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Abstract

As opposed to centralized workflow management sys-
tems, the distributed execution of workflows can not rely
on a trusted centralized point of coordination. As a result,
this flexible decentralized setting raises specific security re-
quirements, such as the compliance of the overall sequence
of operations with the pre-defined workflow execution plan,
that are not yet met by existing decentralized workflow in-
frastructures. In this paper, we propose new security mech-
anisms capitalizing on onion encryption techniques and se-
curity policy models in order to assure the integrity of the
distributed execution of workflows and to prevent workflow
instance forging to name a few features. These mechanisms
can easily be integrated into distributed workflow manage-
ment systems as our design is strongly coupled with the run-
time specification of decentralized workflows.

1. Introduction

Distributed workflow management systems [3, 8, 13]
eliminate the need for a centralized coordinator that can be
a performance bottleneck in some business scenarios. This
flexibility introduced by decentralized workflows on the
other hand raises new security requirements like integrity
of workflow execution in order to assure the compliance
of the overall sequence of operations with the pre-defined
workflow execution plan. As opposed to usual centralized
workflow management systems, the distributed execution
of workflows can not indeed rely on a trusted centralized
coordination mechanism to manage the most basic execu-
tion primitives such as message routing between business
partners. Yet, existing decentralized workflow management
systems appear to be limited when it comes to integrating
security mechanisms that meet these specific requirements
in addition to the ones identified in the centralized setting.
Even though some recent research efforts in the field of dis-
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tributed workflow security have indeed been focusing on is-
sues related to the management of rights in business partner
assignment or detecting conflicts of interest [1, 7, 10] basic
security issues related to the security of the overall work-
flow execution such as integrity and evidence of execution
have not yet been addressed.

In this paper, we propose new mechanisms supporting
the secure execution of workflows in the decentralized set-
ting. These mechanisms, capitalizing on onion encryption
techniques [15] and security policy models, assure the in-
tegrity of the distributed execution of workflows and pre-
vent business partners from being involved in a workflow
instance forged by a malicious peer. Our solution can easily
be integrated into the runtime specification of decentralized
workflow management systems as illustrated in this paper
using the pervasive workflow model specified in [13]. The
remainder of the paper is organized as follows. Section 2
and 3 outline the pervasive workflow model and the asso-
ciated security requirements, respectively. In section 4 our
solution is specified while in section 5 the runtime specifi-
cation of the secure distributed workflow execution is pre-
sented. In section 6 the security properties of the mecha-
nisms we designed are validated. Finally section 7 discusses
related work and section 8 presents the conclusion.

2. Workflow model

The workflow management system used to support our
approach was designed in [13]. This model supports the ex-
ecution of business processes in environments without in-
frastructure and features a distributed architecture charac-
terized by two objectives:
• fully decentralized: the workflow management task is

carried out by a set of devices in order to cope with the
lack of dedicated infrastructure

• dynamic assignment of business partners to workflow
tasks: the actors can be discovered at runtime

Having designed an abstract representation of the workflow
whereby business partners are not yet assigned to tasks, a
partner launches the execution and executes a first set of
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Figure 1. Pervasive workflow runtime
tasks. Then the initiator searches for a partner able to per-
form the next set of tasks. Once the discovery phase is com-
plete, a workflow message including all data is sent by the
workflow initiator to the newly discovered partner and the
workflow execution further proceeds with the execution of
the next set of tasks and a new discovery procedure. The
sequence composed of the discovery procedure, the trans-
fer of data and the execution of a set of tasks is iterated till
the final set of tasks. In this decentralized setting, the data
transmitted amongst partners include all workflow data. We
note W the abstract representation of a distributed work-
flow defined by W = {(vi)i∈[1,n], δ} where vi denotes a
vertex which is a set of workflow tasks that are performed
by a business partner from the receipt of workflow data till
the transfer of data to the next partner and δ is the set of
execution dependencies between those vertices. We note
(Mi→jp

)p∈[1,zi] the set of workflow messages issued by bi

to the zi partners assigned to the vertices (vjp)p∈[1,zi] exe-
cuted right after the completion of vi. The instance of W
wherein business partners have been assigned to vertices is
denoted Wb = {Wiid, (bi)i∈[1,n]} where Wiid is a string
called workflow instance identifier. This model is depicted
in figure 1. In this paper, we only focus on a subset of
execution dependencies or workflow patterns namely, SE-
QUENCE, AND-SPLIT, AND-JOIN, OR-SPLIT and OR-
JOIN.

3. Security requirements

As opposed to centralized workflow management sys-
tems the distributed execution of workflows raises security
constraints due to the lack of a dedicated infrastructure as-
suring the management and control of the workflow execu-
tion. As a result, security features such as compliance of the
workflow execution with the pre-defined plan are no longer
assured. We group the security requirements we identified
for distributed workflow systems into three main categories:
authorization, proof of execution and data protection.

3.1. Authorization

The main security requirement for a workflow manage-
ment system is to ensure that only authorized business part-
ners are assigned to workflow tasks throughout an instance.
In the decentralized setting, the assignment of workflow
tasks is managed by business partners themselves relying
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Figure 2. Workflow example
on a service discovery mechanism. In this case, the busi-
ness partner assignment procedure enforces a matchmaking
procedure whereby business partners’ security credentials
are matched against security requirements for tasks.

3.2. Execution proofs

A decentralized workflow management system does not
offer any guarantee regarding the compliance of actual ex-
ecution of workflow tasks with the pre-defined execution
plan. Without any trusted coordinator to refer to, the busi-
ness partner bi assigned to the vertex vi needs to be able
to verify that the vertices scheduled to be executed be-
forehand were actually executed according to the workflow
plan. This is a crucial requirement to prevent any malicious
peer from forging a workflow instance.

3.3. Workflow data protection

In the case of decentralized workflow execution, the set
of workflow data denoted D = (dk)k∈[1,j] is transferred
from one business partner to another. This raises major re-
quirements for workflow data security in terms of integrity,
confidentiality and access control as follows:
• data confidentiality: for each vertex vi, the business

partner bi assigned to vi should only be authorized to
read a subset Dr

i of D

• data integrity: for each vertex vi, the business partner
bi assigned to vi should only be authorized to modify
a subset Dw

i of Dr
i

• access control: the subsets Dr
i and Dw

i associated with
each vertex vi should be determined based on the se-
curity policy of the workflow

4. The solution

4.1. Key management

Two types of key pairs are introduced in our approach.
Each vertex vi is first associated with a policy poli defining
the set of credentials a candidate partner needs to satisfy
in order to be assigned to vi. The policy poli is mapped
to a key pair (PKpoli , SKpoli) where SKpoli is the policy
private key and PKpoli the policy public key. Thus satisfy-
ing the policy poli is equivalent to knowing the private key
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Figure 4. Access to workflow data
SKpoli . The policy private key SKpoli can be distributed
by a simple key distribution server based on the compli-
ance of business partners with policy poli or by means of a
more sophisticated cryptographic scheme such as group key
distribution [17] or policy-based encryption [2]. Second,
we introduce vertex key pairs (PKi, SKi)i∈[1,n] to protect
the access to workflow data. We suggest a key distribution
scheme wherein a business partner bi whose identity is a
priori unknown retrieves the vertex private key SKi upon
his assignment to the vertex vi. Onion encryption tech-
niques with policy public keys PKpoli are used to distribute
vertex private keys. Furthermore, execution proofs have to
be issued along with the workflow execution in order to en-
sure the compliance of the execution with the pre-defined
plan. To that effect, we also leverage onion encryption tech-
niques in order to build an onion structure with vertex pri-
vate keys to assure the integrity of the workflow execution.
The suggested key distribution scheme (Od) and the exe-
cution proof mechanism (Op) are depicted in figure 3 and
specified later on in the paper.

In the sequel of the paper,M denotes the message space,
C the ciphertext space and K the key space. The encryption
of a message m ∈ M with a key K ∈ K is noted {m}K

and h1, h2 denote one-way hash functions.

4.2. Data protection

The role of a business partner bi assigned to a ver-
tex vi consists in processing the workflow data that are
granted read-only and read-write access during the execu-
tion of vi. We define a specific structure depicted in fig-
ure 4 called data block to protect workflow data accord-

ingly. Each data block consists of two fields: the actual data
dk and a signature signa(dk) = {h1(dk)}SKa

. We note
Ba

k = (dk, signa(dk)) the data block including the data
segment dk that has last been modified during the execution
of va. The data block Ba

k is also associated with a set of
signatures denoted Ha

k that is computed by ba assigned to
va. Ha

k =
{
{h1({Ba

k}PKl
)}SKa |l ∈ Ra

k

}
where Ra

k is the
set defined as follows. Ra

k = {l ∈ [1, n]|(dk ∈ Dr
l ) and (vl

is executed after va) and (vl is not executed after vp(a,l,k))}
where vp(a,l,k) denotes the first vertex executed after va such
that dk ∈ Dw

p(a,l,k)
and that is located on the same branch of

the workflow as va and vl. For instance, consider the exam-
ple of figure 2 whereby d1 is in Dw

1 , Dr
2, Dw

3 , Dr
5 and Dw

6 ,
v(1,2,1) = v3, R1

1 = {2, 3, 5, 6} and R3
1 = {6}.

When the business partner bi receives the data block Ba
k

encrypted with PKi (i.e. he is granted read access on dk),
he decrypts the structure using SKi in order to get access to
dk and signa(dk). bi is then able to verify the integrity of
dk using PKa, i.e. that dk was last modified after the exe-
cution of va. Further, if bi is granted write access on dk, he
can update the value of dk and compute signi(dk) yielding
a new data block Bi

k and a new set Hi
k. If on the contrary

bi receives Ba
k encrypted with PKm (in this case vm is ex-

ecuted after vi), bi can verify the integrity of {Ba
k}PKm

by
matching h1({Ba

k}PKm) against the value contained in Ha
k .

The integrity and confidentiality of data access thus re-
lies on the fact that the private key SKi is made available
to bi only prior to the execution of vi. The corresponding
distribution mechanism is presented in the next section.

4.3. Vertex private key distribution mechanism

The objective of the vertex private key distribution mech-
anism is to ensure that only the business partner bi assigned
to vi at runtime and whose identity is a priori unknown can
access the vertex private key SKi. The basic idea behind
this mechanism is to map the workflow structure in terms
of execution patterns with an onion structure Od so that at
each step of the workflow execution a layer of Od is peeled
off using SKpoli and SKi is revealed.
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Figure 5. SEQUENCE pattern
Definition 4-1. Let X a set. An onion O is a multi-

layered structure composed of a set of n subsets of X
(lk)k∈[1,n], such that ∀k ∈ [1, n] lk ⊆ lk+1. The elements
of (lk)k∈[1,n] are called layers of O, in particular, l1 and ln
are the lowest and upper layers of O, respectively. We note
lp(O) the layer p of an onion O.

Definition 4-2. Let A = (ak)k∈[1,j] and B = (bk)k∈[1,l]

two onion structures, A is said to be wrapped by B, when
∃k ∈ [1, l] such that aj ⊆ bk.

We first present how vertex private keys are distributed to
partners with respect to various workflow patterns including
SEQUENCE, AND-SPLIT, AND-JOIN, OR-SPLIT and
OR-JOIN before describing how those are combined in the
execution of a complete workflow.

4.3.1. SEQUENCE workflow pattern. Vertex private keys
are sequentially distributed to business partners. In this
case, an onion structure assuring the distribution of vertex
private keys is sequentially peeled off by partners. Consid-
ering a sequence of n vertices (vi)i∈[1,n] b1 assigned to v1

initiates the workflow execution with the onion structure O
defined as follows.

O :

8<
:

l1 = {SKn}
li =

�
{li−1}PKpoln−i+2

, SKn−i+1

	
for i ∈ [2, n]

ln+1 =
�
{ln}PKpol1

	
The workflow execution further proceeds as depicted in

figure 5. For i ∈ [2, n−1] the business partner bi assigned to
the vertex vi receives {ln−i+1(O)}PKpoli

, peels one layer
off by decrypting it using SKpoli , reads ln−i+1(O) to re-
trieve SKi and sends {ln−i(O)}PKpoli+1

to bi+1.

4.3.2. AND-SPLIT workflow pattern. In the case of the
AND-SPLIT pattern, the business partners (bi)i∈[2,n] as-
signed to the vertices (vi)i∈[2,n] are contacted concurrently
by b1 assigned to the vertex v1. In this case, n − 1 vertex
private keys should be delivered to (bi)i∈[2,n] and the up-
per layer of the onion O1 available to b1 therefore wraps
SK1 and n − 1 onions (Oi)i∈[2,n] to be sent to (bi)i∈[2,n]

as depicted in figure 6.

O1 = {SK1, O2, O3, .., On}
Oi =

�
{SKi}PKpoli

	
for i ∈ [2, n]

4.3.3. AND-JOIN workflow pattern. Since there is a sin-
gle workflow initiator, the AND-JOIN pattern is preceded
in the workflow by an AND-SPLIT pattern. In this case, the
vertex vn is executed by the business partner bn if and only
if the latter receives n− 1 messages as depicted in figure 7.

AND-
SPLITv1

v2

v i

vn
{SK 1,O 2, ... ,O n}

Figure 6. AND-SPLIT pattern
The vertex private key SKn is thus divided into n− 1 parts
and defined by SKn = SKn1 ⊕ SKn2 ⊕ ... ⊕ SKnn−1 .
The onion Oi sent by bi thus includes SKni

. Besides, in
order to avoid redundancy, the onion structure λ associated
with the sequel of the workflow execution right after vn is
only included in one of the onions received by bn. Each
(bi)i∈[1,n−1] therefore sends Oi to bn where

O1 = {{λ, SKn1}PKpoln
}

Oi =
�
{SKni}PKpoln

	
for i ∈ [2, n− 1]

4.3.4. OR-SPLIT workflow pattern. This is an exclusive
choice, v1 sends one message to the appropriate participant.

O1 = {SK1, O2, O3, .., On}
Oi =

�
{SKi}PKpoli

	
for i ∈ [2, n]

O1 is available to the participant assigned to v1. This is
the same structure as the AND-SPLIT pattern, yet the latter
only sends the appropriate Oi to vi depending on the result
of the OR-SPLIT condition.

4.3.5. OR-JOIN workflow pattern. Since there is a single
workflow initiator, the OR-JOIN is preceded in the work-
flow by an OR-SPLIT pattern. The partner assigned to vn

receives in any cases a single message thus a single vertex
private key is required that is sent by one of the (bi)[1,n−1]

depending on the choice made at the previous OR-SPLIT in
the workflow. bn thus receives in any cases:

O =
�
{λ, SKn}PKpoln

	
where λ is an onion structure associated with the sequel of
the workflow execution right after vn.

4.3.6. Complete key distribution scheme. The procedure
towards building an onion structure corresponding to the
workflow structure is rather straightforward and it is only
sketched throughout an example. Let’s consider the work-
flow depicted in figure 2. The onion Od enabling the vertex
private keys distribution during the execution of the work-
flow is defined as follows.

Od = {{SK1, {SK2, {SK3, {SK61 ,

Sequel afterv6z }| {
{SK7}PKpol7| {z }

First AND-SPLIT branch

}PKpol6
}PKpol3

}PKpol2| {z }
First AND-SPLIT branch

, {SK4, {SK5, {SK62| {z }
Second AND-SPLIT branch

}PKpol6
}PKpol5

}PKpol4| {z }
Second AND-SPLIT branch

}PKpol1
}
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The onions associated with the two branches forming the
AND-SPLIT pattern are wrapped by the layer correspond-
ing to v1. Only the first AND-SPLIT branch includes the
sequel of the workflow after v6.

4.4. Execution proofs

Along with the workflow execution, an onion structure
Opi is built at each execution step i with vertex private keys
in order to allow business partners to verify the integrity
of the workflow execution. The onion structure is initial-
ized by the business partner b1 assigned to v1 who computes
Op1 =

{
{h1(PW )}SKpol1

}
where PW is called workflow

policy and is defined as follows.
Definition 4-3. The workflow specification SW denotes

the set SW = {W, (Jr
i , Jw

i , poli)i∈[1,n], h1} where Jr
i =

{k ∈ [1, j]|dk ∈ Dr
i } and Jw

i = {k ∈ [1, j]|dk ∈ Dw
i } (Jr

i

and Jw
i basically specify for each vertex the set of data that

are granted read-only and read-write access, respectively).
SW is defined at workflow design phase.

The workflow policy PW denotes the set PW = SW ∪
{Wiid, h2} ∪ {PKi|i ∈ [1, n]}. PW is a public parameter
computed by the workflow initiator b1 and that is available
to the business partners involved in the execution of W .

The onion structure Op is initialized this way so that it
cannot be replayed as it is defined for a specific instance of
a workflow specification.

At the step i of the workflow execution, bi receives Opi−1

and encrypts its upper layer with SKi to build an onion Opi

which he sends to bi+1 upon completion of vi. Considering
a set (vi)[1,n] of vertices executed in sequence we get:

Op1 =
�
{h1(PW )}SKpol1

	
Op2 =

�
{Op1}SK2

	
Opi =

�
{Opi−1}SKi

	
for i ∈ [3, n]

The building process of Opi is based on workflow ex-
ecution patterns ; yet since it is built at runtime contrary
to the onion Od, this is straightforward. First, there is no
specific rule for OR-SPLIT and OR-JOIN patterns. Sec-
ond, when encountering an AND-SPLIT pattern, the same
structure Opi

is concurrently sent while in case of an AND-
JOIN, the n−1 onions received by a partner bn are wrapped
by a single structure: Opn

=
{
{Op1 , Op2 , .., Opn−1}SKn

}
.

In order to verify that the workflow execution is compli-
ant with the pre-defined plan when he starts the execution

dO
)(1 WPsign

WP
PO

iPK iP K 1+iPK

a
kH

)( 1+ka dsign
1+kd

)( ka dsign
kd

a
kH 1+

Figure 8. Workflow message structure
of the vertex vi, the business partner bi assigned to vi just
peels off the layers of Opi−1 using the vertex public keys of
the vertices previously executed based on SW . Doing so he
retrieves the value {h1(PW )}SKpol1

that should be equal to
the one he can compute given PW , if the workflow execu-
tion has been so far executed according to the plan.

Considering the example depicted in figure 2, at the end
of the workflow execution the onion Op is defined as fol-
lows.

Op = {{{{{{h1(PW )}SKpol1
}SK2}SK3| {z }

First AND-SPLIT branch

,

{{{h1(PW )}SKpol1
}SK4}SK5| {z }

Second AND-SPLIT branch

}SK6}SK7}

{h1(PW )}SKpol1
is sent by b1 assigned to v1 to both b2

and b4 assigned to v2 and v4 respectively. The onion struc-
ture associated with the two branches forming the AND-
SPLIT pattern thus includes {h1(PW )}SKpol1

twice.

4.5. Vertex key pair generation

Vertex key pairs have to be defined for a single instance
of a workflow specification in order to avoid replay at-
tacks. To that effect, we propose to capitalize on ID-based
encryption techniques [5] in the specification of the set
(PKi, SKi)i∈[1,n]. For all i ∈ [1, n] (PKi, SKi) is de-
fined by: �

PKi = h1(Wiid ⊕ SW ⊕ vi)
SKi = s× h2(PKi)

where s ∈ Z∗q for a prime q. s is called master key and is
held by the vertex private key generator [5] who is in our
case the workflow initiator.

This vertex key pair specification has a double advan-
tage. First vertex key pairs cannot be reused during any
other workflow instance and second vertex public keys can
be directly retrieved from W and Wiid when verifying the
integrity of workflow data or peeling off the onion Op.

4.6. Communication protocol

In order to support a coherent execution of the mecha-
nisms presented so far, workflow messages exchanged be-
tween business partners consist of the set of information that
is depicted in figure 8.

Workflow data (dk)k∈[1,j] are all transported between
business partners and satisfy the data block specification. A

5



single message may include several copies of the same data
block structure that are encrypted with different vertex pub-
lic keys based on the execution plan. This can be the case
with AND-SPLIT patterns. Besides, workflow data can be
stored in two different ways depending on the requirements
for the execution. Either we keep the iterations of data re-
sulting from each modification in workflow messages till
the end of the execution or we simply replace data content
upon completion of a vertex. The bandwidth requirements
are higher in the first case since the size of messages in-
creases as the workflow execution proceeds further.

PW is required to retrieve vertex and policy public keys
and specifies the workflow execution plan.

The two onion structures Od and Op are also included in
the message.

Upon receipt of the message depicted in figure 8 a busi-
ness partner bi assigned to vi retrieves first the vertex pri-
vate key from Od. He then checks that PW is genuine i.e.
that it was initialized by the business partner initiator of the
workflow assigned to v1. He is later on able to verify the
compliance of the workflow execution with the plan using
Op and finally he can process workflow data.

5. Secure execution of decentralized workflows

In this section we specify how the mechanisms presented
so far are combined to support the secure execution of a
workflow in the decentralized setting. After an overview
of the execution steps, the secure workflow execution is
described in terms of the workflow initiation and runtime
specifications.

5.1. Execution process overview

Integrating security mechanisms to enforce the security
requirements of the decentralized workflow execution re-
quires a process strongly coupled with both workflow de-
sign and runtime specifications. At the workflow design
phase, the workflow specification SW is defined in order
to specify for each vertex the sets of data that are acces-
sible in read and write access and the credentials required
by potential business partners to be assigned to workflow
vertices. At workflow initiation phase, the workflow policy
PW is specified and the onion Od is built. The workflow
initiator builds then the first set of workflow messages to be
sent to the next partners involved. This message generation
process consists of the initialization of the data blocks and
that of the onion Op.

At runtime, a business partner bi chosen to execute a ver-
tex vi receives a set of workflow messages. Those messages
are processed to retrieve SKi from the onion Od and to ac-
cess workflow data. Once the vertex execution is complete
bi builds a set of workflow messages to be dispatched to
the next partners involved in the execution. In this message
building process, the data and the onion Op are updated.

The set of functional operations composing the workflow
initiation and runtime specifications is precisely specified
later on in this section. In the following N i

k denotes the set
defined by N i

k = {l ∈ [1, n]|dk ∈ Dr
l and vl is executed

right after vi}. Consider the example of figure 2: d1 is ac-
cessed during the execution of the vertices v1, v2 and v5

thus N1
1 = {2, 5}.

5.2. Workflow initiation

The workflow is initiated by the business partner b1 as-
signed to the vertex v1 who issues the first set of workflow
messages (M1→jp)p∈[1,z1]. The workflow initiation con-
sists of the following steps.

1. Workflow policy specification: generate
(PKi, SKi)i∈[1,n]

2. Initialization of the onion Od

3. Data block initialization: compute ∀k ∈ [1, j]
sign1(dk)

4. Data block encryption: ∀k ∈ [1, j] determine N1
k and

compute ∀k ∈ [1, j],∀l ∈ N1
k {B1

k}PKl

5. Data block hash sets: ∀k ∈ [1, j] determine R1
k and

compute ∀k ∈ [1, j],∀l ∈ R1
k {h1({B1

k}PKl
)}SK1

6. Initialization of the onion Op: compute Op1

7. Message generation based on W and (N1
k )k∈[1,j]

The steps one and two are presented in sections 4.5 and
4.3, respectively. The workflow messages are generated
with respect to the specification defined in figure 8 and sent
to the next business partners involved. This includes the ini-
tialization of the onion Op and that of data blocks which are
encrypted with appropriate vertex public keys.

5.3. Workflow message processing

A business partner bi being assigned to a vertex vi pro-
ceeds as follows upon receipt of the set of workflow mes-
sages (Mjp→i)p∈[1,ki] sent by the ki business partners as-
signed to the vertices (vjp

)p∈[1,ki] executed right before vi.
1. Retrieve SKi from Od

2. Data block decryption with SKi based on Jr
i

3. Execution proof verification: peel off the onion Op

4. Data integrity check based on W and PW

5. Vertex execution
6. Data block update: compute ∀k ∈ Jw

i signi(dk) and
update dk content

7. Data block encryption: ∀k ∈ Jr
i determine N i

k and
compute ∀k ∈ Jr

i ,∀l ∈ N i
k {Bi

k}PKl

8. Data block hash sets: ∀k ∈ Jw
i determine Ri

k and com-
pute ∀k ∈ Jw

i ,∀l ∈ Ri
k {h1({Bi

k}PKl
)}SKi

9. Onion Op update: compute Opi

10. Message generation based on W and (N i
k)k∈[1,j]
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After having retrieved SK1 from Od, bi verifies the in-
tegrity of workflow data and that the execution of the work-
flow up to his vertex is consistent with the onion Op. Work-
flow data are then processed during the execution of vi and
data blocks are updated and encrypted upon completion. Fi-
nally bi computes Opi

and issues the set of workflow mes-
sages (Mi→jp

)p∈[1,zi] to the intended business partners.

6. Security

There are several alternatives with respect to the man-
agement of the key pair (PKpoli , SKpoli), including simple
key distribution based on the policy compliance, group key
management or policy-based cryptography. Amongst those
alternatives, we only discuss the policy based cryptography
scenario as part of the security evaluation of our solution.
In the following, we make two assumptions:
• IND-PB-CCA: the policy-based encryption scheme

used in the specification of (PKpoli , SKpoli)[1,n] is
semantically secure against a chosen ciphertext attack
for policy-based encryption and the associated policy-
based signature scheme achieves signature unforge-
ability [2]

• IND-CCA: the public key encryption scheme used in
the specification of (PKi, SKi)[1,n] is semantically
secure against a chosen ciphertext attack the associated
signature scheme achieves signature unforgeability

Claim 6-1. The integrity of the distributed workflow ex-
ecution is ensured. This basically means that workflow data
are accessed and modified by authorized business partners
based on the pre-defined plan specified by means of the sets
Jr

i and Jw
i .

Proof: This property is ensured by the onion Od which
assures the vertex key distribution used in the access to
workflow data based on the workflow execution plan.

Assuming that a workflow initiator builds Od based on
the methodology specified in 4.3 and under IND-PB-CCA,
we claim that it is not feasible for an adversary A to extract
the vertex private key SKi from Od if A does not satisfy
the set of policies (polik

)k∈[1,l] associated with the set of
vertices (vik

)k∈[1,l] executed prior to vi in W . This is true
as the structure of Od is mapped to W .

Claim 6-2. Upon receipt of a workflow message, a busi-
ness partner is sure that the workflow has been properly
executed so far provided that he trusts the business partners
satisfying the policy pol1.

Proof: This means that an adversary that does not verify
a policy that is trusted by some business partners can not
forge a workflow instance, i.e. that he can not produce a
workflow message faking a valid workflow instance. This
property is enforced by the onion Op.

Assuming that a workflow initiator builds Op based on
the methodology specified in 4.4 and under IND-PB-CCA,

we claim that the onion structure Op is unforgeable. To
assure the unforgeability property, we need to verify that:

1. a genuine onion structure Op built during a previous
instance of a workflow can not be replayed

2. an onion structure Op can not be built by an adversary
that is not trusted by business partners

The first property is enforced by the fact that an onion
structure Op properly built by trustworthy peers is bound to
a specific workflow policy PW and thus can not be reused
during an attempt to execute a malicious workflow instance.
The second property is straightforward under IND-PB-CCA
as the policy-based signature scheme achieves signature un-
forgeability. Thus an adversary can not produce a valid
onion Op1 =

{
{h1(PW )}SKpol1

}
.

Claim 6-3. Assuming that business partners involved in
a workflow instance do not share vertex private keys they
retrieve from the onion Od, our solution achieves the fol-
lowing data integrity properties:
• Data truncation and insertion resilience: any business

partner can detect the deletion or the insertion of a
piece of data in a workflow message

• Data content integrity: any business partner can de-
tect the integrity violation of a data block content in a
workflow message

Proof: The first property is ensured as the set of work-
flow data blocks that should be present in a workflow mes-
sage is specified in PW , the workflow message formatting
has thus to be compliant with the workflow specification.
The second property is assured by the fact that an adversary
can not modify a given data block without providing a valid
signature on this data block. This property relies on the un-
forgeability of the signature scheme used in the data block
and hash set specifications.

These three security properties enable a coherent and se-
cure execution of distributed workflows, yet our solution
can still be optimized to avoid the replication of workflow
messages. A business partner may indeed send the same
workflow message several times to different partners satis-
fying the same security policy resulting in concurrent exe-
cutions of a given workflow instance. A solution based on a
stateful service discovery mechanism can be envisioned to
cope with this problem.

7. Related work

Security of cross-organizational workflows in both cen-
tralized and decentralized settings has been an active re-
search field over the past years mainly focusing on access
control, separation of duty and conflict of interests [4, 9, 10]
issues. However, in the decentralized setting issues related
to the integrity of workflow execution and workflow in-
stance forging, which are tackled in our paper have been
left aside. In [7, 1] mechanisms are proposed for the man-
agement of conflicts of interest [6] during the distributed
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execution of workflows. These pieces of work specify so-
lutions in the design of access control policies to prevent
business partners from accessing data that are not part of
their classes of interest. These approaches do not address
the issue of policy enforcement with respect to integrity of
execution in fully decentralized workflow management sys-
tems. Nonetheless, the access control policy models sug-
gested in [7, 1] can be used to augment our work especially
in the specification of the sets Jr

i and Jw
i at workflow de-

sign time.
Onion encryption techniques have been introduced in

[15] and are widely used to enforce anonymity in network
routing protocols [11] or mobile agents [12]. In our ap-
proach, we map onion structures with workflow execution
patterns in order to build proofs of execution and enforce
access control on workflow data. As a result, more complex
business scenarios are supported by our solution than usual
onion routing solutions. Furthermore, combined with pol-
icy encryption techniques, our solution provides a secure
runtime environment for the execution of fully decentral-
ized workflows supporting runtime assignment of business
partners, a feature which had not been tackled so far.

Finally, our approach is suitable for any business sce-
narios in which business roles can be mapped to security
policies that can be associated with key pairs. It can thus be
easily integrated into existing security policy models such
as chinese wall [6] security model.

8. Conclusion

We presented mechanisms towards meeting the security
requirements raised by the execution of workflows in the
decentralized setting. Our solution, capitalizing on onion
encryption techniques and security policy models, protects
the access to workflow data with respect to the pre-defined
workflow execution plan and provides proofs of execution
to business partners. Those mechanisms can easily be inte-
grated into the runtime specification of decentralized work-
flow management systems and are further suitable for fully
decentralized workflow supporting the runtime assignment
of business partners to workflow tasks. We believe that the
mechanisms underpinning our approach will foster the de-
velopment of dynamic business applications whereby work-
flow actors do not need to rely on a dedicated infrastructure
to provide their resources as one of the major flaws slowing
down this trend was the lack of security.
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