Opportunistic Content-Centric Communications: Modeling, Analysis and Applications

Pavlos Sermpezis Thrasyvoulos Spyropoulos

Mobile Communications Dept.
EURECOM
Sophia-Antipolis, France
Opportunistic Communications

• Opportunistic Network
 - Mobile Devices: smartphones, laptops, etc.
 - Direct communications: Bluetooth, WiFi direct, etc.

• Content-Centric Applications
 - Mobile Data Offloading
 - Content Sharing (p2p)
 - Service Composition
Mobile Data Offloading: System Model

• Hybrid Network
 - Mobile nodes (M) & Infrastructure (I)
 - Long range communications (I-M) & Short range communications (M-M, I-M)

• Communication Scenario
 1. Content Provider
 2. Nodes interested in content items
 - one node – multiple contents
 - many nodes – one content
 3. Content delivery
 - Direct (long range transmission)
 - Opportunistic (short range transmission) ➔ Offloading
Mobile Data Offloading: System Model
Communication Characteristics

- **Requester**: a node interested in a given content
- **Holder**: a node that (a) has the content, (b) relays it to requesters
COMMUNICATION
- **Time Invariant Interest**
 - no loss of interest, no new requesters
- **Any Initial Allocation**
 - to requesters / relays / hybrid
- **Dropping policy**
 - each holder drops contents with rate λ_d - Poisson process
- **Cooperation policy**
 - Full / No / Partial (each requester becomes holder with probability p_c)

MOBILITY
- Meeting s between each node pair $\{i,j\}$ – Poisson process with rate λ_{ij}
- Mean value of meeting rates – μ_λ
Distribution of a Single Content
Analysis: Markov Chain

H: number of *holders*
R: number of requesters

λ\((m,n)\rightarrow(m+1,n-1)\) ≈ \(p_c \cdot H \cdot R \cdot \mu\)

λ\((m,n)\rightarrow(m,n-1)\) ≈ \((1-p_c) \cdot H \cdot R \cdot \mu\)

λ\((m,n)\rightarrow(m-1,n)\) ≈ \(H \cdot \lambda_d\)
Analysis: Fluid Model

H(t): number of *holders* at time *t*

R(t): number of requesters at time *t*

\[
\frac{dH(t)}{dt} = p_c \cdot H(t) \cdot R(t) \cdot \mu_\lambda - H(t) \cdot \lambda_d
\]

ODEs:

\[
\frac{dR(t)}{dt} = -H(t) \cdot R(t) \cdot \mu_\lambda
\]

Initial conditions:

\[H(0) = H_0\]

\[R(0) = \begin{cases} R_0 & \text{To relays} \\ R_0 - H_0 & \text{To requesters} \end{cases}\]

→ **Solutions** for ... **H(t)** and **R(t)** (closed form or numerical)
Results

\(H(t) \): number of *holders* at time \(t \)

\(T_d \): content *delivery delay* to a requester

Delivery Probability:

\[
P\{T_d \leq TTL\} = 1 - e^{-\mu \int_0^{TTL} H(\tau) d\tau}
\]

Expected Delivery Delay:

\[
E[T_d] = \int_0^\infty e^{-\mu \int_0^t H(\tau) d\tau} \cdot dt
\]

Examples

e.g.1 \(p_c = 0, \lambda_d = 0 \)

\[
P\{T_d \leq TTL\} = 1 - e^{-\mu \cdot H_0 \cdot TTL}
\]

e.g.2 \(\lambda_d = 0, R(0) = R_0 \)

\[
E[T_d] = \frac{1}{p_c \cdot R_0 \cdot \mu \lambda} \cdot ln \left(1 + \frac{p_c \cdot R_0}{H_0} \right)
\]
An Application Example: Cost Optimization

Mobile Data Offloading Scenario
1) \(R_0 \) requesters
2) \(CP \) sends content to \(H_0 \) holders
3) Opportunistic content sharing, till time TTL
4) \(CP \) directly sends the content to requesters that have not received it by TTL

Costs per transmission
• \(\Phi_I \): from \(CP \) to a mobile/infrastructure node
• \(\Phi_M \): from a relay (mobile or infrastructure) node to a mobile node

Objective
Minimize total transmission cost \(U \), s.t. all requesters receive the content by TTL

RESULTS
• Total Cost:
 \[
 U = \Phi_I \cdot H_0 + (\Phi_I - \Phi_M) \cdot R_0 \cdot e^{-\mu \cdot \int_0^{TTL} H(\tau) d\tau} + \Phi_M \cdot R_0
 \]
• Case Study \(p_c=0, \lambda_d=0 \)
 \(H_0^* = \frac{1}{\mu \cdot TTL} \cdot \ln \left(\frac{1 + \Phi_I}{\Phi_M} \right) \mu \cdot TTL \cdot R_0 \)
Extension: Time-Varying Interests

• **Model**
 - Content with lifetime TTL
 - At time $t < 0$, no requesters exist
 - **New requesters** appear with rate $\lambda(t)$, $0 \leq t \leq \text{TTL}$

• **Result**
 Probability a requester to access the content by time TTL

\[
P\{T_d \leq \text{TTL}\} = 1 - \frac{\int_0^{\text{TTL}} \lambda(t) \cdot e^{-\mu \lambda \int_0^{\text{TTL}} H(\tau) d\tau} \cdot dt}{\int_0^{\text{TTL}} \lambda(t) \cdot dt}
\]
Distribution of Multiple Contents
• **Content Popularity**
 The number of requesters interested in the content, i.e. \(R_0 \)

• **Popularity Distribution**: \(P(n) = P\{R_0 = n\} \)
 - usually \(P(n) \) can be approximated with a *Pareto* distribution

- 10 requesters
- 4 requesters
- 2 requesters
Communication Scenario - **Initial Allocation:**
- For each content with popularity \(n \), the CP assigns \(H_0 = g(n) \) initial holders
- \(g(n): [1,N] \to [0,N] \)

Delivery Probability:
\[
P\{T_d \leq TTL\} = 1 - \frac{1}{E_p[n]} \cdot E_p \left[n \cdot e^{-\mu \cdot \int_0^{TTL} H(\tau|n)d\tau} \right]
\]

Expected Delivery Delay:
\[
E[T_d] = \frac{1}{E_p[n]} \cdot E_p \left[n \cdot \int_0^{\infty} e^{-\mu \cdot \int_0^{t} H(\tau|n)d\tau} \right]
\]

Examples

\[p_c = 0, \lambda_d = 0 \]
\[
P\{T_d \leq TTL\} = 1 - \frac{1}{E_p[n]} \cdot E_p \left[n \cdot e^{-\mu \lambda \cdot g(n) \cdot TTL} \right]
\]

\[\lambda_d = 0, R(0) = R_0 \]
\[
E[T_d] = \frac{1}{\mu \lambda \cdot E_p[n]} \cdot E_p \left[\frac{n}{g(n)} \right]
\]
THANK YOU !!!