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Network Coordination

Coordination and cooperation have emerged as central concepts in many types of
networks

Robots networks (autonomous drones, smart factory, plant probes, etc.)

Transportation networks (driver less cars, truck trains, etc.)

Sensor networks

Processor networks

Energy (Smart Grids) networks

Wireless networks

Chalmers University project on self driving car safety 
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Cooperation Scenarios in Wireless Network (5G and beyond)

Cooperation turns a resource usage conflict into a system gain, for instance in following
scenarios:

1 Coordinated Multipoint (CoMP) transmission

2 Power control for interference reduction

3 Spectrum sublicensing (coordinated cognitive radios)

4 Beam alignment for massive MIMO in mmwave bands

5 Dynamic content caching

6 Inter-cell Interference Coordination (ICIC and eICIC)

7 Coordinated power transfer for battery life extension (IoT)

8 and more...
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Joint Processing CoMP

n otherwise-interfering base stations jointly combine their nMTX antenna elements
over ideal backhaul

K users are served simultaneously, free of interference (with K up to nMTX )

Spatial Multiplexing Gain = nMTX

Challenges:
All base stations must be synchronized and acquire knowledge of all served users’
channels
All base stations must acquire knowledge of all served users’ channels

MTX

K

Data Di

Data Di

Data Di

Transmitting Device n
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Power Control for Interference Reduction

Neighboring base stations interfere and coordinate their power control policies

Power control is subject to a maximum power constraint

Optimum policy aims at maximizing the overall throughput, i.e. just the right
amount of interference is generated

Challenges: Coordination requires knowledge of all channel strengths Gij

RX 2

G22

Transmitting Device 1

G11

RX 1

G21
G12

P1 P2

Transmitting Device 2
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Spectrum Sub-licensing using Cognitive Radio Beamforming

A primary operator (p) is sub-licensing its spectrum to a secondary operator (s)

Both operator base stations control a beamforming vector

Maximize E[Rs ]︸ ︷︷ ︸
Secondary

subject to E[Rp]︸ ︷︷ ︸
Primary

≥ τ > 0

Secondary TX

hp,shs,p

ws
wp

hs,s hp,p

Primary TX

Secondary user
Primary user

y Most common approach: Interference temperature constraint Iprimary ≤ τ
Challenge: Full beamforming coordination requires centralized knowledge of primary
and secondary channels.
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Centralized VS Decentralized Signal Processing Architectures in 5G and
Beyond

Cloud RAN is popular, pushes for more centralization

Centralized decision making is conceptually simple

Coordination is easy

Mobile service providers love it

Cloud RAN
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Centralized vs. Decentralized Signal Processing Architectures in 5G and
Beyond

Centralization leads to expensive deployment (road digging, fiber,..)
Backhaul architectures can be of diverse nature
Curse of dimension (IoT: billions of devices)
More centralization increases latency, decreases timeliness of CSI

Cloud 

Fog 

Ground 

Centralization Backhaul  latency timeliness 
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Cooperation in LTE with Heterogeneous Backhaul: A Device Centric
Perspective

sharing/caching of 
user’s data symbols

Imperfect CSI sharing

x2=w2(H(2))s

x3=w3(H(3))s

x1=w1(H(1))s
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CSI for Device-Centric Cooperation

CSI affected by mobility, limited training and feedback

CSI exchange is not free

y Devices are myopic: They know better what is close

y Need for local (device-centric) decision-making

Today’s questions:

1 Distributed information models?

2 Price of myopia?

3 Myopia-robust approaches?
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Distributed Information Models

Outline

1 Distributed Information Models

2 Device-Centric Cooperation: Formulation and methods

3 Applications of Team Decision to Device-Centric Cooperation
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Distributed Information Models

Centralized VS Distributed Channel State Information

Centralized (TX Independent)

Cloud RAN
 =H+σN   

Distributed (TX Dependent)

H(2)=H+σ(2)
N

(2)
  

H(3)=H+σ(3)
N

(3)
  

H(1)=H+σ(1)
N

(1)
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Device-Centric Cooperation: Formulation and methods
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Device-Centric Cooperation: Formulation and methods

Device-centric Coordination ⇐⇒ Team Decision

K devices cooperate to maximize network performance f

(s?1 , . . . , s
?
K ) = argmax

s1,...,sK
Ex ,x (1),...,x (K)

[
f
(
x ,

Decision policy at device 1︷︸︸︷
s1 ( x (1)

︸︷︷︸
Observation at device 1

), . . . , sK (x (K))
)]

where

x ∈ Cm : System State (for wireless: x = H)

x (j) ∈ Cm: Observation of the state of the world x at device j

sj : Cm → Aj ⊂ Cdj : Decision policy at device j

px,x(1),...,x(K) : Joint probability distribution of the channel and the estimates
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Device-Centric Cooperation: Formulation and methods

Team 
Decision 
theory 

Distributed 
optimization 

Device-centric 
Cooperation  

Game 
theory 

Information 
theory 

One-shot decision 
Robust sign. proc./control 
Noisy/distributed CSI 
… 

Complexity/Convergence studies 
Consensus algorithms 
Delay tolerant applications 
… 
[Boyd et al, Inalhan et al, Colorni et al, Rabbat et al, Chen et al., Johansson et al., 
Palomar et al., Scaglione et al., Scutari et al.] 

Study of equilibria 
Selfish behavior 
Convergence studies 
… 
[Saad et al, Han et al, McKenzie et al, Lasaulce et al, 
Poor et al., Rose et al., Jorswieck et al.,..] 

Capacity/DoF analysis 
Coordination theory 
Quantizing with side info. 
 … 
 
 

[Larousse et al,Cuff et al, 
 Li et al, Grover, …] [Ho et al., Radner, Gesbert, de Kerret, 

Lasaulce et al, Fritsche et al., Davidson et al.,..]  
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Device-Centric Cooperation: Formulation and methods

One-Shot Team Decision: Algorithm Design

Team Decision 

Methods

Quantizing the 

Policy Space

Model-Based 

Approach

Quantizing the 

Observation Space

Information 

Allocation
Information Sharing 
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Applications of Team Decision to Device-Centric Cooperation

Outline
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Applications of Team Decision to Device-Centric Cooperation

I/ First Application: Joint Processing CoMP

Find precoders {wj}Kj=1:

(w?
1 , . . . ,w

?
K ) = argmax

(w1,...,wK )∈W
E[R(H,w1(Ĥ(1)), . . . ,wK (Ĥ(K)))]

wj being the precoder at TX j

wj : CNtot×Mtot → CMj×dtot

Ĥ(j) 7→ wj (Ĥ
(j))

T =
[
T1 . . . TK

]
=


w1(Ĥ(1))

...

wK (Ĥ(K))



MTX

K

Transmitting Device n

K and MTX grow large at the same rate β , limM,K→∞
M
K
≥ 1: Asymptotic analysis
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Applications of Team Decision to Device-Centric Cooperation

Large Random Matrix Theory in Wireless Networks [A Short Digression]

Example

Let A be the matrix of size n × n defined as

A ,

 0 ±1 ±1
±1 0 ±1
±1 ±1 0


y Convergence of the eigenvalue

distribution

12 Introduction
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Fig. 1.4 The semicircle law density function (1.18) compared with the histogram of the

average of 100 empirical density functions for a Wigner matrix of size n = 100.

derivation of the asymptotic eigenvalue moments involving the Cata-

lan numbers, Wigner showed that, as n → ∞, the averaged empirical

distribution of the eigenvalues of 1√
n
A converges to the semicircle law

whose density is

w(x) =

{
1
2π

√
4− x2 if |x| ≤ 2

0 if |x| > 2
(1.18)

Later, Wigner [305] realized that the same result would be obtained if

the random selection was sampled from a zero-mean (real or complex)

Gaussian distribution. In that case, it is even possible to find an exact

formula for the joint distribution of the eigenvalues as a function of

n [176]. The matrices treated in [303] and [305] are special cases of

Wigner matrices, defined as Hermitian matrices whose upper-triangle

entries are zero-mean and independent. In [306], Wigner showed that

the asymptotic distribution of any Wigner matrix is the semicircle law

(1.18) even if only a unit second-moment condition is placed on its

entries.

Figure 1.4 compares the semicircle law density function (1.18) with

the average of 100 empirical density functions of the eigenvalues of a

10× 10 Wigner matrix whose diagonal entries are 0 and whose upper-

triangle entries are independent and take the values ±1 with equal

probability.

If no attempt is made to symmetrize the square matrix A and all

its entries are chosen to be i.i.d., then the eigenvalues of 1√
n
A are

Full text available at: http://dx.doi.org/10.1561/0100000001

Figure: from [Tulino and Verdu, 2004]

Application to Wireless Networks for more than 10 years: Asymptotic expressions for
SINR, rate, power, BER,...

y Made more relevant by Massive MIMO technology!

Many books and lecture notes [Tulino and Verdu, 2004] [Couillet and Debbah, 2011]
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Applications of Team Decision to Device-Centric Cooperation

Model-Based Optimization: Introduction of Regularized Zero Forcing

Modelization of the precoder using Regularized Zero Forcing:

wj(Ĥ
(j)) = [0j , 1, 0M−j ]︸ ︷︷ ︸

Selects the j th row

(
(Ĥ(j))HĤ(j) + Mγ(j)IM

)−1

(Ĥ(j))H
√
P√

Ψ(j)︸ ︷︷ ︸
Robust channel inversion

Intuition: Distributed (regularized) Channel Inversion

Tikhonov Regularization of channel inversion [Golub et al., 2016], widely used [Shenouda and

Davidson, 2006]

y How to find optimization parameter γ(j) at TX j?
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Applications of Team Decision to Device-Centric Cooperation

Optimization of the Regularization Parameter γ(j)

Myopic regularization

γ(j),Myopic = argmaxγ∈RE[R(Ĥ(j), . . . , Ĥ(j))]

Team-Based regularization

(γ(1),?, . . . , γ(n),?) = argmax
(γ(1),...,γ(n))

E[R(Ĥ(1), . . . , Ĥ(n))].

Low Complexity Team-Based regularization (Equal coefficient at all TXs)

(γ?, . . . , γ?) = argmax
(γ,...,γ)

E[R(Ĥ(1), . . . , Ĥ(n))].

y RMT allows to get rid of the expectation operator in the optimization
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Applications of Team Decision to Device-Centric Cooperation

Performance of CoMP Transmission with Distributed CSIT

Antenna Setting n 3

K 30

M 30

Channel Modeling Fading Rayleigh

Pathloss Uniform

CSIT Configuration (σ
(1)
k

)2 0.01

(σ
(2)
k

)2 0.16

(σ
(3)
k

)2 0.49

ρ
(j,j′)
k
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Optimal regularization coefficients (γ(1)∗, γ(2)∗ , γ(3∗) )

Optimal regularization coefficients (γ∗, γ∗, γ∗)

Naive regularization coefficients (γ(1) , γ(2) , γ(3))
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Applications of Team Decision to Device-Centric Cooperation

II/ Second Application: On-Off Power Control

Power control to reduce interference of two interfering wireless links:

(p?1 , p
?
2 ) = argmax

(p1,p2)∈P
[R(p1( G(1)︸︷︷︸
Local Channel at device 1

), p2(G(2)))]

where pj is the power control function

pj : R4
+ → {Pmin

j ,Pmax
j }

G(j) 7→ pj(G
(j))

TX 2

RX 2

G22

TX 1

G11

RX 1

G21
G12

p1(G(1)) p2(G(2))
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Applications of Team Decision to Device-Centric Cooperation

Discretization of the Observation Space [de Kerret and Gesbert, 2016, SPAWC]

Replace the strategy pj(Ĝ
(j)) by pj

(
Quant(Ĝ(j))︸ ︷︷ ︸

belongs to a codebook of size n

)

y Optimizing a function over a discrete set is more easy than a continuous one

y1 y2

s1(y1) s2(y2)

y1 y2

Discretization

s1(Quant(y1)) s2(Quant(y2))

24/36



Applications of Team Decision to Device-Centric Cooperation

Best Response Optimization

Solve iteratively

At TX 1, ∀Gi ∈ {GQuant
1 , . . . ,GQuant

n },

pBR
1 = argmax

p1

E[R(p1(G(1)), pBR
2 (G(2)))]

At TX 2, ∀Gi ∈ {GQuant
1 , . . . ,GQuant

n },

pBR
2 = argmax

p2

E[R(pBR
1 (G(1)), p2(G(2)))]

y Made possible by the discretization of the observation space
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Applications of Team Decision to Device-Centric Cooperation

Simulations of On-Off Power Control with Local Feedback

Channel Modeling Fading Rayleigh
Pathloss Uniform

Algorithm parameters Codebook size for quantization 104

Number of Monte-Carlo runs 500

CSIT Configuration σ(1) 1

σ(2) 0
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Applications of Team Decision to Device-Centric Cooperation

III/ Third Application: Cognitive Radio Beamforming with Local Feedback

TX p
TX s

RX p
RX s

hp,s
Hhs,p

H

ws wp

hs,s
H

Feedback of 
hs,s

H
Feedback of 

hp,p
H

hp,p
H

Maximize E[Rs ]︸ ︷︷ ︸
Secondary

subject to E[Rp]︸ ︷︷ ︸
Primary

≥ τ > 0

CSI configuration
Primary TX only knows hp,p

Secondary TX only knows hs,s

SOTA: Primary user is oblivious of the secondary user

Coordination scheme

Primary TX adapts without any exchange of instantaneous information
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Applications of Team Decision to Device-Centric Cooperation

Robust Distributed Optimization

Optimization Problem (P)

(w?
p ,w

?
s ) = argmax

(wp ,ws )

E [Rs(wp(hp,p),ws(hs,s))]

s. to E [Rp(wp(hp,p),ws(hs,s))] ≥ τ > 0, (P)

wp is the beamforming function at the primary TX

wp : CMp → CMp

hp,p 7→ wp(hp,p)

ws is the beamforming function at the secondary TX

ws : CMs → CMs

hs,s 7→ ws(hs,s)
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Applications of Team Decision to Device-Centric Cooperation

Primary Friendly (PF) Strategy

Primary TX: uses Matched Filtering with full power P̄p = Pmax
p

u(PF)
p ,

hp,p

‖hp,p‖

Secondary TX: uses the statistical Zero Forcing beamforming

u(PF)
s , argmin

u
uHRp,su

and average transmit power P̄s to fulfill the ergodic rate constraint

Primary TXSecondary TX

Primary RX
Secondary RX

Statistical Zero Forcing
To minimize interference

Matched Filter to maximize 
received power
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Applications of Team Decision to Device-Centric Cooperation

Secondary Friendly (SF) Strategy

Secondary TX: uses Matched Filtering with full power P̄s = Pmax
s

u(SF)
s ,

hs,s

‖hs,s‖
Primary TX: uses the statistical Zero Forcing beamformer

u(SF)
p , argmin

u
uHRs,pu

and average transmit power P̄p to fulfill the ergodic rate constraint

Primary TX

Secondary TX

Primary RX
Secondary RX

Statistical Zero Forcing
to minimize interference

Matched Filter to maximize 
received power
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Applications of Team Decision to Device-Centric Cooperation

Quantizing the Policy Space [Filippou et al., 2016, TWC]

Restrict to 2 strategies labeled Primary Friendly (PF) and Secondary Friendly (SF)

y Need good heuristic choices

Optimization Problem

(w?
p ,w

?
s ) = argmax

(wp ,ws )∈W
E [Rs(wp(hp,p),ws(hs,s))]

s. to E [Rp(wp(hp,p),ws(hs,s))] ≥ τ > 0, (P)

W =


(
w (PF)

p ,w (PF)
s

)
︸ ︷︷ ︸

First Strategy

,
(
w (SF)

p ,w (SF)
s

)
︸ ︷︷ ︸
Second Strategy


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Applications of Team Decision to Device-Centric Cooperation

Cognitive Radio with Local Feedback: Rate of the Secondary User
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Correlation matrices
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Applications of Team Decision to Device-Centric Cooperation

Cognitive Radio with Local Feedback: Rate of the Primary User

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

Transmit SNR [dB]

A
ve

ra
ge

 P
U

 R
at

e 
[b

ps
/H

z]

 

 
Perfect Coordination (Centralized)
Team−Based Coordination
Interference Temperature

τ

Figure: Ergodic rate of the Primary User

Ms = Mp = 3 antennas
per-TX

Correlation matrices

Rp,p = Rs,s = I3,

Rp,s = Rs,p =

 1 ρ ρ2

ρ 1 ρ

ρ2 ρ 1


Use in the following ρ = 0.5
and τ = 0.5bps/Hz

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

Transmit SNR [dB]

A
ve

ra
ge

 R
at

e 
of

 S
ec

on
da

ry
 U

se
r 

[b
ps

/H
z]

 

 

Perfect Coordination (Centralized)
Team−Based Coordination
Interference Temperature

Figure: Ergodic rate of
the Secondary User

33/36



Applications of Team Decision to Device-Centric Cooperation

Take home

Device coordination is key to performance improvement in 5G and beyond
Virtually all coordination schemes require extensive CSI acquisition and sharing
among devices
Coordination frameworks that are robust to CSI locality are desirable
Several perspectives on the problem (i) control, (ii) signal processing, (iii)
information theoretic

More applications (not covered here)

Dynamic content caching at device side
Coordinated beam alignment in millimeter wave Massive MIMO
Coordinated power transfer for battery recharge in IoT networks
More examples upon request
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Applications of Team Decision to Device-Centric Cooperation

Conventional precoding

05 décembre 2013.gwb - 1/4 - 13 déc. 2013 13:49:58
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Applications of Team Decision to Device-Centric Cooperation
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