Tutorial: High-Level Programming Languages
MapReduce Simplified

Pietro Michiardi

Eurecom
Overview

- **Raising the level of abstraction for processing large datasets**
 - Scalable Algorithm Design is complex using MapReduce
 - Code gets messy, redundant, difficult to re-use

- **Many alternatives exist, based on different principles**
 - Data-flow programming
 - SQL-like declarative programming
 - Additional operators (besides Map and Reduce)

- **Optimization is a hot research topic**
 - Based on traditional RDBMS optimizations
Topics covered

- Review foundations of relational algebra in light of MapReduce

- Hadoop PIG
 - Data-flow language, originated from Yahoo!
 - Internals
 - Optimizations

- Cascading + Scalding

- SPARK\(^1\)

\(^1\)This is an abuse: SPARK is an execution engine that replaces Hadoop, based on Reliable Distributed Datasets, that reside in memory. The programming model is MapReduce, using Scala.
Relational Algebra and MapReduce
Introduction

- **Disclaimer**
 - This is not a full course on Relational Algebra
 - Neither this is a course on SQL

- **Introduction to Relational Algebra, RDBMS and SQL**
 - Follow the video lectures of the Stanford class on RDBMS
 - http://www.db-class.org/
 - Note that you have to sign up for an account

- **Overview of this part**
 - Brief introduction to simplified relational algebra
 - Useful to understand Pig, Hive and HBase
Relational Algebra Operators

- There are a number of operations on data that fit well the relational algebra model
 - In traditional RDBMS, queries involve retrieval of small amounts of data
 - In this course, and in particular in this class, we should keep in mind the particular workload underlying MapReduce
 - Full scans of large amounts of data
 - Queries are not selective, they process all data

A review of some terminology

- A relation is a table
- Attributes are the column headers of the table
- The set of attributes of a relation is called a schema
 Example: $R(A_1, A_2, \ldots, A_n)$ indicates a relation called R whose attributes are A_1, A_2, \ldots, A_n
Operators
Operators

Let’s start with an example

- Below, we have part of a relation called *Links* describing the structure of the Web
- There are two *attributes*: *From* and *To*
- A row, or *tuple*, of the relation is a pair of URLs, indicating the existence of a link between them
- The number of tuples in a real dataset is in the order of billions (10^9)

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>url1</td>
<td>url2</td>
</tr>
<tr>
<td>url1</td>
<td>url3</td>
</tr>
<tr>
<td>url2</td>
<td>url3</td>
</tr>
<tr>
<td>url2</td>
<td>url4</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Operators

- Relations (however big) can be stored in a distributed filesystem
 - If they don’t fit in a single machine, they’re broken into pieces (think HDFS)

- Next, we review and describe a set of relational algebra operators
 - Intuitive explanation of what they do
 - “Pseudo-code” of their implementation in/by MapReduce
Operators

- **Selection**: $\sigma_C(R)$
 - Apply condition C to each tuple of relation R
 - Produce in output a relation containing only tuples that satisfy C

- **Projection**: $\pi_S(R)$
 - Given a subset S of relation R attributes
 - Produce in output a relation containing only tuples for the attributes in S

- **Union, Intersection and Difference**
 - Well known operators on sets
 - Apply to the set of tuples in two relations that have the same schema
 - Variations on the theme: work on bags
Operators

- **Natural join** $R \bowtie S$
 - Given two relations, *compare each pair of tuples*, one from each relation
 - If the tuples agree on all the attributes common to both schema → produce an output tuple that has components on each attribute
 - Otherwise produce nothing
 - *Join condition* can be on a subset of attributes

- **Let’s work with an example**
 - Recall the *Links* relation from previous slides
 - Query (or data processing job): *find the paths of length two in the Web*
Join Example

Informally, to satisfy the query we must:

- find the triples of URLs in the form \((u, v, w)\) such that there is a link from \(u\) to \(v\) and a link from \(v\) to \(w\)

Using the join operator

- Imagine we have two relations (with different schemas), and let’s try to apply the natural join operator
- There are two copies of \(\text{Links}: L_1(U_1, U_2)\) and \(L_2(U_2, U_3)\)
- Let’s compute \(L_1 \bowtie L_2\)
 - For each tuple \(t_1\) of \(L_1\) and each tuple \(t_2\) of \(L_2\), see if their \(U_2\) component are the same
 - If yes, then produce a tuple in output, with the schema \((U_1, U_2, U_3)\)
Join Example

- **What we have seen is called (to be precise) a self-join**
 - **Question**: How would you implement a self join in your favorite programming language?
 - **Question**: What is the time complexity of your algorithm?
 - **Question**: What is the space complexity of your algorithm?

- **To continue the example**
 - Say you are not interested in the entire two-hop path but just the start and end nodes
 - Then you do a projection and the notation would be: \(\pi_{U_1, U_3}(L_1 \Join L_2) \)
Grouping and Aggregation: $\gamma_X(R)$

- Given a relation R, partition its tuples according to their values in one set of attributes G
 - The set G is called the grouping attributes
- Then, for each group, aggregate the values in certain other attributes
 - Aggregation functions: SUM, COUNT, AVG, MIN, MAX, ...

In the notation, X is a list of elements that can be:

- A grouping attribute
- An expression $\theta(A)$, where θ is one of the (five) aggregation functions and A is an attribute NOT among the grouping attributes
Operators

- **Grouping and Aggregation:** $\gamma_X(R)$
 - The result of this operation is a relation with one tuple for each group
 - That tuple has a component for each of the grouping attributes, with the value common to tuples of that group
 - That tuple has another component for each aggregation, with the aggregate value for that group

- **Let’s work with an example**
 - Imagine that a social-networking site has a relation `Friends(User, Friend)`
 - The tuples are pairs (a, b) such that b is a friend of a
 - Query: compute the number of friends each member has
Grouping and Aggregation Example

How to satisfy the query

\[\gamma_{User, \text{COUNT}(\text{Friend})} (\text{Friends}) \]
- This operation groups all the tuples by the value in their first component
- There is one group for each user
- Then, for each group, it counts the number of friends

Some details
- The \text{COUNT} operation applied to an attribute does not consider the values of that attribute
- In fact, it counts the number of tuples in the group
- In SQL, there is a “count distinct” operator that counts the number of different values
MapReduce implementation of (some) Relational Operators
Computing Selection

- In practice, selection does not need a full-blown MapReduce implementation
 - They can be implemented in the map portion alone
 - Actually, they could also be implemented in the reduce portion

- A MapReduce implementation of $\sigma_C(R)$
 - **Map:**
 - For each tuple t in R, check if t satisfies C
 - If so, emit a key/value pair (t, t)
 - **Reduce:**
 - Identity reducer
 - **Question:** single or multiple reducers?

- **NOTE:** the output is not exactly a relation
 - **WHY?**
Computing Projections

- Similar process to selection
 - But, projection may cause same tuple to appear several times

- A MapReduce implementation of $\pi_S(R)$

 Map:
 - For each tuple t in R, construct a tuple t' by eliminating those components whose attributes are not in S
 - Emit a key/value pair (t', t')

 Reduce:
 - For each key t' produced by any of the Map tasks, fetch $t', [t', \cdots, t']$
 - Emit a key/value pair (t', t')

- NOTE: the reduce operation is duplicate elimination
 - This operation is associative and commutative, so it is possible to optimize MapReduce by using a Combiner in each mapper
Computing Unions

- Suppose relations R and S have the same schema
 - Map tasks will be assigned chunks from either R or S
 - Mappers don’t do much, just pass by to reducers
 - Reducers do duplicate elimination

- A MapReduce implementation of union
 - **Map:**
 - For each tuple t in R or S, emit a key/value pair (t, t)
 - **Reduce:**
 - For each key t there will be either one or two values
 - Emit (t, t) in either case
Computing Intersections

- **Very similar to computing unions**
 - Suppose relations R and S have the same schema
 - The map function is the same (an identity mapper) as for union
 - The reduce function must produce a tuple only if both relations have that tuple

- **A MapReduce implementation of intersection**
 - **Map:** For each tuple t in R or S, emit a key/value pair (t, t)
 - **Reduce:** If key t has value list $[t, t]$ then emit the key/value pair (t, t)
 - Otherwise, emit the key/value pair (t, NULL)
Computing difference

- Assume we have two relations R and S with the same schema
 - The only way a tuple t can appear in the output is if it is in R but not in S
 - The map function can pass tuples from R and S to the reducer
 - NOTE: it must inform the reducer whether the tuple came from R or S

A MapReduce implementation of difference

Map:
- For a tuple t in R emit a key/value pair $(t, 'R')$ and for a tuple t in S, emit a key/value pair $(t, 'S')$

Reduce:
- For each key t, do the following:
 - If it is associated to 'R', then emit (t, t)
 - If it is associated to ['R', 'S'] or ['S', 'R'], or ['S'], emit the key/value pair (t, NULL)
Computing the natural Join

- **This topic is subject to continuous refinements**
 - There are many JOIN operators and many different implementations
 - We will see some of them in more detail in the Lab

- **Let’s look at two relations** $R(A, B)$ and $S(B, C)$
 - We must find tuples that agree on their B components
 - We shall use the B-value of tuples from either relation as the key
 - The value will be the other component and the name of the relation
 - That way the reducer knows from which relation each tuple is coming from
Computing the natural Join

- **A MapReduce implementation of Natural Join**

 Map:
 - For each tuple \((a, b)\) of \(R\) emit the key/value pair \((b, ('R', a))\)
 - For each tuple \((b, c)\) of \(S\) emit the key/value pair \((b, ('S', c))\)

 Reduce:
 - Each key \(b\) will be associated to a list of pairs that are either \(('R', a)\) or \(('S', c)\)
 - Emit key/value pairs of the form
 \((b, [(a_1, b, c_1), (a_2, b, c_2), \cdots, (a_n, b, c_n)])\)

- **NOTES**
 - **Question:** what if the MapReduce framework wouldn’t implement the distributed (and sorted) group by?
 - In general, for \(n\) tuples in relation \(R\) and \(m\) tuples in relation \(S\) all with a common \(B\)-value, then we end up with \(nm\) tuples in the result
 - If all tuples of both relations have the same \(B\)-value, then we’re computing the **cartesian product**
Let $R(A, B, C)$ be a relation to which we apply $\gamma_{A, \theta(B)}(R)$

- The map operation prepares the grouping
- The grouping is done by the framework
- The reducer computes the aggregation
- Simplifying assumptions: one grouping attribute and one aggregation function

MapReduce implementation of $\gamma_{A, \theta(B)}(R)$

Map:
- For each tuple (a, b, c) emit the key/value pair (a, b)

Reduce:
- Each key a represents a group
- Apply θ to the list $[b_1, b_2, \cdots, b_n]$
- Emit the key/value pair (a, x) where $x = \theta([b_1, b_2, \cdots, b_n])$
Hadoop PIG
Introduction

- Collection and analysis of enormous datasets is at the heart of innovation in many organizations
 - E.g.: web crawls, search logs, click streams

- Manual inspection before batch processing
 - Very often engineers look for exploitable trends in their data to drive the design of more sophisticated techniques
 - This is difficult to do in practice, given the sheer size of the datasets

- The MapReduce model has its own limitations
 - One input
 - Two-stage, two operators
 - Rigid data-flow
MapReduce limitations

- **Very often tricky workarounds are required**\(^2\)
 - This is very often exemplified by the difficulty in performing **JOIN** operations

- **Custom code required even for basic operations**
 - Projection and Filtering need to be “rewritten” for each job

→ Code is difficult to reuse and maintain
→ Semantics of the analysis task are obscured
→ Optimizations are difficult due to opacity of **Map** and **Reduce**

\(^2\)The term workaround should not only be intended as negative.
Use Cases

Rollup aggregates

- Compute aggregates against user activity logs, web crawls, etc.
 - Example: compute the frequency of search terms aggregated over days, weeks, month
 - Example: compute frequency of search terms aggregated over geographical location, based on IP addresses

Requirements

- Successive aggregations
- Joins followed by aggregations

Pig vs. OLAP systems

- Datasets are too big
- Data curation is too costly
Use Cases

Temporal Analysis

- **Study how search query distributions change over time**
 - Correlation of search queries from two distinct time periods (groups)
 - Custom processing of the queries in each correlation group

- **Pig supports operators that minimize memory footprint**
 - Instead, in a RDBMS such operations typically involve *JOINS* over very large datasets that do not fit in memory and thus become slow
Use Cases

Session Analysis

- Study sequences of page views and clicks

- Example of typical aggregates
 - Average length of user session
 - Number of links clicked by a user before leaving a website
 - Click pattern variations in time

- Pig supports advanced data structures, and UDFs
Pig Latin

- Pig Latin, a high-level programming language developed at Yahoo!
 - Combines the best of both declarative and imperative worlds
 - High-level declarative querying in the spirit of SQL
 - Low-level, procedural programming á la MapReduce

- Pig Latin features
 - Multi-valued, nested data structures instead of flat tables
 - Powerful data transformations primitives, including joins

- Pig Latin program
 - Made up of a series of operations (or transformations)
 - Each operation is applied to input data and produce output data
 → A Pig Latin program describes a data flow
Example 1

Pig Latin premiere

- Assume we have the following table:

```
urls: (url, category, pagerank)
```

- Where:
 - `url`: is the url of a web page
 - `category`: corresponds to a pre-defined category for the web page
 - `pagerank`: is the numerical value of the pagerank associated to a web page

→ Find, for each sufficiently large category, the average page rank of high-pagerank urls in that category
Example 1

SQL

SELECT category, AVG(pagerank)
FROM urls WHERE pagerank > 0.2
GROUP BY category HAVING COUNT(*) > 10^6
Example 1

Pig Latin

good_urls = FILTER urls BY pagerank > 0.2;
groups = GROUP good_urls BY category;
big_groups = FILTER groups BY COUNT(good_urls) > 10^6;
output = FOREACH big_groups GENERATE
category, AVG(good_urls.pagerank);
Pig Execution environment

- **How do we go from Pig Latin to MapReduce?**
 - The Pig system is in charge of this
 - Complex execution environment that interacts with Hadoop MapReduce
 - The programmer focuses on the data and analysis

- **Pig Compiler**
 - Pig Latin operators are translated into MapReduce code
 - **NOTE**: in some cases, hand-written MapReduce code performs better

- **Pig Optimizer**
 - Pig Latin data flows undergo an (automatic) optimization phase
 - These optimizations are borrowed from the RDBMS community
Pig and Pig Latin

- **Pig is not a RDBMS!**
 - This means it is not suitable for all data processing tasks

- **Designed for batch processing**
 - Of course, since it compiles to MapReduce
 - Of course, since data is materialized as files on HDFS

- **NOT designed for random access**
 - Query selectivity does not match that of a RDBMS
 - Full-scans oriented!
Comparison with RDBMS

- It may seem that Pig Latin is similar to SQL
 - We’ll see several examples, operators, etc. that resemble SQL statements

- Data-flow vs. declarative programming language
 - Data-flow:
 - Step-by-step set of operations
 - Each operation is a single transformation
 - Declarative:
 - Set of constraints
 - Applied together to an input to generate output

→ With Pig Latin it’s like working at the query planner
Comparison with RDBMS

- **RDBMS store data in tables**
 - Schemas are predefined and strict
 - Tables are flat

- **Pig and Pig Latin work on more complex data structures**
 - Schema can be defined at run-time for readability
 - *Pigs eat anything!*
 - UDF and streaming together with nested data structures make Pig and Pig Latin more flexible
Features and Motivations
Features and Motivations

- **Design goals of Pig and Pig Latin**
 - Appealing to programmers for performing ad-hoc analysis of data
 - Number of features that go beyond those of traditional RDBMS

- **Next: overview of salient features**
 - There will be a dedicated set of slides to optimizations later on
Dataflow Language

- A Pig Latin program specifies a series of steps
 - Each step is a single, high level data transformation
 - Stylistically different from SQL

- With reference to Example 1
 - The programmer supply an order in which each operation will be done

- Consider the following snippet

```python
spam_urls = FILTER urls BY isSpam(url);
culprit_urls = FILTER spam_urls BY pagerank > 0.8;
```
Dataflow Language

- Data flow optimizations
 - Explicit sequences of operations can be overridden
 - Use of high-level, relational-algebra-style primitives (GROUP, FILTER,...) allows using traditional RDBMS optimization techniques

→ NOTE: it is necessary to check whether such optimizations are beneficial or not, by hand

- Pig Latin allows Pig to perform optimizations that would otherwise by a tedious manual exercise if done at the MapReduce level
Quick Start and Interoperability

- **Data I/O is greatly simplified in Pig**
 - No need to curate, bulk import, parse, apply schema, create indexes that traditional RDBMS require
 - Standard and ad-hoc “readers” and “writers” facilitate the task of ingesting and producing data in arbitrary formats

- **Pig can work with a wide range of other tools**

- **Why RDBMS have stringent requirements?**
 - To enable transactional consistency guarantees
 - To enable efficient point lookup (using physical indexes)
 - To enable data curation on behalf of the user
 - To enable other users figuring out what the data is, by studying the schema
Quick Start and Interoperability

Why is Pig so flexible?
- Supports read-only workloads
- Supports scan-only workloads (no lookups)
 → No need for transactions nor indexes

Why data curation is not required?
- Very often, Pig is used for ad-hoc data analysis
- Work on temporary datasets, then throw them
 → Curation is an overkill

Schemas are optional
- Can apply one on the fly, at runtime
- Can refer to fields using positional notation

  ```
  E.g.: good_urls = FILTER urls BY $2 > 0.2
  ```
Nested Data Model

- Easier for “programmers” to think of nested data structures
 - E.g.: capture information about positional occurrences of terms in a collection of documents
 - `Map<documnetId, Set<positions> >`

- Instead, RDBMS allows only flat tables
 - Only atomic fields as columns
 - Require **normalization**
 - From the example above: need to create two tables
 - `term_info: (termId, termString, ...)`
 - `position_info: (termId, documentId, position)`
 - Occurrence information obtained by joining on `termId`, and grouping on `termId`, `documentId`
Nested Data Model

- Fully nested data model (see also later in the presentation)
 - Allows complex, non-atomic data types
 - E.g.: set, map, tuple

- Advantages of a nested data model
 - More natural than normalization
 - Data is often already stored in a nested fashion on disk
 - E.g.: a web crawler outputs for each crawled url, the set of outlinks
 - Separating this in normalized form imply use of joins, which is an overkill for web-scale data
 - Nested data allows to have an algebraic language
 - E.g.: each tuple output by GROUP has one non-atomic field, a nested set of tuples from the same group
 - Nested data makes life easy when writing UDFs
User Defined Functions

- **Custom processing is often predominant**
 - E.g.: users may be interested in performing natural language stemming of a search term, or tagging urls as spam

- **All commands of Pig Latin can be customized**
 - Grouping, filtering, joining, per-tuple processing

- **UDFs support the nested data model**
 - Input and output can be non-atomic
Example 2

- **Continues from Example 1**
 - Assume we want to find for each category, the top 10 urls according to pagerank

  ```pig
  groups = GROUP urls BY category;
  output = FOREACH groups GENERATE category, top10(urls);
  ```

 - `top10()` is a UDF that accepts a set of urls (for each group at a time)
 - it outputs a set containing the top 10 urls by pagerank for that group
 - final output contains non-atomic fields
User Defined Functions

- **UDFs can be used in all Pig Latin constructs**

- **Instead, in SQL, there are restrictions**
 - Only scalar functions can be used in `SELECT` clauses
 - Only set-valued functions can appear in the `FROM` clause
 - Aggregation functions can only be applied to `GROUP BY` or `PARTITION BY`

- **UDFs can be written in Java, Python and Javascript**
 - With streaming, we can use also C/C++, Python, ...

3 As of Pig 0.8.1 and later. We will use version 0.10.0 or more.
Handling parallel execution

- Pig and Pig Latin are geared towards parallel processing
 - Of course, the underlying execution engine is MapReduce

- Pig Latin primitives are chosen such that they can be easily parallelized
 - Non-equi joins, correlated sub-queries,... are not directly supported

- Users may specify parallelization parameters at run time
 - Question: Can you specify the number of maps?
 - Question: Can you specify the number of reducers?
Pig Latin
Introduction

- **Not a complete reference to the Pig Latin language**: refer to [1]
 - Here we cover some interesting aspects

- **The focus here is on some language primitives**
 - Optimizations are treated separately
 - How they can be implemented is covered later

- **Examples are taken from [2, 3]**
Data Model

- **Supports four types**
 - *Atom*: contains a simple atomic value as a string or a number, e.g., ‘alice’

 - *Tuple*: sequence of *fields*, each can be of any data type, e.g.,
 (‘alice’, ‘lakers’)

 - *Bag*: collection of tuples with possible duplicates. Flexible schema, no need to have the same number and type of fields

 \[
 \begin{align*}
 \{ & \text{('alice', 'lakers')} \\
 \{ & \text{('alice', ('iPod', 'apple'))} \\
 \end{align*}
 \]

 The example shows that tuples can be nested
Data Model

- **Supports four types**
 - *Map*: collection of data items, where each item has an associated key for lookup. The schema, as with bags, is flexible.
 - **NOTE**: keys are required to be data atoms, for efficient lookup.

\[
\begin{align*}
\text{‘fan of’} & \rightarrow \left\{ \text{‘lakers’}, \text{‘iPod’} \right\} \\
\text{‘age’} & \rightarrow 20
\end{align*}
\]

- The key ‘fan of’ is mapped to a bag containing two tuples
- The key ‘age’ is mapped to an atom

- Maps are useful to model datasets in which schema may be dynamic (over time)
Structure

- **Pig latin programs are a sequence of steps**
 - Can use an interactive shell (called `grunt`)
 - Can feed them as a “script”

- **Comments**
 - In line: with double hyphens (--)
 - C-style for longer comments (/* ... */)

- **Reserved keywords**
 - List of keywords that can’t be used as identifiers
 - Same old story as for any language
Statements

- As a Pig Latin program is executed, each statement is *parsed*
 - The interpreter builds a logical plan for every relational operation
 - The logical plan of each statement is added to that of the program so far
 - Then the interpreter moves on to the next statement

- **IMPORTANT:** No data processing takes place during construction of logical plan
 - When the interpreter sees the first line of a program, it confirms that it is syntactically and semantically correct
 - Then it adds it to the logical plan
 - It does not even check the existence of files, for data load operations
Statements

→ It makes no sense to start any processing until the whole flow is defined
 ▶ Indeed, there are several optimizations that could make a program more efficient (e.g., by avoiding to operate on some data that later on is going to be filtered)

● The trigger for Pig to start execution are the DUMP and STORE statements
 ▶ It is only at this point that the logical plan is compiled into a physical plan

● How the physical plan is built
 ▶ Pig prepares a series of MapReduce jobs
 ★ In Local mode, these are run locally on the JVM
 ★ In MapReduce mode, the jobs are sent to the Hadoop Cluster
 ▶ IMPORTANT: The command EXPLAIN can be used to show the MapReduce plan
Statements

Multi-query execution

- There is a difference between **dump** and **store**
 - Apart from diagnosis, and interactive mode, in batch mode **store** allows for program/job optimizations

- Main optimization objective: minimize I/O
 - Consider the following example:
    ```pig
    A = LOAD 'input/pig/multiquery/A';
    B = FILTER A BY $1 == 'banana';
    C = FILTER A BY $1 != 'banana';
    STORE B INTO 'output/b';
    STORE C INTO 'output/c';
    ```
Statements

Multi-query execution

- **In the example, relations B and C are both derived from A**
 - Naively, this means that at the first `STORE` operator the input should be read
 - Then, at the second `STORE` operator, the input should be read again

- **Pig will run this as a single MapReduce job**
 - Relation A is going to be read only once
 - Then, each relation B and C will be written to the output
Expressions

- An expression is something that is evaluated to yield a value
 - Lookup on [3] for documentation

\[
\begin{align*}
 t &= (\text{'alice'}, \{ ('lakers', 1), ('iPod', 2) \}, ['age' \rightarrow 20]) \\
\end{align*}
\]

Let fields of tuple \(t \) be called \(f_1, f_2, f_3 \)

<table>
<thead>
<tr>
<th>Expression Type</th>
<th>Example</th>
<th>Value for (t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>'bob'</td>
<td>Independent of (t)</td>
</tr>
<tr>
<td>Field by position</td>
<td>$0</td>
<td>'alice'</td>
</tr>
<tr>
<td>Field by name</td>
<td>(f_3)</td>
<td>'age' \rightarrow 20</td>
</tr>
<tr>
<td>Projection</td>
<td>(f_2 . 0)</td>
<td>{ ('lakers') }</td>
</tr>
<tr>
<td></td>
<td></td>
<td>{ ('iPod') }</td>
</tr>
<tr>
<td>Map Lookup</td>
<td>(f_3 # 'age')</td>
<td>20</td>
</tr>
<tr>
<td>Function Evaluation</td>
<td>(\text{SUM}(f_2 . 1))</td>
<td>1 + 2 = 3</td>
</tr>
<tr>
<td>Conditional Expression</td>
<td>(f_3 # 'age' \text{'} \geq 18?)</td>
<td>'adult'</td>
</tr>
<tr>
<td></td>
<td>'adult' : 'minor'</td>
<td></td>
</tr>
<tr>
<td>Flattening</td>
<td>(\text{FLATTEN}(f_2))</td>
<td>'lakers', 1 \ 'iPod', 2</td>
</tr>
</tbody>
</table>
Schemas

- **A relation in Pig may have an associated schema**
 - This is optional
 - A schema gives the fields in the relations names and types
 - Use the command `DESCRIBE` to reveal the schema in use for a relation

- **Schema declaration is flexible but reuse is awkward**
 - A set of queries over the same input data will often have the same schema
 - This is sometimes hard to maintain (unlike HIVE) as there is no external components to maintain this association

HINT:: You can write a UDF function to perform a personalized load operation which encapsulates the schema
Validation and nulls

- Pig does not have the same power to enforce constraints on schema at load time as a RDBMS
 - If a value cannot be cast to a type declared in the schema, then it will be set to a null value
 - This also happens for corrupt files

- A useful technique to partition input data to discern good and bad records
 - Use the SPLIT operator

 SPLIT records INTO good_records IF temperature is not null, bad_records IF temperature is NULL;
Other relevant information

- **Schema merging**
 - How schema are propagated to new relations?

- **Functions**
 - Look up on the web for *Piggy Bank*

- **User-Defined Functions**
 - Use [3] for an introduction to designing UDFs
Data Processing Operators

Loading and storing data

- **The first step in a Pig Latin program is to load data**
 - What input files are
 - How the file contents are to be deserialized
 - An input file is assumed to contain a sequence of tuples

- **Data loading is done with the LOAD command**

  ```pig
  queries = LOAD 'query_log.txt'
  USING myLoad()
  AS (userId, queryString, timestamp);
  ```
Data Processing Operators

Loading and storing data

- The example above specifies the following:
 - The input file is `query_log.txt`
 - The input file should be converted into tuples using the custom `myLoad` deserializer
 - The loaded tuples have three fields, specified by the schema

- Optional parts
 - `USING` clause is optional: if not specified, the input file is assumed to be plain text, tab-delimited
 - `AS` clause is optional: if not specified, must refer to fields by position instead of by name
Data Processing Operators

Loading and storing data

- **Return value of the `LOAD` command**
 - Handle to a bag
 - This can be used by subsequent commands
 → bag handles are only logical
 → no file is actually read!

- **The command to write output to disk is `STORE`**
 - It has similar semantics to the `LOAD` command
Data Processing Operators

Per-tuple processing: Filtering data

- Once you have some data loaded into a relation, the next step is to filter it
 - This is done, e.g., to remove unwanted data
 - **HINT:** By filtering early in the processing pipeline, you minimize the amount of data flowing through the system

- A basic operation is to apply some processing over every tuple of a data set
 - This is achieved with the `FOREACH` command
    ```
    expanded_queries = FOREACH queries GENERATE
    userId, expandQuery(queryString);
    ```
Data Processing Operators

Per-tuple processing: Filtering data

- **Comments on the example above:**
 - Each tuple of the bag queries should be processed **independently**
 - The second field of the output is the result of a UDF

- **Semantics of the `FOREACH` command**
 - There can be no dependence between the processing of different input tuples
 - This allows for an efficient parallel implementation

- **Semantics of the `GENERATE` clause**
 - Followed by a list of expressions
 - Also *flattering* is allowed
 - This is done to eliminate nesting in data
 - Allows to make output data independent for further parallel processing
 - Useful to store data on disk
Data Processing Operators

Per-tuple processing: Discarding unwanted data

- A common operation is to retain a portion of the input data
 - This is done with the `FILTER` command
    ```
    real_queries = FILTER queries BY userId neq 'bot';
    ```

- Filtering conditions involve a combination of expressions
 - Comparison operators
 - Logical connectors
 - UDF
Data Processing Operators

Per-tuple processing: Streaming data

- **The STREAM operator allows transforming data in a relation using an external program or script**
 - This is possible because Hadoop MapReduce supports “streaming”
 - Example:
 \[C = \text{STREAM} \ A \ \text{THROUGH} \ \text{‘cut -f 2’}; \]
 which use the Unix `cut` command to extract the second field of each tuple in \(A \)

- **The STREAM operator uses PigStorage to serialize and deserialize relations to and from stdin/stdout**
 - Can also provide a custom serializer/deserializer
 - Works well with python
Data Processing Operators

Getting related data together

- It is often necessary to *group* together tuples from one or more data sets
 - We will explore several nuances of “grouping”

- The first grouping operation we study is given by the COGROUP command

Example: Assume we have loaded two relations

results: (queryString, url, position)
revenue: (queryString, adSlot, amount)

- results contains, for different query strings, the urls shown as search results, and the positions at which they where shown
- revenue contains, for different query strings, and different advertisement slots, the average amount of revenue
Data Processing Operators

Getting related data together

- Suppose we want to group together all search results data and revenue data for the same query string

```pig
grouped_data = COGROUP results BY queryString, revenue BY queryString;
```

results:
- (queryString, url, rank)
- (lakers, nba.com, 1)
- (lakers, espn.com, 2)
- (kings, nhl.com, 1)
- (kings, nba.com, 2)

revenue:
- (queryString, adSlot, amount)
- (lakers, top, 50)
- (lakers, side, 20)
- (kings, top, 30)
- (kings, side, 10)

```pig
(lakers, {lakers, nba.com, 1}, {lakers, espn.com, 2}),
{lakers, top, 50}, {lakers, side, 20})
(kings, {kings, nhl.com, 1}, {kings, nba.com, 2}),
{kings, top, 30}, {kings, side, 10})
```

```pig
distributeRevenue
(nba.com, 60)
(esp.com, 10)
(nhl.com, 35)
(nba.com, 5)
```
Data Processing Operators

The **COGROUP** command

- **Output of a COGROUP contains one tuple for each group**
 - First field \((\text{group})\) is the group identifier (the value of the \text{queryString})
 - Each of the next fields is a bag, one for each group being co-grouped

- **Grouping can be performed according to UDFs**

- **Next: why COGROUP when you can use JOINS?**
Data Processing Operators

COGROUP vs JOIN

- **JOIN vs. COGROUP**
 - Their are equivalent: $\text{JOIN} = \text{COGROUP}$ followed by a cross product of the tuples in the nested bags.

- **Example 3:** Suppose we try to attribute search revenue to search-results urls → compute monetary worth of each url

 grouped_data = COGROUP results BY queryString, revenue BY queryString;
 url_revenues = FOREACH grouped_data GENERATE FLATTEN(distrubteRevenue(results, revenue));

 - Where distrubteRevenue is a UDF that accepts search results and revenue information for each query string, and outputs a bag of urls and revenue attributed to them.
Data Processing Operators

COGROUP vs JOIN

- More details on the UDF distribute Revenue
 - Attributes revenue from the top slot entirely to the first search result
 - The revenue from the side slot may be equally split among all results

- Let’s see how to do the same with a JOIN
 - JOIN the tables results and revenues by queryString
 - GROUP BY queryString
 - Apply a custom aggregation function

- What happens behind the scenes
 - During the join, the system computes the cross product of the search and revenue information
 - Then the custom aggregation needs to undo this cross product, because the UDF specifically requires so
Data Processing Operators

COGROUP in details

- **The COGROUP statement conforms to an algebraic language**
 - The operator carries out only the operation of grouping together tuples into nested bags
 - The user can decide whether to apply a (custom) aggregation on those tuples or to cross-product them and obtain a join

- **It is thanks to the nested data model that COGROUP is an independent operation**
 - Implementation details are tricky
 - Groups can be very large (and are redundant)
Data Processing Operators

A special case of COGROUP: the GROUP operator

- Sometimes, we want to operate on a single dataset
 - This is when you use the GROUP operator

Let’s continue from Example 3:

- Assume we want to find the total revenue for each query string. This writes as:

  ```pig
  grouped_revenue = GROUP revenue BY queryString;
  query_revenue = FOREACH grouped_revenue GENERATE queryString, SUM(revenue.amount) AS totalRevenue;
  ```

- Note that `revenue.amount` refers to a projection of the nested bag in the tuples of `grouped_revenue`
Data Processing Operators

JOIN in Pig Latin

- In many cases, the typical operation on two or more datasets amounts to an equi-join
 - IMPORTANT NOTE: large datasets that are suitable to be analyzed with Pig (and MapReduce) are generally not normalized
 - JOINs are used more infrequently in Pig Latin than they are in SQL

- The syntax of a JOIN

```pig
join_result = JOIN results BY queryString, revenue BY queryString;
```

- This is a classic inner join (actually an equi join), where each match between the two relations corresponds to a row in the `join_result`
Data Processing Operators

JOIN in Pig Latin

- JOINs lend themselves to optimization opportunities
 - We will work on this in the laboratory

- Assume we join two datasets, one of which is considerably smaller than the other
 - For instance, suppose a dataset fits in memory

- Fragment replicate join
 - Syntax: append the clause `USING "replicated"` to a JOIN statement
 - Uses a distributed cache available in Hadoop
 - All mappers will have a copy of the small input
 - This is a Map-side join
Data Processing Operators

MapReduce in Pig Latin

- It is trivial to express MapReduce programs in Pig Latin
 - This is achieved using `GROUP` and `FOREACH` statements
 - A map function operates on one input tuple at a time and outputs a bag of key-value pairs
 - The reduce function operates on all values for a key at a time to produce the final result

Example

```pig
map_result = FOREACH input GENERATE FLATTEN(map(*));
key_groups = GROUP map_results BY $0;
output = FOREACH key_groups GENERATE reduce(*);
```

- where `map()` and `reduce()` are UDF
Introduction

- Pig Latin Programs are compiled into MapReduce jobs, and executed using Hadoop
- How to build a logical plan for a Pig Latin program
- How to compile the logical plan into a physical plan of MapReduce jobs
- How to avoid resource exhaustion
Building a Logical Plan

- As clients issue Pig Latin commands (interactive or batch mode)
 - The Pig interpreter parses the commands
 - Then it verifies validity of input files and bags (variables)
 - E.g.: if the command is `c = COGROUP a BY . . . , b BY . . . ;`, it verifies if `a` and `b` have already been defined

- Pig builds a **logical plan** for every bag
 - When a new bag is defined by a command, the new logical plan is a combination of the plans for the input and that of the current command
Building a Logical Plan

- No processing is carried out when constructing the logical plans
 - Processing is triggered only by \texttt{STORE} or \texttt{DUMP}
 - At that point, the logical plan is compiled to a physical plan

- \textbf{Lazy execution model}
 - Allows in-memory pipelining
 - File reordering
 - Various optimizations from the traditional RDBMS world

- \textbf{Pig is (potentially) platform independent}
 - Parsing and logical plan construction are platform oblivious
 - Only the compiler is specific to Hadoop
Building the Physical Plan

Compilation of a logical plan into a physical plan is “simple”

- MapReduce primitives allow a parallel `GROUP BY`
 - Map assigns keys for grouping
 - Reduce process a group at a time (actually in parallel)

How the compiler works

- Converts each `(CO)GROUP` command in the logical plan into distinct MapReduce jobs
- *Map function* for `(CO)GROUP` command C initially assigns keys to tuples based on the `BY` clause(s) of C
- *Reduce function* is initially a no-op
Building the Physical Plan

- **MapReduce boundary is the COGROUP command**
 - The sequence of FILTER and FOREACH from the LOAD to the first COGROUP C_1 are pushed in the Map function
 - The commands in later COGROUP commands C_i and C_{i+1} can be pushed into:
 - the Reduce function of C_i
 - the Map function of C_{i+1}
Building the Physical Plan

- Pig optimization for the physical plan
 - Among the two options outlined above, the first is preferred
 - Indeed, grouping is often followed by aggregation
 → reduces the amount of data to be materialized between jobs

- **COGROUP** command with more than one input dataset
 - Map function appends an extra field to each tuple to identify the dataset
 - Reduce function decodes this information and inserts tuple in the appropriate nested bags for each group
Building the Physical Plan

- **How parallelism is achieved**
 - For **LOAD** this is inherited by operating over HDFS
 - For **FILTER** and **FOREACH**, this is automatic thanks to MapReduce framework
 - For **(CO)GROUP** uses the **SHUFFLE** phase

- **A note on the ORDER command**
 - Translated in two MapReduce jobs
 - First job: **Samples the input** to determine quantiles of the sort key
 - Second job: Range partitions the input according to quantiles, followed by sorting in the reduce phase

- **Known overheads due to MapReduce inflexibility**
 - Data materialization between jobs
 - Multiple inputs are not supported well
Efficiency measures

- **(CO) GROUP** command place tuples of the same group in nested bags
 - Bag materialization (I/O) can be avoided
 - This is important also due to memory constraints
 - Distributive or algebraic aggregation facilitate this task

- **What is an algebraic function?**
 - Function that can be structured as a tree of sub-functions
 - Each leaf sub-function operates over a subset of the input data
 - If nodes in the tree achieve data reduction, then the system can reduce materialization
 - Examples: COUNT, SUM, MIN, MAX, AVERAGE, ...
Efficiency measures

- Pig compiler uses the **combiner** function of Hadoop
 - A special API for algebraic UDF is available

- There are cases in which **(CO) GROUP** is inefficient
 - This happens with non-algebraic functions
 - Nested bags can be spilled to disk
 - Pig provides a **disk-resident bag implementation**
 - Features external sort algorithms
 - Features duplicates elimination
Debugging
Introduction

- The process of creating Pig Latin programs is generally iterative
 - The user makes an initial stab
 - The stab is executed
 - The user inspects the output check correctness
 - If not, revise the program and repeat the process

- This iterative process can be inefficient
 - The sheer size of data volumes hinders this kind of experimentation
 - Need to create a side dataset that is a small sample of the original one

- Sampling can be problematic
 - Example: consider an equi-join on relations $A(x, y)$ and $B(x, z)$ on attribute x
 - If there are many distinct values of x, it is highly probable that a small sample of A and B will not contain matching x values
 - Empty result
Welcome Pig Pen

- **Pig comes with a debugging environment, Pig Pen**
 - It creates a side dataset automatically
 - This is done in a manner that avoids sampling problems
 - The side dataset must be tailored to the user program

- **Sandbox Dataset**
 - Takes as input a Pig Latin program P
 - This is a sequence of n commands
 - Each command consumes one or more input bags and produces one output bag
 - The output is a set of *example bags* $\{B_1, B_2, \ldots, B_n\}$
 - Each output example bag corresponds to the output of each command in P
 - The output set of example bags need to be **consistent**
 - The output of each operator needs to be that obtained with the input example bag
Properties of the Sandbox Dataset

There are three primary objectives in selecting a sandbox dataset

- **Realism**: the sandbox should be a subset of the actual dataset. If this is not possible, individual values should be the ones in the actual dataset
- **Conciseness**: the example bags should be as small as possible
- **Completeness**: the example bags should collectively illustrate the key semantics of each command

Overview of the procedure to generate the sandbox

- Take small random samples of the original data
- Synthesize additional data tuples to improve completeness
- When possible use real data values on synthetic tuples
- Apply a pruning pass to eliminate redundant example tuples and improve conciseness
Optimizations
Introduction

- Pig implements several optimizations
 - Most of them are derived from traditional works in RDBMS
 - Logical vs. Physical optimizations
Single-program Optimizations

- **Logical optimizations: query plan**
 - Early projection
 - Early filtering
 - Operator rewrites

- **Physical optimization: execution plan**
 - Mapping of logical operations to MapReduce
 - Splitting logical operations in multiple physical ones
 - Join execution strategies
Cross-program Optimizations

- Popular tables
 - Web crawls
 - Search query log

- Popular transformations
 - Eliminate spam
 - Group pages by host
 - Join web crawl with search log

- GOAL: minimize redundant work
Cross-program Optimizations

- **Concurrent work sharing**
 - Execute related Pig Latin programs together to perform common work only once
 - This is difficult to achieve: scheduling, “sharability”

- **Non-concurrent work sharing**
 - Re-use I/O or CPU work done by one program, later in time
 - This is difficult to achieve: caching, replication
Work-Sharing Techniques
Work-Sharing Techniques
Work-Sharing Techniques
References I

[1] Pig wiki.

Pig latin: A not-so-foreign language for data processing.

Hadoop, The Definitive Guide.
O’Reilly, Yahoo, 2010.