true.
(a) seconds elapsed after the arrival of the first media-
unit, or
(b) the ()-th media-unit has arrived.

Proof: A proof for (a) can be found in [San93]. Condition (b) improves (a) in some
cases, i.e. playout can start earlier without violating timeliness. Such a situation is
shown in figure 4: the first media-unit experiences the maximum delay, subsequent
media-units arrive in a burst (marked gray in figure (4)) such that after the arrival of
the ()-th media-unit the elapsed time is less than . The average
delay of media-units is denoted by dotted lines.
Assuming that the ()-th media-unit just has arrived, we start the playout of
the buffered media-units immediately. A number of media-units is at least
sufficient for a presentation period of seconds. In the
worst case, the ()-th media-unit experiences its minimum delay and the
subsequent media-unit its maximum delay. Then the maximum period without any
arrival is given by is seconds. gives an
upper bound for . Consequently, the next media-unit arrives just in time. Fol-
lowing media-units will not arrive later because the last one has already experienced
the largest delay. ■

Theorem 4 enables us to calculate the required minimum buffer space for the syn-
chronization of a single substream.

Theorem 4: To guarantee intra-stream synchronization for a single substream by
applying theorem 3, a minimum buffer space of media-units
is required.

For a proof see [Gey95].

Synchronized Playout for Multiple Substreams

The basic idea of the synchronization scheme in model 2 is to achieve inter-stream
synchronization between multiple substreams by intra-stream synchronization. Once
the latter has been established by satisfying theorem 3 and 4 for each substream, inter-
stream synchronization is attained [Ish95], [San93]. This holds true if each substream
experiences the same jitter. In the following, we consider and examine the impact on
buffer requirements for different jitter bounds for each substream . This reflects the

dk
max

dk
min–

dk
max

dk
min ∆k=–

∆k r⋅ 1+

∆k r⋅ 1+ dk
max

dk
min–

∆k r⋅ 1+
∆k r⋅ 1+

∆k r⋅ 1+() r
1– ∆k r

1–+≥⋅
∆k r⋅ 1+

∆k
-

r
1– ∆k

++ ∆= k r
1–+ + ∆k r⋅ 1+() r

1–⋅
∆k r

1–+

2∆k r⋅

15

case that the paths from sources to the destination are independent. We assume that
media-units experience an average delay on all substream connections. The follow-
ing proofs can also carried out with different delays.

We present two methods to compute the buffer requirements for multiple sub-
streams.

• The first approach estimates the jitter for all substreams with the maximum jitter
value.

• The second strategy attempts to refine this coarse-grain estimation by shifting the
starting times of each substream in correlation to their jitter values in order to save
buffer space.

(a) Maximum Jitter Strategy

Obviously, playout can only start if theorem 3 is satisfied for all substreams. Thus,
the playout deadline for a stream given by a synchronization group is defined by the
latest substream that satisfies theorem 3. The situation is complicated by different jitter

Fig. 4. Worst Case Scenario for a Single Substream.

r-1

∆k
-

∆k
+

< dk
max

dk
min–

s 1 ∆k r⋅ 1+()+–

s 1 ∆k r⋅ 2+()+–

s0

dk

DSk

Theorem 3(b)

Theorem 3(a)

d

16

bounds for the corresponding substreams which lead to different playout deadlines and
buffer requirements. We must avoid a situation where substreams with large jitter
bounds still wait for their deadlines while the buffer of other substreams with small jit-
ter bounds already overflows. To cope with this problem in a straight forward manner,
Ishibashi et al. [Ish95] propose to allocate the buffer according to the substream with
the largest jitter bound. Hence, the buffer requirement for each substream of the
group and BM for the complete group are given as follows.

(15)

(16)

(b) Shifting Strategy

Depending on the differences in the jitter values for the substreams, the maximum
jitter strategy might lead to a buffer waste. A more sophisticated way to handle this
problem is to synchronize the different substreams such that they reach their playout

Fig. 5. Multiple Substreams without and with Shifting.

bk
M

bk
M 2∆max

r⋅=

B
M

bk
M

n 2∆max
r⋅⋅=

k 0=

n 1–

∑=

s0

s3

s1

s2

s4

s0

s1

s2

s3

s4

s5

s6

s0

s1

s2

s2

s1

s0

s3

s4

s5

s6

shift

td1

td2 td1 td2

DS0 S1S1DS0

17

deadline on average at the same time. This is done by shifting the starting points of all
substreams according to the deadline of the substream, with the largest jitter bound.
Figure 5 depicts such a scenario for two sources8 where , and

.
With theorem 4 we get buffer requirements of four media-units for substream 1 and

twelve media-units for substream 2. Substream 1 reaches its playout deadline on aver-
age at td1 and substream 2 at td2. Without shifting a buffer overflow occurs when
receiving the 5th media-unit of substream 1 while substream 2 still has to wait two
time units until playout can commence. By shifting, both substreams arrive at the same
time. The amount of the forward shift can be easily derived from theorem 3. The k-th
substream has to be shifted forward on time axis with the difference of its jitter to the
maximum jitter, i.e. seconds. Clearly, substream k has to be started

 seconds later than the substream with the highest jitter. When applying that
shift one might conclude that no further buffering is needed except for the buffer given
by theorem 4. In fact, there exists a worst case that requires additional buffer space for
each substream. The amount of additional buffering is stated in theorem 5.

Theorem 5: Applying a shift of to the k-th substream, k = 0, ... , n-1, and
having bounded jitter for each substream, inter-stream synchronization
for multiple dependent substreams can be guaranteed if in addition to
the buffer requirement of theorem 4, another buffer
slots are allocated.

For a proof see [Gey95].
With the above theorems, the total buffer requirements can be computed as fol-

lows.

(17)

(18)

2.6 Start-up Protocol Influence

Until now, we have assumed that substreams are synchronized with respect to their
average delay. Model 1 is based on the assumption of zero jitter. When we use the
scheme in the case of bounded jitter, cannot guarantee the synchronization of the sub-
streams with respect to their average delay since it is based on the roundtrip delay val-
ues experienced by the first n media-units. If this delay corresponds to the average
delay, the start-up protocol works correctly. However, the observed delay can be
altered due to jitter, hence the calculation introduces an error that must be considered.

The start-up protocol computation is based on a roundtrip delay for a request
packet and one or several packets carrying a media-unit. However, the transmission of
the request packet from sink to source and the sending of the media-unit back to the
client are subject to jitter. Since the request message is a small packet made up of sev-

8 In contrast to the definitions for model 1, each one of the depicted substreams delivers
equal media-unit numbers.

d 3.5= ∆0 2=
∆1 6=

∆max ∆k–
∆max ∆k–

∆max ∆k–

∆max+ ∆k
+–() r⋅

bk
S 2 ∆k ∆max+ ∆k

+–+⋅() r⋅=

B
S

bk
S 2 ∆k ∆max+ ∆k

+–+⋅() r⋅
k 0=

n 1–

∑=
k 0=

n 1–

∑=

18

eral bytes the following considerations we will neglect the jitter experienced by the
request packet, supposing that the jitter bounds for the buffer calculations stated in the-
orem 4 and 5 have been chosen sufficiently large.

2.7 Exact Buffer Requirements

Model 2 gives us a framework to compute buffer requirements for multiple sub-
streams with different jitter bounds to attain inter-stream synchronization by maintain-
ing intra-stream synchronization. Buffer requirements are given by theorem 4 and 5.
The error introduced by the start-up protocol is corrected by theorem 6. Throughout all
theorems, we expressed the time we need to buffer in terms of media-units. The
required buffer space can be optimized by summing up the time to buffer given by the-
orem 4 and 5 and by transforming the resulting sum into buffer slots. We can summa-
rize the overall buffer requirements bk for a substream k and B for a synchronization
group consisting of n substreams as follows.

(19)

 =

(20)

3 Conclusion

We have presented a scheme for intra- and inter-stream synchronization of stored
multimedia streams. The only assumption we make is that jitter is bounded, which is
typically true in todays networks. Having presented a base-version of the synchroniza-
tion scheme, we make enhancements such as shifting the start-up times in order to
reduce the buffer requirements. At the end, we derived exact bounds for the buffer
requirements.

Acknowledgment

The work described in this paper was supported by the Siemens Nixdorf AG,
Munich.

4 References

[Aga94] N. Agarwal and S. Son. “Synchronization of Distributed Multimedia Data in an Ap-
plication-specific Manner.” In 2nd ACM International Conference on Multimedia,

bk 2∆k ∆max+ ∆k
+–()

max ∆m ∆k
+ ∆max+–+ m k≠ m 0…n 1–=∧{ }

+ +

r⋅

=

B bk

k 1=

n

∑=

2∆k ∆max+ ∆k
+– max ∆m ∆k

+ ∆max+–+ m k≠ m 0…n 1–=∧{ }+ +

r⋅
k 1=

n

∑

19

pages 141–148, San Francisco, USA, October 1994.

[Ber95] C. Bernhardt and E. Biersack. “The Server Array: A Novel Architecture for a Scal-
able Video Server.” In Proceedings of the Distributed Multimedia Conference, pages
63–72, Stanford, USA, August 1995.

[Eff93] W. Effelsberg, T. Meyer, and R. Steinmetz. “A Taxonomy on Multimedia-Synchro-
nization.” In Proceedings of the Fourth Workshop on Future Trends of Distributed
Computing Systems, Lisbon, Portugal, Sep. 1993, pages 97–103. Eyrolles, 1993.

[Esc94] J. Escobar, C. Patridge, and D. Deutsch. “Flow Synchronization Protocol.” In ACM
Transactions on Networking, volume 2, pages 111–121. IEEE, April 1994.

[Gey95] W. Geyer. “Stream Synchronisation in a Scalable Video Server Array.” Master’s the-
sis, Institut Eurecom, Sophia Antipolis, France, September 1995.

[Ish95] Y. Ishibashi and S. Tasaka. “A Synchronization Mechanism for Continuous Media
in Multimedia Communications.” In IEEE Infocom’95, volume 3, pages 1010–1019,
Boston, Massachusetts, April 1995.

[Koe94] D. Koehler and H. Mueller. “Multimedia Playout Synchronization Using Buffer
Level Control.” In 2nd International Workshop on Advanced Teleservices and High-
Speed Communication Architectures, pages 165–180, Heidelberg, Germany, Sep-
tember 1994.

[Ran92] P. V. Rangan, H. M. Vin, and S. Ramanathan. “Designing an On-Demand Multime-
dia Service.” IEEE Communications Magazine, 30(7):56–65, July 1992.

[Ran93] P. Rangan, S. Ramanathan, H. M. Vin, and T. Kaeppner. “Techniques for Multime-
dia Synchronization in Network File Systems.” Computer Communications,
16(3):168–176, March 1993.

[Rot95b] K. Rothermel and T. Helbig. “An Adaptive Stream Synchronization Protocol.” In 5th
International Workshop on Network and Operating System Support for Digital Audio
and Video, Durham, New Hampshire, USA, April 1995.

[Rot95c] K. Rothermel, T. Helbig, and S. Noureddine. “Activation Set: An Abstraction for
Accessing Periodic Data Streams.” In Multimedia Computing and Networking, vol-
ume 2417, San Jose, California, February 1995. IS&T/SPIE.

[San93] H. Santoso, L. Dairaine, S. Fdida, and E. Horlait. “Preserving Temporal Signature:
A Way to Convey Time Constrained Flows.” In IEEE Globecom, pages 872 – 876,
December 1993.

[Ste93a] R. Steinmetz. Multimedia-Technologie. Springer Verlag, Heidelberg, Germany,
1993.

