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Network Coordination

Coordination and cooperation have emerged as central concepts in many types of
networks

Robots networks (autonomous drones, smart factory, plant probes, etc.)
Transportation networks (driver less cars, truck trains, etc.)
Sensor networks

°
°

@ Processor networks

@ Energy (Smart Grids) networks
°

Wireless networks

Chalmers Uniersty project on sefdring carsafety
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Cooperation Scenarios in Wireless Network (5G and beyond)

Cooperation turns a resource usage conflict into a system gain, for instance in following
scenarios:

Coordinated Multipoint (CoMP) transmission

Power control for interference reduction

Spectrum sublicensing (coordinated cognitive radios)
Beam alignment for massive MIMO in mmwave bands
Dynamic content caching

Inter-cell Interference Coordination (ICIC and elCIC)

Coordinated power transfer for battery life extension (loT)

and more...
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|
Joint Processing CoMP

@ n otherwise-interfering base stations jointly combine their nM7x antenna elements
over ideal backhaul

@ K users are served simultaneously, free of interference (with K up to nMrx)
Spatial Multiplexing Gain = nMrx

o Challenges:
o All base stations must be synchronized and acquire knowledge of all served users’
channels
o All base stations must acquire knowledge of all served users’ channels

em——Data D;
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Power Control for Interference Reduction

o Neighboring base stations interfere and coordinate their power control policies
@ Power control is subject to a maximum power constraint

o Optimum policy aims at maximizing the overall throughput, i.e. just the right
amount of interference is generated

@ Challenges: Coordination requires knowledge of all channel strengths Gj
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Spectrum Sub-licensing using Cognitive Radio Beamforming
@ A primary operator (p) is sub-licensing its spectrum to a secondary operator (s)
@ Both operator base stations control a beamforming vector

Maximize E[Rs] subject to E[R,] > 7 >0
—— ——

Secondary Primary

Primary TX

Secondary TX

(lisibe)
W o

Secondary user &

Primary user

= Most common approach: Interference temperature constraint lprimary < 7
@ Challenge: Full beamforming coordination requires centralized knowledge of primary
and secondary channels.
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Centralized VS Decentralized Signal Processing Architectures in 5G and
Beyond

o Cloud RAN is popular, pushes for more centralization
o Centralized decision making is conceptually simple

o Coordination is easy

@ Mobile service providers love it

Cloud RAN
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Centralized vs. Decentralized Signal Processing Architectures in 5G and
Beyond

Centralization leads to expensive deployment (road digging, fiber,..)
Backhaul architectures can be of diverse nature

Curse of dimension (loT: billions of devices)

More centralization increases latency, decreases timeliness of CSI

Cloud
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Cooperation in LTE with Heterogeneous Backhaul: A Device Centric
Perspective

sharing/caching of )) Imperfect CSl sharing
user’s data symbols
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CSI for Device-Centric Cooperation

o CSI affected by mobility, limited training and feedback
o CSI exchange is not free

= Devices are myopic: They know better what is close
> Need for local (device-centric) decision-making
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CSI for Device-Centric Cooperation

o CSI affected by mobility, limited training and feedback
o CSI exchange is not free

> Devices are myopic: They know better what is close
> Need for local (device-centric) decision-making

Today’s questions:
@ Distributed information models?
@ Price of myopia?
© Myopia-robust approaches?
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Distributed Information Models
Outline

@ Distributed Information Models
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Centralized VS Distributed Channel State Information

o Centralized (TX Independent)

Cloud RAN

H=H+oN
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Centralized VS Distributed Channel State Information

o Centralized (TX Independent)

Cloud RAN

H=H+oN

o Distributed (TX Dependent)
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Device-Centric Cooperation: Formulation and methods
Outline

@ Device-Centric Cooperation: Formulation and methods
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Device-Centric Cooperation: Formulation and methods

Device-centric Coordination <= Team Decision

K devices cooperate to maximize network performance f

Decision policy at device 1

* * ~= 1 K
(st,....sk) =argmaxE, 1) 0[f(x s ( xM ) sk(x( )))
S1,...,5K ) 30ty N~~~
Observation at device 1
where
@ x € C™ : System State (for wireless: x = H)
e xU € C™: Observation of the state of the world x at device j
@ 5;:C" — A; C C%: Decision policy at device j

L)1 Joint probability distribution of the channel and the estimates
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Device-Centric Cooperation: Formulation and methods

Capacity/DoF analysis
Coordination theory
Quantizing with side info.

One-shot decision
Robust sign. proc./control
Noisy/distributed CSI

Team

Decision Information [Larousse et al,Cuff et al,

[Ho et al., Radner, Gesbert, de Kerret, Liet al, Grover, ...]

theory Lasaulce et al, Fritsche et al., Davidson et al.,..] theory

Device-centric
Cooperation

e
4

Distributed
optimization

Study of equilibria Complexity/Convergence studies

Selfish behavior Consensus algorithms

Convergence studies Delay tolerant applications

[Saad et al, Han et al, McKenzie et al, Lasaulce et al, [Boyd et al, Inalhan et al, Colorni et al, Rabbat et al, Chen et al., Johansson et al.,

15/36 Poor et al., Rose et al., Jorswieck et al.,..] Palomar et al., Scaglione et al., Scutari et al.]



One-Shot Team Decision: Algorithm Design

Quantizing the Quantizing the Model-Based
Policy Space Observation Space Approach

Team Decision
Methods

Information
Allocation

L4 Information Sharing
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Applications of Team Decision to Device-Centric Cooperation
Outline

© Applications of Team Decision to Device-Centric Cooperation
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Applications of Team Decision to Device-Centric Cooperation

I/ First Application: Joint Processing CoMP

o Find precoders {w;}/;:

(wi,...,wg)= argmax E[R(H,wi(AY), ..., wk(A"))]

e w; being the precoder at TX j
w; : CMeot XMooty CMjXdrot
Aav) s Wj(ﬂ(j))
wi(AM)

T=[T ... T«]=

(K
WK(H( )) {Transmitting Device n

K and Mrx grow large at the same rate 3 £ limum, k= oo % > 1: Asymptotic analysis

18/36



Large Random Matrix Theory in Wireless Networks [A Short Digression|

Example

Let A be the matrix of size n x n defined as

0 +1 +1
A2 |+1 0 +1
+1 +1 0

> Convergence of the eigenvalue
Fig. 1.4 The semicircle law density function (1.18) compared with the histogram of the
d | St ri b Utl on average of 100 empirical density functions for a Wigner matrix of size n = 100,

Figure: from [Tulino and Verdu, 2004]

@ Application to Wireless Networks for more than 10 years: Asymptotic expressions for
SINR, rate, power, BER,...

W Made more relevant by Massive MIMO technology!

@ Many books and lecture notes [Tulino and Verdu, 2004] [Couillet and Debbah, 2011]
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Applications of Team Decision to Device-Centric Cooperation

Model-Based Optimization: Introduction of Regularized Zero Forcing

Modelization of the precoder using Regularized Zero Forcing:

A (r ~ (s ~ (s . —1 .
wi(AD) = 10,,1,0u-] ((A)AY + My 01)  (RO)"
N ——

S E

Selects the j th row
Robust channel inversion

@ Intuition: Distributed (regularized) Channel Inversion

o Tikhonov Regularization of channel inversion [Golub et al., 2016], widely used [Shenouda and
Davidson, 2006)

= How to find optimization parameter ~,(j) at TX 7
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Applications of Team Decision to Device-Centric Cooperation

Optimization of the Regularization Parameter )

o Myopic regularization
AU Myopic argmax,yeRIE[R(l:l(j),
@ Team-Based regularization

W 4y = argmax E[R(A

SO ON

(v

A

W AM).

o Low Complexity Team-Based regularization (Equal coefficient at all TXs)

(v*,...,~") = argmaxE[R(R"Y, .
(vs7)

AL

= RMT allows to get rid of the expectation operator in the optimization
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Performance of CoMP Transmission with Distributed CSIT

Antenna Setting n 3

K 30

M 30
Channel Modeling Fading Rayleigh
Pathloss Uniform

CSIT Configuration (05(1))2 0.01

(af)ﬁ 0.16

(05(3))2 0.49

G.J"
oy 0.1
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il —8— Optimal regularization coefficients (1%, 1®*, 76
20 | —@— Optimal regularization coefficients (1°,7°,7")
—©— Naive regularization coefficients (v, 4®,7®)
L ‘ ‘ ‘ ‘ ‘
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Total transmit power P [dB]
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II/ Second Application: On-Off Power Control

@ Power control to reduce interference of two interfering wireless links:

(pi,p3) = argmax [R(pi( G¥ ), p2(G?))]
(P1,p2)EP et o
Local Channel at device 1

where p; is the power control function

pi Ri N {ijin’ ijax}
GY pj(G(J))

o
x
=
o
53
N
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Applications of Team Decision to Device-Centric Cooperation

Discretization of the Observation Space [de Kerret and Gesbert, 2016, SPAWC]

o Replace the strategy pj(é(j)) by pj (Qu‘dllt(GU))>
| —

belongs to a codebook of size n

- Optimizing a function over a discrete set is more easy than a continuous one

sa(y1) [ sa(y2) [
Y1 Y2

s1(Quant(y,)) s2(Quant(y,))

Y1 Y2
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Applications of Team Decision to Device-Centric Cooperation

Best Response Optimization

@ Solve iteratively
Quant Quant
o At TX 1, ¥G; € {GRUm  gQurt),

PPR = argmax E[R(p1(GV), pFR(G?))]
P1

o At TX 2, VG; € {GRu"t  gRuanty,

PR = argmax E[R(pPF (G1)), pa(G?))]
P2

> Made possible by the discretization of the observation space
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Applications of Team Decision to Device-Centric Cooperation

Simulations of On-Off Power Control with Local Feedback

Channel Modeling Fading Rayleigh
Pathloss Uniform
Algorithm parameters | Codebook size for quantization 107
Number of Monte-Carlo runs 500
CSIT Configuration o 1
@ 0

Perfect CSIT power control

71 —®— Team power control
—L— Naive power control

Average rate [bit/Hz/s]

0 i i i i i i
0 2 4 6 8 10 12 14 16 18 20
Transmit power [dB]
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Applications of Team Decision to Device-Centric Cooperation

[1l/ Third Application: Cognitive Radio Beamforming with Local Feedback

TXs
(¢

,ng (CGIO)

Feedback of Feedback of
b, by

RX's
RXp
Maximize E[Rs] subject to E[R,] > 7 >0
N~ N~
Secondary Primary
@ CSI configuration

e Primary TX only knows h, ,
o Secondary TX only knows hs ¢

@ SOTA: Primary user is oblivious of the secondary user

Coordination scheme

Primary TX adapts without any exchange of instantaneous information J
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Robust Distributed Optimization

Optimization Problem (P)

(wy, w') = argmax E [Rs(wp(hp,p), ws(hs,s))]

(Wpyws)

s. to E[Rp(wp(hp,p), ws(hss))] > 7 >0,

@ w, is the beamforming function at the primary TX
Wy : cM CcMe
hop = wp(hpp)
@ w; is the beamforming function at the secondary TX

ws: CY cMs
hs,s — Ws(hs,s)
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Primary Friendly (PF) Strategy

@ Primary TX: uses Matched Filtering with full power P, = P

(PF) & hp,p
1o,
o Secondary TX: uses the statistical Zero Forcing beamforming

us(PF)

A . H
Zargminu Ry su
u

and average transmit power P to fulfill the ergodic rate constraint

Secondary TX Primary TX

(EXBXE (?KX%U%))

Statistical Zero Forcing
To minimize

Matched Filter to maximize
received power

& 9
&
Secondary RX )
Primary RX
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Secondary Friendly (SF) Strategy

@ Secondary TX: uses Matched Filtering with full power P, = P

(sF)a_hss
u. =
* sl

@ Primary TX: uses the statistical Zero Forcing beamformer

(SF) & .

H
u,” ' =argminu R pu
u

and average transmit power P, to fulfill the ergodic rate constraint

Primary TX
Secondary TX (( XX U ))

(BXBXE
Matched Filter to maximize
received power
’
s &
Secondary RX

Primary RX

Statistical Zero Forcing
to minimize interference
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Applications of Team Decision to Device-Centric Cooperation

Quantizing the Policy Space [Fiippou et a1, 2016, Twc]

@ Restrict to 2 strategies labeled Primary Friendly (PF) and Secondary Friendly (SF)
= Need good heuristic choices

Optimization Problem

(wy,we) = argmax E[Rs(wp(hp,p), ws(hs,s))]
(wp,ws)EW

s. to E[Rp(wp(hpp), ws(hss))] > 7 >0, (P)

W — (w;')”, WS(PF)>7 <W[()Slf)7 WS(SF)>

First Strategy Second Strategy

31/36



Cognitive Radio with Local Feedback: Rate of the Secondary User

Average PU Rats st

— Pertect Conntination (Cervalzed)
—o—Team-aased Coordnaton
—E— meterence Temperatre

e w0 u
Transit SN [66]

Figure: Ergodic rate of
the Primary User
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@ Ms = Mp = 3 antennas
per-TX

@ Correlation matrices

Rp,p = Rs,s = I3,

1 P
Rp,s =Rs,p = A 1
P P

@ Use in the following p = 0.5
and 7 = 0.5bps/Hz

Rl

-

Average Rate of Secondary User [bps/Hz]

Perfect Coordination (Centralized)

—®— Team-Based Coordination
—H5— Interference Temperature

20

B i

o R S S S S S S S

[ 2 4 6 8 10 12 14 16 18
Transmit SNR [dB]

Figure: Ergodic rate of the Secondary User




Cognitive Radio with Local Feedback: Rate of the Primary User

Average PU Rate [bps/Hz]

Perfect Coordination (Centralized)

—@— Team-Based Coordination
3.5 —H&— Interference Temperature g

0 I I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Transmit SNR [dB]

Figure: Ergodic rate of the Primary User

@ Ms = Mp = 3 antennas
per-TX

@ Correlation matrices

Rp.p = Rss = I3,

1 P
Rp,s =Rs p = p2 1
P I

@ Use in the following p = 0.5
and 7 = 0.5bps/Hz
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Applications of Team Decision to Device-Centric Cooperation

Take home

@ Device coordination is key to performance improvement in 5G and beyond
@ Virtually all coordination schemes require extensive CSI acquisition and sharing
among devices
o Coordination frameworks that are robust to CSI locality are desirable
@ Several perspectives on the problem (i) control, (ii) signal processing, (iii)
information theoretic
More applications (not covered here)
@ Dynamic content caching at device side
Coordinated beam alignment in millimeter wave Massive MIMO
Coordinated power transfer for battery recharge in loT networks
More examples upon request
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Applications of Team Decision to Device-Centric Cooperation

LRl S
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Applications of Team Decision to Device-Centric Co
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