Newsvendor Model Of Capacity Sharing

Vijay G Subramanian

EECS Dept., Northwestern University

Joint work with R. Berry, M. Honig, T. Nguyen, H. Zhou & R. Vohra

11th June 2012
W-PIN 2012
Imperial College, London
Facing A Spectrum Crunch?

Spectrum much in the news at present:

• Providers complain about “spectrum crunch”
 Smartphone “clogging” networks
 Reason AT&T tried acquiring T-Mobile?

• Lot of good spectrum not used commercially

• FCC opening TV white-space
 Incentive auctions proposed

Challenge: What is a good policy solution for future?
Facing A Spectrum Crunch?

Spectrum much in the news at present:

- Providers complain about “spectrum crunch”
- Smartphones “clogging” networks
- Reason AT&T tried acquiring T-Mobile?
Facing A Spectrum Crunch?

Spectrum much in the news at present:

- Providers complain about “spectrum crunch”
 Smartphones “clogging” networks
 Reason AT&T tried acquiring T-Mobile?
- Lot of good spectrum not used commercially
Facing A Spectrum Crunch?

Spectrum much in the news at present:

- Providers complain about “spectrum crunch”
- Smartphones “clogging” networks
- Reason AT&T tried acquiring T-Mobile?
- Lot of good spectrum not used commercially
- FCC opening TV white-space
- Incentive auctions proposed
Facing A Spectrum Crunch?

Spectrum much in the news at present:

- Providers complain about “spectrum crunch”
- Smartphones “clogging” networks
- Reason AT&T tried acquiring T-Mobile?
- Lot of good spectrum not used commercially
- FCC opening TV white-space
- Incentive auctions proposed

Challenge: What is a good policy solution for future?
Possible Solutions

- Unlicensed/open access
 - “Driving” innovation\(^1\), e.g. WiFi
 - Can lead to tragedy of the commons\(^2\)

\(^1\)“The case for unlicensed spectrum” Milgrom, Levin & Eilat, Oct’11
\(^2\)“The impact of additional unlicensed spectrum on wireless services competition” Nguyen, et al., Dyspan 2011
\(^3\)NYTimes article
\(^4\)“Cooperative profit sharing in coalition-based resource allocation in wireless networks” Singh, et al., TON’12
\(^5\)“Do international roaming alliances harm consumers?” Bühler, Feb’09, working paper
Possible Solutions

• Unlicensed/open access
 “Driving” innovation1, e.g. WiFi
 Can lead to tragedy of the commons2

• Cognitive radio as answer3?
 Can improve efficiency
 Issues remain: Interference, Sensing, etc.

1“The case for unlicensed spectrum” Milgrom, Levin & Eilat, Oct’11
2“The impact of additional unlicensed spectrum on wireless services competition” Nguyen, et al., Dyspan 2011
3NYTimes article
4“Cooperative profit sharing in coalition-based resource allocation in wireless networks” Singh, et al., TON’12
5“Do international roaming alliances harm consumers?” Bühler, Feb’09, working paper
Possible Solutions

- Unlicensed/open access
 “Driving” innovation\(^1\), e.g. WiFi
 Can lead to tragedy of the commons\(^2\)

- Cognitive radio as answer\(^3\)?
 Can improve efficiency
 Issues remain: Interference, Sensing, etc.

- Cooperative operation of providers
 Can share impact of fixed costs\(^4\)
 Can lead to collusive behaviour\(^5\)

\(^1\) “The case for unlicensed spectrum” Milgrom, Levin & Eilat, Oct’11
\(^2\) “The impact of additional unlicensed spectrum on wireless services competition” Nguyen, et al., Dyspan 2011
\(^3\) NYTimes article
\(^4\) “Cooperative profit sharing in coalition-based resource allocation in wireless networks” Singh, et al., TON’12
\(^5\) “Do international roaming alliances harm consumers?” Bühler, Feb’09, working paper
Possible Solutions

• Unlicensed/open access
 “Driving” innovation\(^1\), e.g. WiFi
 Can lead to tragedy of the commons\(^2\)

• Cognitive radio as answer\(^3\)?
 Can improve efficiency
 Issues remain: Interference, Sensing, etc.

• Cooperative operation of providers
 Can share impact of fixed costs\(^4\)
 Can lead to collusive behaviour\(^5\)

• Liberal licenses to increase competition?
 Let providers re-sell/lease spectrum/assets: contracts & tariffs
 Structure contracts/mechanisms to achieve social goals
 Allow third-party scavengers to aggregate spectrum
 Flexible contracts for end-users

\(^1\) “The case for unlicensed spectrum” Milgrom, Levin & Eilat, Oct’11
\(^2\) “The impact of additional unlicensed spectrum on wireless services competition” Nguyen, et al., Dyspan 2011
\(^3\) NYTTimes article
\(^4\) “Cooperative profit sharing in coalition-based resource allocation in wireless networks” Singh, et al., TON’12
\(^5\) “Do international roaming alliances harm consumers?” Bühler, Feb’09, working paper
Normal operation
Markets operate separately
Longer-term competition for users
Roaming allows some sharing
Sharing at times of congestion?
Problem Set-up

Normal operation
Markets operate separately
Longer-term competition for users
Roaming allows some sharing

Sharing at times of congestion?

Concerns: Tacit collusion; Under investment
Normal operation

Markets operate separately
Longer-term competition for users
Roaming allows some sharing

Sharing at times of congestion?

Concerns: Tacit collusion; **Under investment**

"Since I can bank on your investment, I’ll invest less ..."
Problem Set-up

Normal operation
Markets operate separately
Longer-term competition for users
Roaming allows some sharing
Sharing at times of congestion?

Concerns: Tacit collusion; **Under investment**

“Since I can bank on your investment, I’ll invest less maybe not if I make money from your traffic?”
Sharing Scenario

- Allow sharing at times of congestion
- Demand variable
- Providers pay to transfer load
- Customers see no extra cost
Sharing Scenario

Allow sharing at times of congestion
Demand variable
Providers pay to transfer load
Customers see no extra cost

How to structure contracts?
Want to incentivize sharing
Want to serve more customers
More capacity to be provisioned
Newsvendor Model

Single firm determining inventory in face of uncertain demand

Long history in operations management
Edgeworth1888: Cash balance with withdrawals
ArrowHarrisMarschak1951: Formally developed model
Newsvendor Model

Single firm determining inventory in face of uncertain demand

Long history in operations management
Edgeworth 1888: Cash balance with withdrawals
ArrowHarrisMarschak 1951: Formally developed model

p_i: per unit reward for service, c_i: per unit cost of capacity
D_i: random demand with cdf F_i, density f_i, q_i: Amount of spectrum bought

Profit $\pi_i = p_i \mathbb{E}[\min(q_i, D_i)] - c_i q_i$
Newsvendor Model

Single firm determining inventory in face of uncertain demand

Long history in operations management
Edgeworth1888: Cash balance with withdrawals
ArrowHarrisMarschak1951: Formally developed model

\[p_i \text{: per unit reward for service, } c_i \text{: per unit cost of capacity } \]
\[D_i \text{: random demand with cdf } F_i, \text{ density } f_i, \text{ } q_i \text{: Amount of spectrum bought} \]

Profit \(\pi_i = p_i \mathbb{E}[\min(q_i, D_i)] - c_i q_i \)

Optimal purchase \(q_i^{NV} = F_i^{-1} \left(1 - \frac{c_i}{p_i} \right) \)
Application To Spectrum Sharing

Scenarios: Two providers with separate markets

- Both under or over: no sharing
- SP1 more demand, SP2 more capacity
 SP2 lets SP1’s traffic use network
 Gets $(1 - \alpha)$ fraction of revenue
- SP2 more demand, SP1 more capacity
 SP1 lets SP2’s traffic use network
 Gets $(1 - \beta)$ fraction of revenue
Application To Spectrum Sharing

Scenarios: Two providers with separate markets

- Both under or over: no sharing
- SP1 more demand, SP2 more capacity
 SP2 lets SP1’s traffic use network
 Gets \((1 - \alpha)\) fraction of revenue
- SP2 more demand, SP1 more capacity
 SP1 lets SP2’s traffic use network
 Gets \((1 - \beta)\) fraction of revenue

Set-up: Contract, prices given; spectrum bought; demands revealed
Modeled as a game with non-cooperative agents
Profits depend on other provider’s spectrum purchase
What is the equilibrium strategy?

Note: This model also applies to long-term purchase of electricity, when real-time reselling is allowed
Application To Spectrum Sharing

Scenarios: Two providers with separate markets

- Both under or over: no sharing
- SP1 more demand, SP2 more capacity
 SP2 lets SP1’s traffic use network
 Gets \((1 - \alpha)\) fraction of revenue
- SP2 more demand, SP1 more capacity
 SP1 lets SP2’s traffic use network
 Gets \((1 - \beta)\) fraction of revenue

Set-up: Contract, prices given; spectrum bought; demands revealed

Modeled as a game with non-cooperative agents

Profits depend on other provider’s spectrum purchase

What is the equilibrium strategy?

Note: This model also applies to long-term purchase of electricity, when real-time reselling is allowed
Application To Spectrum Sharing

Scenarios: Two providers with separate markets

- Both under or over: no sharing
- SP1 more demand, SP2 more capacity
 SP2 lets SP1’s traffic use network
 Gets \((1 - \alpha)\) fraction of revenue
- SP2 more demand, SP1 more capacity
 SP1 lets SP2’s traffic use network
 Gets \((1 - \beta)\) fraction of revenue
Application To Spectrum Sharing

Scenarios: Two providers with separate markets

- Both under or over: no sharing
- SP1 more demand, SP2 more capacity
 SP2 lets SP1’s traffic use network
 Gets \((1 - \alpha)\) fraction of revenue
- SP2 more demand, SP1 more capacity
 SP1 lets SP2’s traffic use network
 Gets \((1 - \beta)\) fraction of revenue

Set-up: Contract, prices given; spectrum bought; demands revealed
Modeled as a game with non-cooperative agents
Profits depend on other provider’s spectrum purchase

What is the equilibrium strategy?
Application To Spectrum Sharing

Scenarios: Two providers with separate markets

- Both under or over: no sharing
- SP1 more demand, SP2 more capacity
 SP2 lets SP1’s traffic use network
 Gets $(1 - \alpha)$ fraction of revenue
- SP2 more demand, SP1 more capacity
 SP1 lets SP2’s traffic use network
 Gets $(1 - \beta)$ fraction of revenue

Set-up: Contract, prices given; spectrum bought; demands revealed
Modeled as a game with non-cooperative agents
Profits depend on other provider’s spectrum purchase

What is the equilibrium strategy?
Note: This model also applies to long-term purchase of electricity, when real-time reselling is allowed
Model A Of Sharing

Provider prioritizes self-traffic
Remainder capacity used for competitor
Profit = Newsvendor profit + Extra

Theorem
The spectrum game outlined has a unique pure sub-game perfect equilibrium if $p_1 \geq (1 - \beta) p_2$ and $p_2 \geq (1 - \alpha) p_1$. In addition, the equilibrium can be obtained by iterating the best-response correspondences.
Model A Of Sharing

Provider prioritizes self-traffic
Remainder capacity used for competitor
Profit = Newsvendor profit + Extra

Theorem
The spectrum game outlined has a unique pure sub-game perfect equilibrium if $p_1 \geq (1 - \beta)p_2$ and $p_2 \geq (1 - \alpha)p_1$. In addition, the equilibrium can be obtained by iterating the best-response correspondences.
Model B Of Sharing

Provider treats all traffic same
Need to drop some self-traffic!
Owing to neutrality, commonly used
Profit = Newsvendor profit + Δ

\[\text{Theorem} \]

The spectrum game outlined has a unique pure sub-game perfect equilibrium if $p_1 = p_2$ and when $\alpha = \beta = 0$.

Provider gets all revenue of traffic she serves
Provider treats all traffic same
Need to drop some self-traffic!
Owing to neutrality, commonly used
Profit = Newsvendor profit + Δ

Theorem

The spectrum game outlined has a unique pure sub-game perfect equilibrium if $p_1 = p_2$ and when $\alpha = \beta = 0$.

Provider gets all revenue of traffic she serves
Numerical Examples

Set-up:

- General dependent demands
 Co-monotone, independent & counter-monotone
 Extremes approached with Frank copulas
- Model A sharing only
Numerical Examples

Set-up:

- General dependent demands
 Co-monotone, independent & counter-monotone
 Extremes approached with Frank copulas
- Model A sharing only

In all cases: **Sharing is incentive-comptabile**

Expected profit is greater than no sharing case

What about spectrum/capacity procurement?
Not just spectrum but includes infrastructure
Note: $\alpha, \beta < 0.5$, spectrum owner gets more of extra revenue
Numerical Example 1

Demands: Weibull, scale 0.5, shape 0.5, mean 1

Heavy-tailed

Heavy-tailed \Rightarrow more spectrum bought even for $\alpha > 0.5$
Numerical Example 2

Demands: Uniform $[0, 2]$, mean 1
Bounded demand

$\text{Purchased spectrum}$

Counter Monotone
Independent
Co–Monotone
No Sharing

Bounded \Rightarrow more spectrum only when $\alpha < 0.5$
Numerical Example 3

Demands:

SP1 - Uniform [0, 2], mean 1
SP2 - Weibull, scale 0.5, shape 0.5, mean 1

Asymmetric demand

Equilibrium purchase is asymmetric
Conclusions & Future Work

Well-designed sharing schemes can be beneficial
Conclusions & Future Work

Well-designed sharing schemes can be beneficial

Model A:

1. Proposition

 Co-monotone case equals no sharing.
 Therefore, sharing is incentive compatible.

2. Contract structure determines when more demand is served
Conclusions & Future Work

Well-designed sharing schemes can be beneficial

Model A:

1. **Proposition**

 Co-monotone case equals no sharing.

 Therefore, sharing is incentive compatible.

2. Contract structure determines when more demand is served

Model B:

1. *To be shown that this is incentive compatible*

2. *Types of contracts that lead to more purchase not known*
Conclusions & Future Work

Well-designed sharing schemes can be beneficial

Model A:

1. Proposition

 Co-monotone case equals no sharing.
 Therefore, sharing is incentive compatible.

2. Contract structure determines when more demand is served

Model B:

1. *To be shown that this is incentive compatible*
2. *Types of contracts that lead to more purchase not known*

Can contract also be part of decision process?
Thank You For Your Attention