Tutorial: MapReduce
Theory and Practice of Data-intensive Applications

Pietro Michiardi

Eurecom
Introduction
What is MapReduce

- **A programming model:**
 - Inspired by functional programming
 - Allows expressing distributed computations on massive amounts of data

- **An execution framework:**
 - Designed for large-scale data processing
 - Designed to run on clusters of commodity hardware
What is this Tutorial About

- **Design of scalable algorithms with MapReduce**
 - Applied algorithm design and case studies

- **In-depth description of MapReduce**
 - Principles of functional programming
 - The execution framework

- **In-depth description of Hadoop**
 - Architecture internals
 - Software components
 - Cluster deployments
Motivations
Big Data

- Vast repositories of data
 - Web-scale processing
 - Behavioral data
 - Physics
 - Astronomy
 - Finance

- “The fourth paradigm” of science [6]
 - Data-intensive processing is fast becoming a necessity
 - Design algorithms capable of scaling to real-world datasets

- It’s not the algorithm, it’s the data! [2]
 - More data leads to better accuracy
 - With more data, accuracy of different algorithms converges
Key Ideas Behind MapReduce
For data-intensive workloads, a large number of commodity servers is preferred over a small number of high-end servers

- Cost of super-computers is not linear
- But datacenter efficiency is a difficult problem to solve [3, 5]

Some numbers (∼ 2010):

- Data processed by Google every day: 20 PB
- Data processed by Facebook every day: 15 TB
Implications of Scaling Out

- **Processing data is quick, I/O is very slow**
 - 1 HDD = 75 MB/sec
 - 1000 HDDs = 75 GB/sec

- **Sharing vs. Shared nothing:**
 - Sharing: manage a common/global state
 - Shared nothing: *independent* entities, no common state

- **Sharing is difficult:**
 - Synchronization, deadlocks
 - Finite bandwidth to access data from SAN
 - Temporal dependencies are complicated (restarts)
Failures are the norm, not the exception

- **LALN data [DSN 2006]**
 - Data for 5000 machines, for 9 years
 - Hardware: 60%, Software: 20%, Network 5%

- **DRAM error analysis [Sigmetrics 2009]**
 - Data for 2.5 years
 - 8% of DIMMs affected by errors

- **Disk drive failure analysis [FAST 2007]**
 - Utilization and temperature major causes of failures

- **Amazon Web Service failure [April 2011]**
 - Cascading effect
Implications of Failures

- **Failures are part of everyday life**
 - Mostly due to the scale and shared environment

- **Sources of Failures**
 - Hardware / Software
 - Electrical, Cooling, ...
 - Unavailability of a resource due to overload

- **Failure Types**
 - Permanent
 - Transient
Move Processing to the Data

- **Drastic departure from high-performance computing model**
 - HPC: distinction between processing nodes and storage nodes
 - HPC: CPU intensive tasks

- **Data intensive workloads**
 - Generally not processor demanding
 - The network becomes the bottleneck
 - MapReduce assumes processing and storage nodes to be colocated: *Data Locality*

- **Distributed filesystems are necessary**
Introduction

Big Ideas

Process Data Sequentially and Avoid Random Access

- **Data intensive workloads**
 - Relevant datasets are too large to fit in memory
 - Such data resides on disks

- **Disk performance is a bottleneck**
 - Seek times for random disk access are *the* problem
 - Example: 1 TB DB with 10^{10} 100-byte records. Updates on 1% requires 1 month, reading and rewriting the whole DB would take 1 day
 - Organize computation for sequential reads

1 From a post by Ted Dunning on the Hadoop mailing list
Implications of Data Access Patterns

- MapReduce is designed for
 - *batch processing*
 - involving (mostly) *full scans* of the dataset

- Typically, data is collected “elsewhere” and copied to the distributed filesystem

- Data-intensive applications
 - Read and process the whole Internet dataset from a crawler
 - Read and process the whole Social Graph
Hide System-level Details

- **Separate the *what* from the *how***
 - MapReduce abstracts away the “distributed” part of the system
 - Such details are handled by the framework

- **In-depth knowledge of the framework is key**
 - Custom data reader/writer
 - Custom *data partitioning*
 - Memory utilization

- **Auxiliary components**
 - Hadoop Pig
 - Hadoop Hive
 - Cascading/Scalding
 - ... and many many more!
We can define scalability along two dimensions

▶ In terms of data: given twice the amount of data, the same algorithm should take no more than twice as long to run
▶ In terms of resources: given a cluster twice the size, the same algorithm should take no more than half as long to run

Embarassingly parallel problems

▶ Simple definition: independent (shared nothing) computations on fragments of the dataset
▶ It’s not easy to decide whether a problem is embarrassingly parallel or not

MapReduce is a first attempt, not the final answer
Part One
The MapReduce Framework
Preliminaries
Divide and Conquer

- **A feasible approach to tackling large-data problems**
 - Partition a large problem into smaller sub-problems
 - *Independent* sub-problems executed in parallel
 - Combine intermediate results from each individual worker

- **The workers can be:**
 - Threads in a processor core
 - Cores in a multi-core processor
 - Multiple processors in a machine
 - Many machines in a cluster

- **Implementation details of divide and conquer are complex**
Divide and Conquer: How to?

- **Decompose** the original problem in smaller, parallel tasks

- Schedule tasks on workers distributed in a cluster
 - Data locality
 - Resource availability

- Ensure workers get the data they need

- Coordinate synchronization among workers

- **Share** partial results

- Handle failures
The MapReduce Approach

- **Shared memory approach** (OpenMP, MPI, ...)
 - Developer needs to take care of (almost) everything
 - Synchronization, Concurrency
 - Resource allocation

- **MapReduce: a shared nothing approach**
 - Most of the above issues are taken care of
 - Problem decomposition and sharing partial results need particular attention
 - Optimizations (memory and network consumption) are tricky
The MapReduce Programming model
Functional Programming Roots

- **Key feature: higher order functions**
 - Functions that accept other functions as arguments
 - **Map** and **Fold**

Figure: Illustration of *map* and *fold.*
Functional Programming Roots

map phase:
- Given a list, *map* takes as an argument a function f (that takes a single argument) and applies it to all elements in the list.

fold phase:
- Given a list, *fold* takes as arguments a function g (that takes two arguments) and an initial value.
- g is first applied to the initial value and the first item in the list.
- The result is stored in an intermediate variable, which is used as an input together with the next item to a second application of g.
- The process is repeated until all items in the list have been consumed.
Functional Programming Roots

We can view map as a transformation over a dataset
- This transformation is specified by the function f
- Each functional application happens in isolation
- The application of f to each element of a dataset can be parallelized in a straightforward manner

We can view fold as an aggregation operation
- The aggregation is defined by the function g
- Data locality: elements in the list must be “brought together”
- If we can group element of the list, also the fold phase can proceed in parallel

Associative and commutative operations
- Allow performance gains through local aggregation and reordering
Functional Programming and MapReduce

- **Equivalence of MapReduce and Functional Programming:**
 - The map of MapReduce corresponds to the map operation
 - The reduce of MapReduce corresponds to the fold operation

- **The framework coordinates the map and reduce phases:**
 - Grouping intermediate results happens in parallel

- **In practice:**
 - User-specified computation is applied (in parallel) to all input records of a dataset
 - Intermediate results are aggregated by another user-specified computation
What can we do with MapReduce?

- **MapReduce “implements” a subset of functional programming**
 - The programming model appears quite limited

- **There are several important problems that can be adapted to MapReduce**
 - In this tutorial we will focus on illustrative cases
 - We will see in detail “design patterns”
 ★ How to transform a problem and its input
 ★ How to save memory and bandwidth in the system
Mappers and Reducers
Data Structures

- **Key-value pairs are the basic data structure in MapReduce**
 - Keys and values can be: integers, float, strings, raw bytes
 - They can also be arbitrary data structures

- **The design of MapReduce algorithms involves:**
 - Imposing the key-value structure on arbitrary datasets
 - E.g.: for a collection of Web pages, input keys may be URLs and values may be the HTML content
 - In some algorithms, input keys are not used, in others they uniquely identify a record
 - Keys can be combined in complex ways to design various algorithms
A MapReduce job

The programmer defines a mapper and a reducer as follows\(^2\):

- **map**: \((k_1, v_1) \rightarrow [(k_2, v_2)]\)
- **reduce**: \((k_2, [v_2]) \rightarrow [(k_3, v_3)]\)

A MapReduce job consists in:

- A dataset stored on the underlying distributed filesystem, which is split in a number of files across machines
- The mapper is applied to every input key-value pair to generate intermediate key-value pairs
- The reducer is applied to all values associated with the same intermediate key to generate output key-value pairs

\(^2\)We use the convention \([\cdots]\) to denote a list.
Where the magic happens

- Implicit between the map and reduce phases is a distributed “group by” operation on intermediate keys
 - Intermediate data arrive at each reducer in order, sorted by the key
 - No ordering is guaranteed across reducers

- Output keys from reducers are written back to the distributed filesystem
 - The output may consist of \(r \) distinct files, where \(r \) is the number of reducers
 - Such output may be the input to a subsequent MapReduce phase

- Intermediate keys are transient:
 - They are not stored on the distributed filesystem
 - They are “spilled” to the local disk of each machine in the cluster
A Simplified view of MapReduce

Figure: Mappers are applied to all input key-value pairs, to generate an arbitrary number of intermediate pairs. Reducers are applied to all intermediate values associated with the same intermediate key. Between the map and reduce phase lies a barrier that involves a large distributed sort and group by.
"Hello World" in MapReduce

Figure: Pseudo-code for the word count algorithm.
“Hello World” in MapReduce

Input:
- Key-value pairs: (docid, doc) stored on the distributed filesystem
 - docid: unique identifier of a document
 - doc: is the text of the document itself

Mapper:
- Takes an input key-value pair, tokenize the document
- Emits intermediate key-value pairs: the word is the key and the integer is the value

The framework:
- Guarantees all values associated with the same key (the word) are brought to the same reducer

The reducer:
- Receives all values associated to some keys
- Sums the values and writes output key-value pairs: the key is the word and the value is the number of occurrences
Implementation and Execution Details

- The **partitioner** is in charge of assigning intermediate keys (words) to reducers
 - Note that the partitioner can be customized

- **How many map and reduce tasks?**
 - The framework essentially takes care of map tasks
 - The designer/developer takes care of reduce tasks

- **In this tutorial we will focus on Hadoop**
 - Other implementations of the framework exist: Google, Disco, ...
Handle with care!

- **Using external resources**
 - E.g.: Other data stores than the distributed file system
 - Concurrent access by many map/reduce tasks

- **Side effects**
 - Not allowed in functional programming
 - E.g.: preserving state across multiple inputs
 - State is kept internal

- **I/O and execution**
 - **External** side effects using distributed data stores (e.g. BigTable)
 - No input (e.g. computing π), no reducers, never no mappers
The Execution Framework
The Execution Framework

- **MapReduce program, a.k.a. a job:**
 - Code of mappers and reducers
 - Code for combiners and partitioners (optional)
 - Configuration parameters
 - All packaged together

- **A MapReduce job is submitted to the cluster**
 - The framework takes care of everything else
 - Next, we will delve into the details
Scheduling

- Each Job is broken into tasks
 - Map tasks work on fractions of the input dataset, as defined by the underlying distributed filesystem
 - Reduce tasks work on intermediate inputs and write back to the distributed filesystem

- The number of tasks may exceed the number of available machines in a cluster
 - The scheduler takes care of maintaining something similar to a queue of pending tasks to be assigned to machines with available resources

- Jobs to be executed in a cluster requires scheduling as well
 - Different users may submit jobs
 - Jobs may be of various complexity
 - Fairness is generally a requirement
Scheduling

- **The scheduler component can be customized**
 - As of today, for Hadoop, there are various schedulers

- **Dealing with stragglers**
 - Job execution time depends on the slowest map and reduce tasks
 - *Speculative* execution can help with slow machines
 - But data locality may be at stake

- **Dealing with skew in the distribution of values**
 - E.g.: temperature readings from sensors
 - In this case, scheduling cannot help
 - It is possible to work on customized partitioning and sampling to solve such issues [Advanced Topic]
Data/code co-location

- **How to feed data to the code**
 - In MapReduce, this issue is intertwined with scheduling and the underlying distributed filesystem

- **How data locality is achieved**
 - The scheduler starts the task on the node that holds a particular block of data required by the task
 - If this is not possible, tasks are started elsewhere, and data will cross the network
 - Note that usually input data is replicated
 - Distance rules [11] help dealing with bandwidth consumption
 - Same rack scheduling
Synchronization

- In MapReduce, synchronization is achieved by the “shuffle and sort” barrier
 - Intermediate key-value pairs are grouped by key
 - This requires a distributed sort involving all mappers, and taking into account all reducers
 - If you have m mappers and r reducers this phase involves up to $m \times r$ copying operations

- **IMPORTANT**: the reduce operation cannot start until all mappers have finished
 - This is different from functional programming that allows “lazy” aggregation
 - In practice, a common optimization is for reducers to **pull** data from mappers as soon as they finish
Errors and faults

Using quite simple mechanisms, the MapReduce framework deals with:

- **Hardware failures**
 - Individual machines: disks, RAM
 - Networking equipment
 - Power / cooling

- **Software failures**
 - Exceptions, bugs

- **Corrupt and/or invalid input data**
Partitioners and Combiners
Partitioners

Partitioners are responsible for:

- Dividing up the intermediate key space
- Assigning intermediate key-value pairs to reducers
- Specify the task to which an intermediate key-value pair must be copied

Hash-based partitioner

- Computes the hash of the key modulo the number of reducers r
- This ensures a roughly even partitioning of the key space
 - However, it ignores values: this can cause imbalance in the data processed by each reducer
- When dealing with complex keys, even the base partitioner may need customization
Combiners

- **Combiners are an (optional) optimization:**
 - Allow local aggregation before the “shuffle and sort” phase
 - Each combiner operates in isolation

- **Essentially, combiners are used to save bandwidth**
 - E.g.: word count program

- **Combiners can be implemented using local data-structures**
 - E.g., an associative array keeps intermediate computations and aggregation thereof
 - The map function only emits once all input records (even all input splits) are processed
Partitioners and Combiners, an Illustration

Figure: Complete view of MapReduce illustrating combiners and partitioners.

Note: in Hadoop, partitioners are executed before combiners.
The Distributed Filesystem
Colocate data and computation!

- As dataset sizes increase, more computing capacity is required for processing.

- As compute capacity grows, the link between the compute nodes and the storage nodes becomes a bottleneck.
 - One could eventually think of special-purpose interconnects for high-performance networking.
 - This is often a costly solution as cost does not increase linearly with performance.

- **Key idea**: abandon the separation between compute and storage nodes.
 - This is exactly what happens in current implementations of the MapReduce framework.
 - A distributed filesystem is not mandatory, but highly desirable.
In this tutorial we will focus on HDFS, the Hadoop implementation of the Google distributed filesystem (GFS)

Distributed filesystems are not new!
- HDFS builds upon previous results, tailored to the specific requirements of MapReduce
- Write once, read many workloads
- Does not handle concurrency, but allow replication
- Optimized for throughput, not latency
HDFS

- **Divide user data into blocks**
 - Blocks are big! [64, 128] MB
 - Avoids problems related to metadata management

- **Replicate blocks across the local disks of nodes in the cluster**
 - Replication is handled by storage nodes themselves (similar to chain replication) and follows distance rules

- **Master-slave architecture**
 - NameNode: master maintains the namespace (metadata, file to block mapping, location of blocks) and maintains overall health of the file system
 - DataNode: slaves manage the data blocks
HDFS, an Illustration

Figure: The architecture of HDFS.
HDFS I/O

A typical read from a client involves:
1. Contact the NameNode to determine where the actual data is stored
2. NameNode replies with block identifiers and locations (i.e., which DataNode)
3. Contact the DataNode to fetch data

A typical write from a client involves:
1. Contact the NameNode to update the namespace and verify permissions
2. NameNode allocates a new block on a suitable DataNode
3. The client directly streams to the selected DataNode
4. Currently, HDFS files are immutable

- Data is never moved through the NameNode
 - Hence, there is no bottleneck
HDFS Replication

- By default, HDFS stores 3 separate copies of each block
 - This ensures reliability, availability and performance

- Replication policy
 - Spread replicas across different racks
 - Robust against cluster node failures
 - Robust against rack failures

- Block replication benefits MapReduce
 - Scheduling decisions can take replicas into account
 - Exploit better data locality
HDFS: more on operational assumptions

- A small number of large files is preferred over a large number of small files
 - Metadata may explode
 - Input splits for MapReduce based on individual files
 - Mappers are launched for every file
 - High startup costs
 - Inefficient “shuffle and sort”

- Workloads are **batch oriented**

- Not full POSIX

- Cooperative scenario
Hadoop implementation of MapReduce
From Theory to Practice

- **The story so far**
 - Concepts behind the MapReduce Framework
 - Overview of the programming model

- **Hadoop implementation of MapReduce**
 - HDFS in details
 - Hadoop I/O
 - Hadoop MapReduce
 - Implementation details
 - Types and Formats
 - Features in Hadoop

- **Hadoop Deployments**
 - The BigFoot platform (if time allows)
Terminology

MapReduce:
- **Job**: an execution of a Mapper and Reducer across a data set
- **Task**: an execution of a Mapper or a Reducer on a slice of data
- **Task Attempt**: instance of an attempt to execute a task
- **Example**:
 - Running “Word Count” across 20 files is one job
 - 20 files to be mapped = 20 map tasks + some number of reduce tasks
 - At least 20 attempts will be performed... more if a machine crashes

Task Attempts
- Task attempted at least once, possibly more
- Multiple crashes on input imply discarding it
- Multiple attempts may occur in parallel (speculative execution)
- Task ID from TaskInProgress is not a unique identifier
HDFS in details
The Hadoop Distributed Filesystem

- Large dataset(s) outgrowing the storage capacity of a single physical machine
 - Need to partition it across a number of separate machines
 - Network-based system, with all its complications
 - Tolerate failures of machines

- Hadoop Distributed Filesystem[10, 11]
 - Very large files
 - Streaming data access
 - Commodity hardware
HDFS Blocks

- **(Big) files are broken into block-sized chunks**
 - **NOTE**: A file that is smaller than a single block does not occupy a full block’s worth of underlying storage

- **Blocks are stored on independent machines**
 - Reliability and parallel access

- **Why is a block so large?**
 - Make transfer times larger than seek latency
 - E.g.: Assume seek time is 10ms and the transfer rate is 100 MB/s, if you want seek time to be 1% of transfer time, then the block size should be 100MB
NameNodes and DataNodes

NameNode
- Keeps metadata in RAM
- Each block information occupies roughly 150 bytes of memory
- Without NameNode, the filesystem cannot be used
 - Persistence of metadata: synchronous and atomic writes to NFS

Secondary NameNode
- Merges the namespce with the edit log
- A useful trick to recover from a failure of the NameNode is to use the NFS copy of metadata and switch the secondary to primary

DataNode
- They store data and talk to clients
- They report periodically to the NameNode the list of blocks they hold
Anatomy of a File Read

- **NameNode** is only used to get block location
 - Unresponsive **DataNode** are discarded by clients
 - Batch reading of blocks is allowed

- **“External”** clients
 - For each block, the **NameNode** returns a set of **DataNodes** holding a copy thereof
 - **DataNodes** are sorted according to their proximity to the client

- **“MapReduce”** clients
 - **TaskTracker** and **DataNodes** are **colocated**
 - For each block, the **NameNode** usually\(^3\) returns the local **DataNode**

\(^3\)Exceptions exist due to stragglers.
Anatomy of a File Write

Details on replication
- Clients ask NameNode for a list of suitable DataNodes
- This list forms a pipeline: first DataNode stores a copy of a block, then forwards it to the second, and so on

Replica Placement
- Tradeoff between reliability and bandwidth
- Default placement:
 - First copy on the “same” node of the client, second replica is off-rack, third replica is on the same rack as the second but on a different node
 - Since Hadoop 0.21, replica placement can be customized
Network Topology and HDFS
Read your writes is not guaranteed

- The namespace is updated
- Block contents may not be visible after a write is finished
- Application design (other than MapReduce) should use \texttt{sync()} to force synchronization
- \texttt{sync()} involves some overhead: tradeoff between robustness/consistency and throughput

Multiple writers (for the same block) are not supported

- Instead, different blocks can be written in parallel (using MapReduce)
Hadoop I/O
I/O operations in Hadoop

- **Reading and writing data**
 - From/to HDFS
 - From/to local disk drives
 - Across machines (inter-process communication)

- **Customized tools for large amounts of data**
 - Hadoop does not use Java native classes
 - Allows flexibility for dealing with custom data (e.g. binary)

- **What’s next**
 - Overview of what Hadoop offers
 - For an in depth knowledge, use [11]
Data Integrity

- Every I/O operation on disks or the network may corrupt data
 - Users expect data not to be corrupted during storage or processing
 - Data integrity usually achieved with checksums

- HDFS transparently checksums all data during I/O
 - HDFS makes sure that storage overhead is roughly 1%
 - DataNodes are in charge of checksumming
 - With replication, the last replica performs the check
 - Checksums are timestamped and logged for statistics on disks
 - Checksumming is also run periodically in a separate thread
 - Note that thanks to replication, error correction is possible
Compression

- **Why using compression**
 - Reduce storage requirements
 - Speed up data transfers (across the network or from disks)

- **Compression and Input Splits**
 - IMPORTANT: use compression that supports splitting (e.g. bzip2)

- **Splittable files, Example 1**
 - Consider an uncompressed file of 1GB
 - HDFS will split it in 16 blocks, 64MB each, to be processed by separate Mappers
Compression

- **Splittable files, Example 2 (gzip)**
 - Consider a compressed file of 1GB
 - HDFS will split it in 16 blocks of 64MB each
 - Creating an `InputSplit` for each block will not work, since it is not possible to read at an arbitrary point

- **What’s the problem?**
 - This forces MapReduce to treat the file as a single split
 - Then, a single Mapper is fired by the framework
 - For this Mapper, only 1/16-th is local, the rest comes from the network

- **Which compression format to use?**
 - Use bzip2
 - Otherwise, use `SequenceFiles`
 - See Chapter 4 (page 84) [11]
Serialization

- Transforms structured objects into a byte stream
 - For transmission over the network: Hadoop uses RPC
 - For persistent storage on disks

- Hadoop uses its own serialization format, Writable
 - Comparison of types is crucial (Shuffle and Sort phase): Hadoop provides a custom RawComparator, which avoids deserialization
 - Custom Writable for having full control on the binary representation of data
 - Also “external” frameworks are allowed: enter Avro

- Fixed-length or variable-length encoding?
 - Fixed-length: when the distribution of values is uniform
 - Variable-length: when the distribution of values is not uniform
Sequence Files

- **Specialized data structure to hold custom input data**
 - Using blobs of binaries is not efficient

- **SequenceFiles**
 - Provide a persistent data structure for binary key-value pairs
 - Also work well as containers for smaller files so that the framework is more happy (remember, better few large files than lots of small files)
 - They come with the `sync()` method to introduce sync points to help managing `InputSplits` for MapReduce
How Hadoop MapReduce Works
Anatomy of a MapReduce Job Run

1: run job
2: get new job ID
3: copy job resources
4: submit job
5: initialize job
6: retrieve input splits
7: heartbeat (returns task)
8: retrieve job resources
9: launch
10: run

MapReduce program
JobClient
JobTracker
TaskTracker
Child
MapTask or ReduceTask

client JVM
client node
jobtracker node
tasktracker node

Shared FileSystem (e.g., HDFS)
Job Submission

- **JobClient class**
 - The `runJob()` method creates a new instance of a `JobClient`
 - Then it calls the `submitJob()` on this class

- **Simple verifications on the Job**
 - Is there an output directory?
 - Are there any input splits?
 - Can I copy the JAR of the job to HDFS?

- **NOTE**: the JAR of the job is replicated 10 times
Job Initialization

- The JobTracker is responsible for:
 - Create an object for the job
 - Encapsulate its tasks
 - Bookkeeping with the tasks’ status and progress

- This is where the scheduling happens
 - JobTracker performs scheduling by maintaining a queue
 - Queueing disciplines are pluggable

- Compute mappers and reducers
 - JobTracker retrieves input splits (computed by JobClient)
 - Determines the number of Mappers based on the number of input splits
 - Reads the configuration file to set the number of Reducers
Task Assignment

- **Hearbeat-based mechanism**
 - TaskTrackers **periodically send hearbeats to the JobTracker**
 - TaskTracker **is alive**
 - Heartbeat contains also information on availability of the TaskTrackers to execute a task
 - JobTracker **piggybacks a task if TaskTracker is available**

- **Selecting a task**
 - JobTracker **first needs to select a job (i.e. scheduling)**
 - TaskTrackers have a fixed number of slots for map and reduce tasks
 - JobTracker **gives priority to map tasks (WHY?)**

- **Data locality**
 - JobTracker **is topology aware**
 - Useful for map tasks
 - Unused for reduce tasks
Task Execution

- **Task Assignment is done, now TaskTrackers can execute**
 - Copy the JAR from the HDFS
 - Create a local working directory
 - Create an instance of TaskRunner

- **TaskRunner launches a child JVM**
 - This prevents bugs from stalling the TaskTracker
 - A new child JVM is created per InputSplit
 - Can be overridden by specifying JVM Reuse option, which is very useful for custom, in-memory, combiners

- **Streaming and Pipes**
 - User-defined map and reduce methods need not to be in Java
 - Streaming and Pipes allow C++ or python mappers and reducers
 - We will cover Dumbo
Handling Failures

In the real world, code is buggy, processes crash and machine fails

Task Failure

- Case 1: map or reduce task throws a runtime exception
 - The child JVM reports back to the parent TaskTracker
 - TaskTracker logs the error and marks the TaskAttempt as failed
 - TaskTracker frees up a slot to run another task

- Case 2: Hanging tasks
 - TaskTracker notices no progress updates (timeout = 10 minutes)
 - TaskTracker kills the child JVM

- JobTracker is notified of a failed task
 - Avoids rescheduling the task on the same TaskTracker
 - If a task fails 4 times, it is not re-scheduled
 - Default behavior: if any task fails 4 times, the job fails

4 With streaming, you need to take care of the orphaned process.
5 Exception is made for speculative execution
Handling Failures

- **TaskTracker Failure**
 - Types: crash, running very slowly
 - Heartbeats will not be sent to JobTracker
 - JobTracker waits for a timeout (10 minutes), then it removes the TaskTracker from its scheduling pool
 - JobTracker needs to reschedule even *completed* tasks (WHY?)
 - JobTracker needs to reschedule tasks in progress
 - JobTracker may even blacklist a TaskTracker if too many tasks failed

- **JobTracker Failure**
 - Currently, Hadoop has no mechanism for this kind of failure
 - In future releases:
 - Multiple JobTrackers
 - Use ZooKeeper as a coordination mechanisms
Scheduling

- **FIFO Scheduler (default behavior)**
 - Each job uses the whole cluster
 - Not suitable for shared production-level cluster
 - Long jobs monopolize the cluster
 - Short jobs can hold back and have no guarantees on execution time

- **Fair Scheduler**
 - Every user gets a fair share of the cluster capacity over time
 - Jobs are placed in to pools, one for each user
 - Users that submit more jobs have no more resources than others
 - Can guarantee minimum capacity per pool
 - Supports *preemption*
 - “Contrib” module, requires manual installation

- **Capacity Scheduler**
 - Hierarchical queues (mimic an organization)
 - FIFO scheduling in each queue
 - Supports priority
Shuffle and Sort

- **The MapReduce framework guarantees the input to every reducer to be sorted by key**
 - The process by which the system sorts and transfers map outputs to reducers is known as **shuffle**

- **Shuffle is the most important part of the framework, where the “magic” happens**
 - Good understanding allows optimizing both the framework and the execution time of MapReduce jobs

- **Subject to continuous refinements**
Shuffle and Sort: the Map Side
Shuffle and Sort: the Map Side

- The output of a map task is not simply written to disk
 - In memory buffering
 - Pre-sorting

- Circular memory buffer
 - 100 MB by default
 - Threshold based mechanism to spill buffer content to disk
 - Map output written to the buffer while spilling to disk
 - If buffer fills up while spilling, the map task is blocked

- Disk spills
 - Written in round-robin to a local dir
 - Output data is partitioned corresponding to the reducers they will be sent to
 - Within each partition, data is sorted (in-memory)
 - Optionally, if there is a combiner, it is executed just after the sort phase
Shuffle and Sort: the Map Side

- More on spills and memory buffer
 - Each time the buffer is full, a new spill is created
 - Once the map task finishes, there are many spills
 - Such spills are merged into a single partitioned and sorted output file

- The output file partitions are made available to reducers over HTTP
 - There are 40 (default) threads dedicated to serve the file partitions to reducers
Shuffle and Sort: the Map Side

Index file

Partition 1
offset

Partition 2
offset

Data file

Key length
Value length
Key
Value

One Record

Partition 1

Key length
Value length
Key
Value

Partition 2

Key length
Value length
Key
Value

Index 2

Data 2

Index 3

Data 3
Shuffle and Sort: the Reduce Side

- The map output file is located on the local disk of tasktracker.
- Another tasktracker (in charge of a reduce task) requires input from many other TaskTracker (that finished their map tasks).
 - How do reducers know which tasktrackers to fetch map output from?
 - When a map task finishes it notifies the parent tasktracker.
 - The tasktracker notifies (with the heartbeat mechanism) the jobtracker.
 - A thread in the reducer *polls periodically* the jobtracker.
 - Tasktrackers do not delete local map output as soon as a reduce task has fetched them (*WHY?)*

- **Copy phase: a pull approach**
 - There is a small number (5) of copy threads that can fetch map outputs in parallel.
Shuffle and Sort: the Reduce Side

- The map outputs are copied to the tasktracker running the reducer in memory (if they fit)
 - Otherwise they are copied to disk

Input consolidation
- A background thread merges all partial inputs into larger, sorted files
- Note that if compression was used (for map outputs to save bandwidth), decompression will take place in memory

Sorting the input
- When all map outputs have been copied a merge phase starts
- All map outputs are sorted maintaining their sort ordering, in rounds
Hadoop MapReduce Types and Formats
MapReduce Types

- **Input / output to mappers and reducers**
 - map: \((k_1, v_1) \rightarrow [(k_2, v_2)]\)
 - reduce: \((k_2, [v_2]) \rightarrow [(k_3, v_3)]\)

- **In Hadoop, a mapper is created as follows:**
 - `void map(K1 key, V1 value, OutputCollector<K2, V2> output, Reporter reporter)`

- **Types:**
 - \(K\) types implement `WritableComparable`
 - \(V\) types implement `Writable`
What is a **Writable**

- **Hadoop defines its own classes for strings (Text), integers (intWritable), etc...**

- **All keys are instances of WritableComparable**
 - Why comparable?

- **All values are instances of Writable**
Getting Data to the Mapper

Diagram:

- Input file
 - InputSplit
 - RecordReader
 - Mapper
 - (intermediates)
Reading Data

- **Datasets are specified by InputFormats**
 - InputFormats define input data (e.g. a file, a directory)
 - InputFormats is a factory for RecordReader objects to extract key-value records from the input source

- **InputFormats identify partitions of the data that form an InputSplit**
 - InputSplit is a (reference to a) chunk of the input processed by a single map
 - Largest split is processed first
 - Each split is divided into records, and the map processes each record (a key-value pair) in turn
 - Splits and records are logical, they are not physically bound to a file
The relationship between `InputSplit` and HDFS blocks
FileInputFormat and Friends

- **TextInputFormat**
 - Treats each newline-terminated line of a file as a value

- **KeyValueTextInputFormat**
 - Maps newline-terminated text lines of “key” SEPARATOR “value”

- **SequenceFileInputFormat**
 - Binary file of key-value pairs with some additional metadata

- **SequenceFileAsTextInputFormat**
 - Same as before but, maps `(k.toString(), v.toString())`
Filtering File Inputs

- **FileInputFormat** reads all files out of a specified directory and send them to the mapper.

- Delegates filtering this file list to a method subclasses may override.
 - Example: create your own “xyzFileInputFormat” to read *.xyz from a directory list.
Record Readers

- **Each InputFormat provides its own RecordReader implementation**

- **LineRecordReader**
 - Reads a line from a text file

- **KeyValueRecordReader**
 - Used by `KeyValueTextInputFormat`
Input Split Size

- **FileInputFormat** divides large files into chunks
 - Exact size controlled by `mapred.min.split.size`

- Record readers receive file, offset, and length of chunk
 - Example

 On the top of the Crumpetty Tree → (0, On the top of the Crumpetty Tree)
 The Quangle Wangle sat, → (33, The Quangle Wangle sat,)
 But his face you could not see, → (57, But his face you could not see,)
 On account of his Beaver Hat. → (89, On account of his Beaver Hat.)

- Custom **InputFormat** implementations may override split size
Sending Data to Reducers

- Map function receives `OutputCollector` object
 - `OutputCollector.collect()` receives key-value elements

- Any `(WritableComparable, Writable)` can be used

- By default, mapper output type assumed to be the same as the reducer output type
WritableComparator

- **Compares** WritableComparable data
 - Will call the `WritableComparable.compare()` method
 - Can provide fast path for serialized data

- **Configured through:**
  ```java
  JobConf.setOutputValueGroupingComparator()
  ```
Partitioner

- `int getPartition(key, value, numPartitions)`
 - Outputs the partition number for a given key
 - One partition == all values sent to a single reduce task

- **HasPartitioner used by default**
 - Uses `key.hashCode()` to return partition number

- **JobConf used to set Partitioner implementation**
The Reducer

- `void reduce(k2 key, Iterator<v2> values, OutputCollector<k3, v3> output, Reporter reporter)`

- Keys and values sent to one partition all go to the same reduce task

- Calls are sorted by key
 - “Early” keys are reduced and output before “late” keys
Writing the Output

![Diagram showing the process of writing the output in Hadoop MapReduce. The diagram includes multiple reducers and record writers, leading to output files.](image-url)
Writing the Output

- Analogous to InputFormat

- TextOutputFormat writes “key value <newline>” strings to output file

- SequenceFileOutputFormat uses a binary format to pack key-value pairs

- NullOutputFormat discards output
Hadoop MapReduce Features
Developing a MapReduce Application
Preliminaries

Writing a program in MapReduce has a certain flow to it

- Start by writing the map and reduce functions
 - Write unit tests to make sure they do what they should
- Write a driver program to run a job
 - The job can be run from the IDE using a small subset of the data
 - The debugger of the IDE can be used
- Eventually, you can unleash the job on a cluster
 - Debugging a distributed program is challenging

Once the job is running properly

- Perform standard checks to improve performance
- Perform task profiling
Configuration

Before writing a MapReduce program, we need to set up and configure the development environment

- Components in Hadoop are configured with an ad hoc API
- Configuration class is a collection of properties and their values
- Resources can be combined into a configuration

Configuring the IDE

- In the IDE create a new project and add all the JAR files from the top level of the distribution and form the lib directory
- For Eclipse there are also available plugins
- Commercial IDE also exist (Karmasphere)

Alternatives

- Switch configurations (local, cluster)
- Alternatives (see Cloudera documentation for Ubuntu) is very effective
Local Execution

- **Use the GenericOptionsParser, Tool and ToolRunner**
 - These helper classes make it easy to intervene on job configurations
 - These are additional configurations to the core configuration

- **The run() method**
 - Constructs and configure a JobConf object and launch it

- **How many reducers?**
 - In a local execution, there is a single (eventually none) reducer
 - Even by setting a number of reducer larger than one, the option will be ignored
Cluster Execution

- Packaging
- Launching a Job
- The WebUI
- Hadoop Logs
- Running Dependent Jobs, and Oozie
Hadoop Deployments
Setting up a Hadoop Cluster

- **Cluster deployment**
 - Private cluster
 - Cloud-based cluster
 - AWS Elastic MapReduce

- **Outlook:**
 - Cluster specification
 - Hardware
 - Network Topology
 - Hadoop Configuration
 - Memory considerations
Cluster Specification

- **Commodity Hardware**
 - Commodity \neq Low-end
 - False economy due to failure rate and maintenance costs
 - Commodity \neq High-end
 - High-end machines perform better, which would imply a smaller cluster
 - A single machine failure would compromise a large fraction of the cluster

- **A 2010 specification:**
 - 2 quad-cores
 - 16-24 GB ECC RAM
 - 4×1 TB SATA disks
 - Gigabit Ethernet

6 Why not using RAID instead of JBOD?
Cluster Specification

Example:
- Assume your data grows by 1 TB per week
- Assume you have three-way replication in HDFS
 → You need additional 3TB of raw storage per week
- Allow for some overhead (temporary files, logs)
 → This is a new machine per week

How to dimension a cluster?
- Obviously, you won’t buy a machine per week!!
- The idea is that the above back-of-the-envelope calculation is that you can project over a 2 year life-time of your system
 → You would need a 100-machine cluster

Where should you put the various components?
- Small cluster: NameNode and JobTracker can be colocated
- Large cluster: requires more RAM at the NameNode
Cluster Specification

Should we use 64-bit or 32-bit machines?
- NameNode should run on a 64-bit machine: this avoids the 3GB Java heap size limit on 32-bit machines
- Other components should run on 32-bit machines to avoid the memory overhead of large pointers

What's the role of Java?
- Recent releases (Java6) implement some optimization to eliminate large pointer overhead
 → A cluster of 64-bit machines has no downside
Cluster Specification: Network Topology
Cluster Specification: Network Topology

- **Two-level network topology**
 - Switch redundancy is not shown in the figure

- **Typical configuration**
 - 30-40 servers per rack
 - 1 GB switch per rack
 - Core switch or router with 1GB or better

- **Features**
 - Aggregate bandwidth between nodes on the same rack is much larger than for nodes on different racks
 - **Rack awareness**
 - Hadoop should know the cluster topology
 - Benefits both HDFS (data placement) and MapReduce (locality)
Hadoop Configuration

- There are a handful of files for controlling the operation of an Hadoop Cluster
 - See next slide for a summary table

- Managing the configuration across several machines
 - All machines of an Hadoop cluster must be in sync!
 - What happens if you dispatch an update and some machines are down?
 - What happens when you add (new) machines to your cluster?
 - What if you need to patch MapReduce?

- Common practice: use configuration management tools
 - Chef, Puppet, ...
 - Declarative language to specify configurations
 - Allow also to install software
Hadoop Configuration

Table: Hadoop Configuration Files

<table>
<thead>
<tr>
<th>Filename</th>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hadoop-env.sh</td>
<td>Bash script</td>
<td>Environment variables that are used in the scripts to run Hadoop.</td>
</tr>
<tr>
<td>core-site.xml</td>
<td>Hadoop configuration XML</td>
<td>I/O settings that are common to HDFS and MapReduce.</td>
</tr>
<tr>
<td>hdfs-site.xml</td>
<td>Hadoop configuration XML</td>
<td>Namenode, the secondary namenode, and the datanodes.</td>
</tr>
<tr>
<td>mapred-site.xml</td>
<td>Hadoop configuration XML</td>
<td>Jobtracker, and the tasktrackers.</td>
</tr>
<tr>
<td>masters</td>
<td>Plain text</td>
<td>A list of machines that each run a secondary namenode.</td>
</tr>
<tr>
<td>slaves</td>
<td>Plain text</td>
<td>A list of machines that each run a datanode and a tasktracker.</td>
</tr>
</tbody>
</table>
Hadoop Configuration: memory utilization

- **Hadoop uses a lot of memory**
 - Default values, for a typical cluster configuration
 - DataNode: 1 GB
 - TaskTracker: 1 GB
 - Child JVM map task: 2 × 200MB
 - Child JVM reduce task: 2 × 200MB

- **All the moving parts of Hadoop (HDFS and MapReduce) can be individually configured**
 - This is true for cluster configuration but also for **job specific configurations**

- **Hadoop is fast when using RAM**
 - Generally, MapReduce Jobs are not CPU-bound
 - Avoid I/O on disk as much as you can
 - Minimize network traffic
 - Customize the partitioner
 - Use compression (→ decompression is in RAM)
Elephants in the cloud!

- May organization run Hadoop in private clusters
 - Pros and cons

- Cloud based Hadoop installations (Amazon biased)
 - Use Cloudera + Whirr
 - Use Elastic MapReduce
Hadoop on EC2

- **Launch instances of a cluster on demand, paying by hour**
 - CPU, in general bandwidth is used from within a datacenter, hence it’s free

- **Apache Whirr project**
 - Launch, terminate, modify a running cluster
 - Requires AWS credentials

- **Example**
 - Launch a cluster `test-hadoop-cluster`, with one master node (`JobTracker` and `NameNode`) and 5 worker nodes (`DataNodes` and `TaskTrackers`)
 - `hadoop-ec2 launch-cluster test-hadoop-cluster 5`
 - See project webpage and Chapter 9, page 290 [11]
AWS Elastic MapReduce

Hadoop as a service
- Amazon handles everything, which becomes transparent
- How this is done remains a mystery

Focus on What not How
- All you need to do is to package a MapReduce Job in a JAR and upload it using a Web Interface
- Other Jobs are available: python, pig, hive, ...
- Test your jobs locally!!!

References II

References III

