Mobile Data Offloading through Mobile Social Networks: Performance Analysis and Optimization

Pavlos Sermpezis, Phd Candidate

supervisor: Thrasyvoulos Spyropoulos

Mobile Communications Dept.
EURECOM
Sophia-Antipolis, France
Ad-hoc + Mobile Nodes + Opportunistic communication

- **Nodes = Portable Devices**: smartphones, laptops, etc.
- **Direct communication**: Bluetooth, WiFi direct, etc.
- **Message delivery**:
 - Direct Transmission (single-hop) OR **Relay-assisted** (multi-hop)
- **Delay tolerance**: no end-to-end path, intermittent connectivity
Use Cases / Applications for MSNs

➢ Lack of infrastructure
 - e.g. after disasters, rural areas, censorship

➢ Content (or service) sharing
 - locally

➢ Mobile data offloading
 - infrastructure + MSN
 - through users’ devices
 - delayed delivery
Mobile Data Offloading: System Model

- Requesters
- Holders

→ Cellular transmission
→ Direct transmission
Goals

Goal 1

Given:
- contents popularity (#requesters) & availability (#holders)
- nodes mobility & cooperation (no network control)

Goal 2

Under a certain scenario (mobility, popularities, transmission costs):
- content delivery, i.e. cellular transmission or offloading?
- storage, i.e. how many holders (availability)?
- delay tolerance TTL (if possible)
- etc.

analyze performance

optimize offloading cost
Performance Analysis

Goal 1: analyze performance

Metrics:
- expected delivery delay (user)
- delivery probability by TTL (provider)

Content Delivery = Meet any of the holders

Mobility
Availability
Popularity
Performance Analysis: Mobility Model

Mobility = Meeting Events

- Random (or unknown a-priori) & Heterogeneous

\[t_x: \text{Poisson process} \text{ with rate } \lambda_{ij} \text{ (for a node pair } \{i,j\} \text{)} \]

\[\lambda_{ij} \text{ drawn from an arbitrary distribution } f_\lambda(\lambda) \text{ (with } E[\lambda_{ij}] = \mu_\lambda) \]

\[m - \text{holders} \quad \lambda_{i1} \quad \lambda_{i2} \quad \lambda_{i3} \quad \text{node } i \quad n - \text{requesters} \]

Content Delivery = Meet any of the holders

\[X_M = \sum_{j=1}^{m} \lambda_{ij} \]
Performance Analysis

H: #holders
R: #requesters

\[H = m \]
\[R = n \]

\[H = m \]
\[R = n-1 \]

\[\lambda_{(m,n)} \rightarrow (m+1, n-1) \]

\[\lambda_{(m,n)} \rightarrow (m, n-1) \]

\[\lambda_{(m,n)} \rightarrow (m, n-1) \]

\[H(t) \): #holders at time t \]
\[R(t) \): #requesters at time t \]

\[\frac{dH(t)}{dt} = p_c \cdot H(t) \cdot R(t) \cdot \mu_\lambda \]

\[\frac{dR(t)}{dt} = -H(t) \cdot R(t) \cdot \mu_\lambda \]

Mean Field approximation & Fluid Model approximations
Performance Analysis: Results

Delivery Probability:

\[
P\{T_d \leq t\} = 1 - \frac{p_c \cdot R_0 + H_0}{p_c \cdot R_0 + H_0 \cdot e^{\mu \lambda (p_c \cdot R_0 + H_0) \cdot t}}
\]

Expected Delivery Delay:

\[
E[T_d | TTL] = \ln \left(1 + \frac{p_c \cdot R_0 - e^{\mu \lambda (p_c \cdot R_0 + H_0) \cdot TTL}}{H_0 + p_c \cdot R_0 \cdot e^{\mu \lambda (p_c \cdot R_0 + H_0) \cdot TTL}} \right)
\]

Dependence on: Mobility & Availability & Popularity
Cost Optimization

GOAL 2 → optimize offloading cost

• Offloading mechanism: *What can be controlled?*

 - cellular VS opportunistic delivery
 - how many (initial) holders
 - mobility
 - popularities

 - delay tolerance *TTL*
 - user cooperation ρ_c
Offloading Costs Model

- initial placement of the content (to holders):
 - C_{BH}: to small cells (SCs), from the backhaul
 - C_{BS}: to user devices, cellular transmission from BS

- opportunistic delivery:
 - C_{SC}: from SC to user
 - C_{D2D}: from user to user

- delayed delivery:
 - $C_{BS}^{(TTL)}$: to user devices, cellular transmission from BS
Total Offloading Cost

- initial placement of the content (to holders):
 - C_{BH}: to small cells (SCs), from the backhaul
 - C_{BS}: to user devices, cellular transmission from BS

- opportunistic delivery:
 - C_{SC}: from SC to user
 - C_{D2D}: from user to user

- delayed delivery:
 - $C_{BS}^{(TTL)}$: to user devices, cellular transmission from BS

Total Cost:

$$C = C_{BH} \cdot H_{SC}(0) + C_{BS} \cdot H_{MN}(0)$$
$$+ (C_{SC} \cdot q + C_{D2D} \cdot (1 - q)) \cdot R_0 \cdot P\{T_d \leq TTL\}$$
$$+ C_{BS}^{(TTL)} \cdot R_0 \cdot (1 - P\{T_d \leq TTL\})$$

→ **Closed form expression** — — \{costs, H_0, R_0, μ, TTL, p_c\}
Total Cost Optimization

Optimization problem:
- deliver many contents (simultaneously): \(\theta \in \mathcal{M} \)
- ...with the minimum cost

\[
\begin{align*}
\min_{H_{SC}, \ H_{MN}, \ \text{TTL}} \left\{ \sum_{\theta \in \mathcal{M}} C^{\theta} \right\}
\end{align*}
\]

\[
\begin{align*}
\text{s.t.} & \quad \forall \theta \in \mathcal{M} : 0 \leq H_{SC}^{\theta}(0) \leq N_{SC} \\
& \quad 0 \leq H_{MN}^{\theta}(0) \leq R^{\theta}(0) \\
& \quad T_{\text{min}} \leq \text{TTL}^{\theta} \leq T_{\text{max}} \\
\text{and} & \quad \sum_{\theta \in \mathcal{M}} H_{SC}^{\theta}(0) \leq \sum_{i \in \mathcal{SC}} Q(i)
\end{align*}
\]

- Total nb of SCs
- Capacity constraint
Example Cases: Optimization Results

Case 1: Offloading only through SCs (i.e. $p_c = 0$)

$$H_{SC}^\theta(0) = \begin{cases}
N_{SC} & , R^\theta(0) > U \\
\frac{1}{\gamma} \cdot \ln \left(\frac{1}{L} \cdot R^\theta(0) \right) & , L \leq R^\theta(0) \leq U \\
0 & , R^\theta(0) < L
\end{cases}$$

- **Costs**
- **μ_λ**
- **TTL**
- **N_{SC}**
- **Total storage capacity**
Example Cases: Optimization Results

Case 2: Offloading only through MNs (i.e. no SCs)

\[
H^\theta_{MN}(0) = \frac{R^\theta(0) \cdot \left(\sqrt{\Phi} \cdot e^{\frac{1}{2} \gamma \cdot p_c \cdot R^\theta(0)} - 1 \right)}{e^{\gamma \cdot p_c \cdot R^\theta(0)} - 1}
\]

- **Costs**
- \(\mu_\lambda \)
- **TTL**
- \(p_c \)
Simulation Results

Case 1: Offloading only through SCs

Case 2: Offloading only through MNs
Conclusions

✓ Performance prediction
 - closed form results

✓ Cost optimization problem
 - numerical (generic case) and analytic (example cases) solutions

➤ Sensitivity analysis
 - effect of different parameters (e.g., mobility, TTL, N_{SC})

➤ Network dimensioning
 - e.g. how many SCs? Storage capacity?

➤ Pricing strategies
 - costs, incentives for cooperation (p_c) and delay tolerance (TTL)
Related Publications

Pavlos Sermpezis, Thrasyvoulos Spyropoulos, "Not all content is created equal: Effect of popularity and availability for content-centric opportunistic networking", Proc. ACM MobiHoc, August 2014

https://sites.google.com/site/pavlossermpezis/
“Understanding (analytically) the effects of social heterogeneity on the performance of MSNs”

- Mobility Heterogeneity
- Social Selfishness
- Traffic Heterogeneity
- Interest patterns
Research in MSNs: Mobility Heterogeneity

- **Models:**
 Homogeneous (unrealistic, simple) VS Heterogeneous (realistic, complex) models

- Trade-off between realism & complexity:
 Heterogeneous rates (in a probabilistic way) + *Random graph theory*

- Asymptotic analysis & closed form approximations

\[
\lambda_{ij} \sim f_\lambda(\lambda)
\]
Research in MSNs: Social Selfishness

- **Selfishness** (or cooperation) related to *social ties*
- **Social ties** related to *mobility*

> **Selfishness** related to *mobility*

\[p_{ij} = p(\lambda_{ij}) \]

- Closed form results for performance prediction:
 1. selfishness scenarios
 2. cooperation policies \(\rightarrow \) optimization!
Research in MSNs: Traffic Heterogeneity

- **Joint effect** of mobility/traffic heterogeneity

- Generic model and closed form results
 \[E[\tau_{ij}] = \tau(\lambda_{ij}) \]

- Implications for opportunistic networking:
 - Evaluation of routing protocols
 - End-to-end applications
 - Content-centric applications

![Graph 1](image_url1)

![Graph 2](image_url2)
Research in MSNs: Interest Patterns

- Generic model & closed form results: effects of *popularity* and *availability*

\[
P\{T_M \leq TTL\} = 1 - \frac{E_p[n \cdot \sum_m E_m \lambda \left[e^{-x \cdot TTL} g(m|n) \right]}{E_p[n]}.
\]

→ mobility \(f_\lambda(\lambda) \), availability \(g(m|n) \), popularity \(P_p(n) \)

- Dataset Analysis: Realistic interest patterns

<table>
<thead>
<tr>
<th>Content Type</th>
<th>Network Size</th>
<th>Pareto</th>
<th>(\alpha)</th>
<th>Gamma</th>
<th>(CV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Large</td>
<td>✓</td>
<td>[1.2, 1.8]</td>
<td>×</td>
<td>-</td>
</tr>
<tr>
<td>Context</td>
<td>Large</td>
<td>✓</td>
<td>[1.1, 1.2]</td>
<td>✓</td>
<td>[2, 2.8]</td>
</tr>
<tr>
<td>Location</td>
<td>City</td>
<td>✓</td>
<td>[0.75, 3.5]</td>
<td>×</td>
<td>-</td>
</tr>
<tr>
<td>Context</td>
<td>City</td>
<td>×</td>
<td>-</td>
<td>✓</td>
<td>[1.75, 5]</td>
</tr>
</tbody>
</table>
THANK YOU !!!
Content-centric Applications: System model

- **Availability:** #Holders
- **Popularity:** #Requesters
Simulation Results: Delivery Probability
Simulation Results: Offloading Cost
Example Cases: Optimization Results

Case 1: Offloading only through SCs

Result 19. Under a base scenario ($p_c = 0, H_{MN}(0) = 0$), the initial allocation H_{SC} that minimizes the total cost, is given by

$$H_{SC}^\theta(0) = \begin{cases}
N_{SC} & , R^\theta(0) > U \\
\frac{1}{\gamma} \cdot \ln \left(\frac{1}{L} \cdot R^\theta(0) \right) & , L \leq R^\theta(0) \leq U \\
0 & , R^\theta(0) < L
\end{cases}$$

with \(\gamma = \mu \cdot TTL \), \(L = \frac{1}{\gamma \Phi} \cdot \left(1 + \frac{\lambda_0}{C_{BH}} \right) \), \(U = L \cdot e^{N_{SC}} \cdot e^{TTL} \cdot \Phi = \frac{C_{BS}^{(TTL)} - C_{SC}}{C_{BH}} \), and

$$\lambda_0 = \inf \left\{ \lambda_0 \geq 0 : \sum_{\theta \in M} H_{SC}^\theta(0) \leq \sum_{i \in SC} Q(i) \right\}$$
Case 2: Offloading only through MNs

Result 20. Under an opportunistic MN-MN scenario ($p_c > 0$, $H_{SC}(0) = 0$), the initial allocation H_{MN} that minimizes the total cost, is given by

$$H_{MN}(0) = \begin{cases} R^\theta(0), & R^\theta(0) \leq OPT^\theta \\ OPT^\theta, & 0 \leq OPT^\theta < R^\theta(0) \\ 0, & OPT^\theta < 0 \end{cases}$$

where $OPT^\theta = \frac{R^\theta(0) \cdot (\sqrt{\Phi'} \cdot e^{\frac{1}{2} e \gamma p_c \cdot R^\theta(0)} - 1)}{e \gamma p_c \cdot R^\theta(0) - 1}$, and $\Phi' = \frac{C_{BS}(TTL) - C_{D2D}}{C_{BS} - C_{D2D}}$ and $\gamma = \mu \lambda \cdot TTL$.
Research in MSNs

- **Mobility Heterogeneity**
 - *homogeneous VS heterogeneous* models
 - Trade-off between realism & complexity:
 - *Heterogeneous rates* (in a probabilistic way) + *Random graph theory*
 - Asymptotic analysis & closed form approximations

- **Social Selfishness**
 - *Selfishness* (or cooperation) related to *social ties / mobility*
 - Generic model and closed form results

- **Traffic Heterogeneity**
 - *Joint effect* of mobility/traffic heterogeneity
 - Generic model and closed form results

- **Interest patterns**
 - Generic model & closed form results: effects of *popularity* and *availability*
 - Dataset Analysis: Realistic interest patterns