Precoding of Orthogonal Space-Time Block Codes in Arbitrarily Correlated MIMO Channels: Iterative and Closed-Form Solutions

Are Hjørungnes, Member, IEEE, and David Gesbert, Member, IEEE.

Abstract

A memoryless precoder is designed for orthogonal space-time block codes (OSTBCs) for multiple-input multiple-output (MIMO) channels exhibiting joint transmit-receive correlation. Unlike most previous similar works which concentrate on transmit correlation only and pair-wise error probability (PEP) metrics, 1) the precoder is designed to minimize the \textit{exact} symbol error rate (SER) as function of the channel correlation coefficients, which are fed back to the transmitter. 2) The correlation is arbitrary as it may or may not follow the so-called \textit{Kronecker structure}. 3) The proposed method can handle general propagation settings including those arising from a cooperative macro-diversity (multi-base) scenario. We present two algorithms. The first is suboptimal, but provides a simple closed-form precoder that handles the case of uncorrelated transmitters, correlated receivers. The second is a fast-converging numerical optimization of the exact SER which covers the general case. Finally, a number of novel properties of the minimum SER precoder are derived.

Index Terms: MIMO, orthogonal space-time block code, precoder optimization, minimum exact symbol error rate, power constraint.

I. INTRODUCTION

In the area of efficient communications over non-reciprocal (different uplink and downlink transfer channels) MIMO channels, recent research [2], [3], [4], [5] has demonstrated the value of feeding back to the transmitter information about channel state observed at the receiver. Among those, there has been a growing interest in transmitter schemes that can exploit low-rate long-term statistical channel state
information in the form of antenna correlation coefficients. So far, emphasis has been on designing precoders for space-time block coded (STBC) [3] signals or spatially multiplexed streams that are adjusted based on the knowledge of the transmit correlation only while the receiving antennas are uncorrelated [4], [5], [6], [7]. These techniques are well suited to downlink situations where an elevated access point (situated above the surrounding clutter) transmits to a subscriber placed in a rich scattering environment. Although simple models exist for the joint transmit receiver correlation based on the well known Kronecker structure [3], the accuracy of these models has recently been questioned in the literature based on measurement campaigns [8]. Therefore, there is interest in investigating the precoding of OSTBC signals for MIMO channels that do not necessarily follow the Kronecker structure. The different problem of precoding for spacial multiplexed MIMO systems was treated in [7], [9], for the Kronecker channel correlation model.

An upper bound of the PEP is minimized in [4], [5] for transmit-only correlation, and for full channel correlation in [2], [10]. In [11], the exact SER expressions were derived for when there is no receiver correlation and maximum ratio combining is used at the receiver. A bound of the exact error probability was used as the optimization criterion in [11]. The no receiver correlation assumption might be an unrealistic channel model for example in uplink communications, where the access point (receiver) is equipped with several receiver antennas and where the direction of arrival has a small spread at the receiver antennas. In [12], exact SER expressions were found for uncorrelated MIMO channels that are not precoded. Exact expressions where derived for correlated Rayleigh and Ricean Fading channels without precoding in [13].

In this paper, we address the problem of linear precoding of OSTBC signals launched over a jointly transmit-receive correlated MIMO channel when the transmitter knows the correlation matrix of the MIMO channel matrix and the receiver knows the channel realization exactly. Our main contributions are:

1) We derive easy to evaluate exact expressions for the average SER for a system where the transmitter has an OSTBC followed by a full precoder matrix and where the receiver also has multiple antennas and is using maximum likelihood decoding (MLD).

2) We propose an iterative numerical technique for minimizing the exact SER with respect to the precoder matrix. This is in contrast with previous precoders based on bounds of the SER or the PEP and also do not address the arbitrary non-Kronecker correlation case.
3) Several properties of the minimum SER precoder are presented. We identify cases in which the precoder is dependent or not of the receive correlation matrix. We show the dependency is strongly related to the Kronecker model being valid or not.

4) An analytical closed-form precoder is proposed as an approximation based on the hereby proposed Equal diversity spread principle, in the particular case of cooperative diversity (also known as distributed space-time coding). This solution is also easily interpretable.

The rest of this article is organized as follows: In Section II, the precoded OSTBC system is described. Exact SER expressions are derived in Section III. Section IV presents the optimization problem and several properties of the minimum SER precoder are derived. In Section V, a closed-form solution is proposed when no transmit correlation is present. A numerical optimization algorithm for the general case is proposed in Section VI. Section VII contains simulation results and comparisons to alternative solutions. Section VIII presents the conclusions and the proofs are given in the appendices.

II. SYSTEM DESCRIPTION

A. OSTBC Signal Model

Figure 1 (a) shows the block MIMO system model with M_t and M_r transmitter and receiver antennas, respectively. The transmit symbol vector of size $K \times 1$ is denoted $\mathbf{x} = [x_0, x_1, \ldots, x_{K-1}]^T$, where $x_i \in \mathcal{A}$, where \mathcal{A} is a signal constellation set such as uniform M-PAM, M-QAM, or M-PSK, satisfying $E[|x_i|^2] = \sigma_x^2$. This vector is transmitted by means of a given OSTBC matrix $\mathbf{C}(\mathbf{x})$ of size $B \times N$, where B and N are the space and time dimension of the OSTBC, respectively. If bits are used as inputs to the system, $K \log_2 M$ bits are used to produce the vector \mathbf{x}. Since the OSTBC is orthogonal, the following holds: $\mathbf{C}(\mathbf{x})\mathbf{C}^H(\mathbf{x}) = a \sum_{i=0}^{K-1} |x_i|^2 \mathbf{I}_B$, where $a = 1$ if $\mathbf{C}(\mathbf{x}) = \mathcal{G}_2^T$, $\mathbf{C}(\mathbf{x}) = \mathcal{H}_3^T$, or $\mathbf{C}(\mathbf{x}) = \mathcal{H}_4^T$ in [14] and $a = 2$ if $\mathbf{C}(\mathbf{x}) = \mathcal{G}_3^T$ or $\mathbf{C}(\mathbf{x}) = \mathcal{G}_4^T$ in [14]. The spacial code rate of the code is K/N. The developed theory is valid for any OSTBC. A precoder \mathbf{F} of size $M_t \times B$ is applied before the signal is sent over the channel MIMO channel \mathbf{H} of size $M_r \times M_t$. There is no assumptions about the sizes of M_t and B. Here, traditional conventional beamforming is included as a special case when $B = N = K = 1$, the OSTBC is trivial, i.e., $\mathbf{C}(\mathbf{x}) = [x_0]$, and M_t transmitter antennas are used. In this special case, the precoder \mathbf{F} is a column vector of dimension $M_t \times 1$. By introducing a precoder \mathbf{F}, a framework is developed which includes conventional beamforming and full diversity OSTBC as special cases. The developed theory also allows for the possibility of choosing the precoder sizes such that $M_t < B$.

The channel is corrupted by the additive block noise V, of size $M_r \times N$, which is complex Gaussian circularly distributed with independent components having variance N_0 and zero mean. The $M_r \times N$ receive block signal Y becomes

$$Y = HFC(x) + V. \quad (1)$$

The receiver is assumed to know H and F exactly, and it performs MLD of blocks of size $M_r \times N$ to find an estimate of x denoted \hat{x}. In the case of OSTBC, the MLD reduces to a widely linear filter followed by a slicer, and this receiver has low complexity. The low-complexity advantage of implementing the block MLD is still valid even after including the linear precoder F, and this can be shown by using similar techniques as in [15].

B. Correlated Channel Models

A flat block-fading correlated Rayleigh fading channel model [3] is assumed. Let the channel H have zero mean, complex Gaussian circularly distribution with positive semi-definite autocorrelation given by $R = E[\text{vec}(H)\text{vec}^H(H)]$ of size $M_tM_r \times M_tM_r$, where the operator vec(\cdot) stacks the columns of the input matrix into a long column vector [16]. A channel realization of the correlated channel can then be found by $\text{vec}(H) = R^{1/2}\text{vec}(H_w)$, where $R^{1/2}$ is the unique positive definite matrix square root [17] of R and H_w has size $M_r \times M_t$ and is complex Gaussian circularly distributed with independent components all having unit variance and zero mean.

Kronecker model: A special case of the model above is as follows [3]

$$R = R_t^T \otimes R_r, \quad (2)$$

where the operator $(\cdot)^T$ denotes transposition, \otimes is the Kronecker product, the matrices R_r and R_t are the correlations matrices of the receiver and transmitter, respectively, and their sizes are $M_r \times M_r$ and $M_t \times M_t$. Unlike (2), the general model considers that the receive (or transmit) correlation depends on at which transmit (or receive) antenna the measurements are performed.

C. Equivalent Single-Input Single-Output Model

Let $\Phi \triangleq R^{1/2} \left[(F^*F^T) \otimes I_{M_r}\right] R^{1/2}$ be a positive semidefinite matrix of size $M_tM_r \times M_tM_r$. Define the scalar $\alpha \triangleq \|HF\|^2_F = \text{vec}^H(H_w) \Phi \text{vec}(H_w)$, where $\|\cdot\|_F$ is the Frobenius norm. By generalizing the approach given in [12], [18] to include a full complex-valued precoder F of size $M_t \times B$ and having
a full channel correlation matrix R the OSTBC system can be shown to be equivalent to a collapsed system having the following output input relationship

$$y_k' = \sqrt{\alpha} x_k + v_k'$$

for $k \in \{0, 1, \ldots, K-1\}$, and where $v_k' \sim \mathcal{CN}(0, N_0/a)$ is complex circularly distributed. This signal is fed into a memoryless MLD that is designed from the signal constellation of the source symbols A, i.e., a memoryless slicer designed for the equivalent SISO model in Figure 1 (b).

III. SER Expressions

A. SER Expressions for Given Received SNR

By considering the SISO system in Figure 1 (b), it is seen that the received SNR γ per source symbol for a particular realization of the fading is given by $\gamma \triangleq \frac{a \sigma^2 \alpha}{N_0} = \delta \alpha$, where $\delta \triangleq \frac{a \sigma^2}{N_0}$. Define the following three signal constellation dependent constants $g_{PSK} \triangleq \sin^2 \frac{\pi M}{2}$, $g_{PAM} \triangleq \frac{3}{2} \frac{M-1}{M^2-1}$, and $g_{QAM} \triangleq \frac{3}{2(M-1)}$. The symbol error probability $\text{SER}_\gamma \triangleq \Pr \{ \text{Error} | \gamma \}$ for a given γ for M-PSK, M-PAM, and M-QAM signaling are, respectively, given by [19]

$$\text{SER}_\gamma = \frac{1}{\pi} \int_0^\frac{(M-1)\pi}{M} e^{-\frac{g_{PSK}\gamma}{\sin^2(\theta)}} d\theta,$$

$$\text{SER}_\gamma = \frac{2}{\pi} \frac{M-1}{M} \int_0^\frac{\pi}{2} e^{-\frac{g_{PAM}\gamma}{\sin^2(\theta)}} d\theta,$$

$$\text{SER}_\gamma = \frac{4}{\pi} \left(1 - \frac{1}{\sqrt{M}}\right) \left[\int_0^\frac{\pi}{4} e^{-\frac{g_{QAM}\gamma}{\sin^2(\theta)}} d\theta + \int_0^\frac{\pi}{4} e^{-\frac{g_{QAM}\gamma}{\sin^2(\theta)}} d\theta \right].$$

B. Exact SER Expressions

The moment generating function of the probability density function $p(\gamma)$ is defined as $\phi(s) \triangleq \int_0^\infty p(\gamma) e^{s\gamma} d\gamma$, when γ is non-negative. Since all the K source symbols x_k go through the same SISO system in Figure 1 (b), the average SER of the MIMO system can be found as

$$\text{SER} \triangleq \Pr \{ \text{Error} \} = \int_0^\infty \Pr \{ \text{Error} | \gamma \} p(\gamma) d\gamma = \int_0^\infty \text{SER}_\gamma p(\gamma) d\gamma.$$

From the definition of α, it is seen that $\alpha = \text{vec}^H (H'_w) \Lambda \text{vec} (H'_w)$ where H'_w and H_w has the same distribution, and where the eigen-decomposition of Φ is given by $\Phi = U \Lambda U^H$. The latest expression of α, shows that α can be written as a weighted sum of the square of the absolute value of independent complex Gaussian variables. It follows from [20], that $\phi(\alpha)$ is given by: $\phi(\alpha) = \frac{1}{\prod_{i=0}^{M-1} (1-\lambda_i \alpha)}$, where
\(\lambda_i \) is eigenvalue number \(i \) of the positive semi-definite matrix \(\Phi \). Since \(\gamma = \delta \alpha \), it follows that \(\phi_\gamma(s) \) is given by:

\[
\phi_\gamma(s) = \phi_\alpha(\delta s) = \frac{1}{M_t M_r - 1} \prod_{i=0}^{M_t M_r - 1} (1 - \delta \lambda_i s).
\]

(8)

When finding the necessary conditions for the optimal precoder, eigenvalues that are not simple\(^1\) might cause difficulties in connection with calculations of derivatives. Therefore, it is useful to rewrite the SER expressions in terms of the matrix \(\Phi \). This can be done by utilizing its eigen-decomposition.

Now the exact SER will be derived for the \(M \)-PSK signaling. By using (7), the definition of \(\phi_\gamma(s) \), the result in (8), and the eigendecomposition of \(\Phi \), it is possible to express the exact SER as

\[
\text{SER} = \frac{1}{\pi} \int_0^{\frac{\pi}{M-1}} \phi_\gamma\left(-\frac{\eta_{\text{PSK}}}{\sin^2 \theta} \right) d\theta = \frac{1}{\pi} \int_0^{\frac{\pi}{M-1}} \frac{d\theta}{\det(I_{M_t M_r} + \delta \frac{\eta_{\text{PSK}}}{\sin^2 \theta} \Lambda)} = \frac{1}{\pi} \int_0^{\frac{\pi}{M-1}} \frac{d\theta}{\det(I_{M_t M_r} + \delta \frac{\eta_{\text{PSK}}}{\sin^2 \theta} \Phi)}.
\]

The derivation for the other signal constellations can be done similarly and the result is given by:

\[
\text{SER} = \frac{2}{\pi} \frac{M-1}{M} \int_0^{\frac{\pi}{2}} \frac{d\theta}{\det(I_{M_t M_r} + \delta \frac{\eta_{\text{PAM}}}{\sin^2 \theta} \Phi)};
\]

(9)

\[
\text{SER} = \frac{4}{\pi} \sqrt{M-1} \left[\frac{1}{\sqrt{M}} \int_0^{\frac{\pi}{2}} \frac{d\theta}{\det(I_{M_t M_r} + \delta \frac{\eta_{\text{QAM}}}{\sin^2 \theta} \Phi)} + \int_0^{\frac{\pi}{2}} \frac{d\theta}{\det(I_{M_t M_r} + \delta \frac{\eta_{\text{QAM}}}{\sin^2 \theta} \Phi)} \right],
\]

(11)

for \(M \)-PAM, and \(M \)-QAM, respectively. It is seen that (9) and (10) give the same result when \(M = 2 \), and this is not surprising, since the 2-PSK and 2-PAM constellations are identical. When \(M = 4 \), it can be shown that (9) and (11) return the same result. If \(R = I_{M_t M_r} \) and \(F = I_{M_t} \), then the performance expressions are reduced to the results found in [12]. If \(\delta \to 0^+ \), it is seen from (9), (10), and (11), that \(\text{SER} \to \frac{M-1}{M} \) for any precoder \(F \), which clearly is the symbol error rate for a random symbol generator.

The expressions in [13] are not as easy to evaluate as the proposed expressions since, in [13], the input signal constellation was arbitrary and then the SER expressions must be found by performing two-dimensional integrals over possibly complicated regions in the complex plane. The proposed expressions are very easy to evaluate.

\(^1\)The matrix \(\Phi \in C^{M_t M_r \times M_t M_r} \) has in general \(M_t M_r \) different non-negative eigenvalues. However, the roots of the characteristic equation, i.e., the eigenvalues need not to be distinct. The number of times an eigenvalue appears is equal to its multiplicity. If one eigenvalue appears only once, it is called a simple eigenvalue [21].
IV. PRECODING OF OSTBC SIGNALS FOR THE GENERAL CASE

A. Optimal Precoder Problem Formulation

By using the properties of OSTBCs the average power constraint on the transmitted block \(Z \triangleq FC(x)\) can be expressed as \(aK \sigma_x^2 \text{Tr}\{FF^H\} = P\), where \(P\) is the average power used by the transmitted block \(Z\).

The goal is to find the matrix \(F\) such that the exact SER is minimized under the power constraint. We propose that the optimal precoder is given by the following optimization problem:

Problem 1:

\[
\min_{\{F \in \mathbb{C}^{Mt \times B} \mid K \sigma_x^2 \text{Tr}\{FF^H\} = P\}} \text{SER}.
\]

Remark 1: In general, the optimal precoder is dependent on the value of \(N_0\) and, therefore, also on the signal to noise ratio (SNR) defined as \(\text{SNR} \triangleq 10 \log_{10} \left(\frac{P}{N_0}\right)\).

B. Upper Bound on SER and Connection to PEP

If \(\sin^2(\theta)\) is replaced with 1 in all the integrals in (9), (10), and (11), the following upper bound is found for SER for all the constellations considered:

\[
\text{SER} \leq \frac{M - 1}{M} \frac{1}{\det (I_{Mt,Mr} + \delta g \Phi)}.
\]

(12)

where \(g\) is chosen according to the signal constellation. If this upper bound of SER is minimized under the power constraint, it is seen that this is equivalent to maximizing \(\det (I_{Mt,Mr} + \delta g \Phi)\) under the power constraint. In [11], this criterion was used when there is no correlation between the receiver antennas, and the criterion is equivalent to an upper bound on PEP used in [10] for a full correlation matrix \(R\).

Interestingly, the minimum SER and the PEP based precoders will perform similarly in the very low and very high SNR range. For medium values of SNR, some gain can be achieved by using the SER based method over the PEP.

C. Properties of the Optimal Precoder

Below, we give several properties to help characterize the optimal precoder in particular situations of interest.

Lemma 1: If \(F\) is an optimal solution of Problem 1, then the precoder \(FW\), where \(W \in \mathbb{C}^{B \times B}\) is unitary, is also optimal.

The proof of this lemma can be found in Appendix I.
Proposition 1: If \(B = M_t \), then it is possible to choose the optimal precoder \(F \) Hermitian or symmetric \(^2\).

The proof of this proposition can be found in Appendix II.

Proposition 2: If \(\text{SNR} \to \infty \), \(B = M_t \), and \(R \) is non-singular, then the optimal precoder is given by the trivial identity-scaled precoder \(F = \sqrt{\frac{P}{K a M_t^2}} I_{M_t} \) for the M-PSK, M-PAM, and M-QAM constellations.

The proof of this proposition can be found in Appendix III. This comforts the information theoretic viewpoint by which channel-based transmitter optimization yields no benefit at high SNR in MIMO Rayleigh channels [22].

Remark 2: If \(R \) is singular, examples can be constructed showing that, in general, the optimal precoder \(F \) is not proportional to the identity matrix when \(\text{SNR} \to +\infty \), see Scenario 2 in Section VII.

Proposition 3: If \(M_t = B \) and \(R = I_{M_t M_r} \), then the optimal precoder is given by the trivial precoder \(F = \sqrt{\frac{P}{K a M_t^2}} I_{M_t} \) for the M-PSK, M-PAM, and M-QAM constellations.

The proof of this proposition can be found in Appendix IV. Proposition 3 shows that there is no need for precoding in the absence of any correlation. The result in Proposition 3 is also given in [11].

Proposition 4: The diversity of a system using a precoder satisfying \(\text{rank}(F) = M_t \) is \(\text{rank}(R) \).

For the proof see Appendix V.

Proposition 5: If \(R \) has full rank, then some diversity is lost by using \(B < M_t \).

For the proof see Appendix VI. In this case, this makes sense since some spatial degrees of freedom are not being excited at the transmitter.

We now give an important result, which extends one of the results given in [4].

Theorem 1: Let \(R \) satisfy (2), and let the transmitter correlation matrix have the following eigen-decomposition \(R_t = U_t \Lambda_t U_t^H \), where \(U_t \in \mathbb{C}^{M_t \times M_t} \) is unitary and \(\Lambda_t \) is diagonal of size \(M_t \times M_t \). The optimal SER precoder can be expressed as \(F = U_t \Delta \), where \(\Delta \) is a diagonal matrix of size \(M_t \times B \).

The proof of this theorem can be found in Appendix VII. According to this result, the optimal precoder is built from a singular vector transmit matrix obtained in closed form, along with a power allocation scheme. In [4], a PEP criterion is used to obtain the optimal power allocation based on a water-filling scheme. If the precoder should be implemented in hardware, the Hermitian or symmetric property of the complex precoder matrix \(F \) might be useful, since this allows for reuse of precoder coefficients.
procedure when the receiver correlation matrix was equal to the identity matrix. Theorem 1 is valid for any receiver correlation matrix in the Kronecker model and, therefore, it extends one of the main result in [4] to the SER criterion with arbitrary receiver correlation in the Kronecker model.

Note that, signaling on the eigenvectors of the transmitter correlation matrix was also used in [4], [5] for the precoder that minimizes an upper bound of the PEP when \(R_r = I_{M_r} \) was used in the Kronecker model in (2). A similar factorization result was found for maximizing the capacity with a full Kronecker model in [23]. If the full correlation matrix does not follow the Kronecker product assumption, then the transmitter correlation matrix is simply not definable. In this case, the general iterative optimization technique presented in Section VI can be applied to find the minimum SER precoder.

V. PRECODING OF OSTBC FOR ZERO TRANSMIT CORRELATION

We now focus on the case where the transmit antennas are uncorrelated, yet the receive antennas are. What is intriguing in this case is that it is not intuitively clear what role a transmit precoder can play to improve performance when there is no transmit correlation structure to be exploited. However, we give a key result here showing that precoding will help simply in all cases where the Kronecker assumption (2) does not hold, a key example of which is addressed below.

A. Distributed Space-Time Coding

In distributed (or cooperative) space-time coding [24], [25], the code word is transmitted from antennas belonging to distinct access points, toward the users. Thus, the transmitter antennas are widely separated and typically experience different channel correlation at the same receiving array, see Figure 2.

If only receiver correlation is present, the total correlation matrix can be expressed as

\[
R = \begin{bmatrix}
R_{r_0} & 0_{M_r \times M_r} & \cdots & 0_{M_r \times M_r} \\
0_{M_r \times M_r} & R_{r_1} & \cdots & 0_{M_r \times M_r} \\
\vdots & \vdots & \ddots & \vdots \\
0_{M_r \times M_r} & 0_{M_r \times M_r} & \cdots & R_{r_{M_t-1}}
\end{bmatrix},
\]

(13)

where \(R_{r_i} \) is the receive correlation matrix "seen" from transmitter number \(i \) and the matrix \(0_{k \times l} \) of size \(k \times l \), contains only zeroes.

We now proceed to prove two key results. First, two theorems are formulated, then interpretations are given.
Theorem 2: Let $B = M_t$. If (13) holds, the optimal F can be chosen diagonal with real and non-negative diagonal elements.

The proof of this theorem can be found in Appendix VIII.

Theorem 3: Let $B = M_t$ and let R satisfy (13) with $R_{r_i} = R_r$ for all $i \in \{0, 1, \ldots, M_t - 1\}$. This is the same as using $R_t = I_{M_t}$ in (2). Then the optimal precoder is independent of the receiver correlation matrix R_r and the precoder is given by $F = \sqrt{\frac{P}{K\alpha^2\sigma^2}} I_{M_t}$.

The proof of this theorem can be found in Appendix IX.

Interpretations: Theorem 2 tells us that despite the lack of transmitter correlation, a transmit precoder makes sense whenever the Kronecker structure for the overall correlation matrix does not hold, a practical case of which is seen in cooperative/distributed OSTBC. It also tells us that precoding takes the form of power allocation across the transmit antennas. In the next subsection, we propose a closed form approach to derive the power weights. Theorem 3 indicates that if the Kronecker structure holds (in addition to having uncorrelated transmitters, correlated receivers), then the precoder has no useful impact.

B. Solution for a Closed-Form Precoder

In this subsection, we derive a method to obtain a closed-form expression for the precoder in the particular case when the transmit antennas are uncorrelated but the receive antennas are not, i.e., R satisfies (13). From Theorem 2, the optimal precoder boils down to a diagonal precoder, i.e., the precoder amounts to a power allocation strategy. For the sake of space, we limit ourselves to the case of two transmitters. We also assume the two transmitters experience the same average path loss to the receiver. Generalizations to $M_t > 2$ and unequal path loss cases are addressed in a separate paper [26]. The number of receive antenna remains arbitrary. We also take the following normalization: $\frac{P}{\alpha K\sigma^2} = 1$. For the diagonal 2×2 precoder F to satisfy the power constraint, it follows that $f_0^2 + f_1^2 = 1$, where $f_i \triangleq (F)_{i,i}$.

1) Equivalent SISO Channel Formulation: Let $H = [h_0, \ h_1]$ and $R_{r_i} = E[h_i h_i^H]$ have the following eigen-decomposition: $R_{r_i} = V_{r_i} \Lambda_{r_i} V_{r_i}^H$. From $\text{vec} (H) = R^{1/2} \text{vec} (H_w)$, it follows that $h_i = R_{r_i}^{1/2} h_{w_i}$, where h_{w_i} is an $M_t \times 1$ vector containing zero-mean complex Gaussian i.i.d. components. From the equivalent SISO model in (3), it is seen that all the K original symbols are going through the same SISO system. From the definitions of Φ and α, it is seen that α, in the equivalent SISO model, can be expressed as:
\[\alpha = f_0^2 \| h_0 \|^2 + f_1^2 \| h_1 \|^2 = f_0^2 \sum_{j=0}^{M_r-1} \lambda_{r_0j} |h'_{w_{0j}}|^2 + f_1^2 \sum_{j=0}^{M_r-1} \lambda_{r_1j} |h'_{w_{1j}}|^2, \]
\tag{14} \]

where the variable \(h'_{w_{0j}} \) is the \(j \)th component of the vector \(V_H^r h_{w_i} \). Since \(V_H^r \) is unitary, each of the variables \(h'_{w_{0j}} \) has the same distribution as the variables \(h_{w_{0j}} \equiv (h_{w_i})_j \).

2) Equal Diversity Spread Principle: In this subsection, we examine the expression for \(\alpha \) and propose a simple framework coined equal diversity spreading that allows us to determine the power weights \(f_0 \) and \(f_1 \) in closed form, thus serving as a practical alternative to the numerical-based optimization of the symbol error rate. Note that, we do not claim optimality of the approach below in terms of error rate, although we do conjecture the obtained coefficients are close to optimal, which is confirmed by our simulations later.

From (14), \(\alpha \) is a sum of \(2M_r \) uncorrelated diversity branches \(h'_{w_{0j}} \) weighted by \(f_i^2 \lambda_{r_{ij}} \). According to our proposed principle, we make these weights as similar to each other as possible in order to spread the symbol energy evenly across all diversity branches. This translates simply into a minimum variance problem.

Interestingly, the mean \(m \) of the weighing factors \(f_i^2 \lambda_{r_{ij}} \) is constant, given by

\[
m = \frac{1}{2M_r} \sum_{i=0}^{1} \sum_{j=0}^{M_r-1} f_i^2 \lambda_{r_{ij}} = \frac{f_0^2}{2M_r} \sum_{j=0}^{M_r-1} \lambda_{r_0j} + \frac{f_1^2}{2M_r} \sum_{j=0}^{M_r-1} \lambda_{r_1j} = \frac{1}{2M_r} (f_0^2 M_r + f_1^2 M_r) = \frac{1}{2},
\]

where it is assumed that \(\text{Tr} \{ R_{r_i} \} = M_r \; \forall \; i \). The weights are now obtained from minimizing the variance (under mean constraint):

Problem 2:

\[
\min \left\{ f_0, f_1 \geq 0 \mid f_0^2 + f_1^2 = 1 \right\} \sum_{i=0}^{1} \sum_{j=0}^{M_r-1} \left(f_i^2 \lambda_{r_{ij}} - \frac{1}{2} \right)^2.
\]

Fortunately, this problem admits a simple closed-form solution which is detailed in the theorem below.

Theorem 4: We parametrize the precoder according to \(f_0 = \cos(\beta) \) and \(f_1 = \sin(\beta) \), where \(\beta \) is arbitrary in \([0, \frac{\pi}{2}]\). The solution to Problem 2 is given in terms of \(\beta \) by:

\[
\tan \beta = \sqrt{\frac{\sum_{j=0}^{M_r-1} \lambda_{r_0j}^2}{\sum_{j=0}^{M_r-1} \lambda_{r_1j}^2}}.
\]

(15)

The proof of this theorem can be found in Appendix X.

Interpretations: Theorem 4 can be interpreted as follows: The power allocation scheme above assigns more power on the transmit branch experiencing less receiver correlation and less power on the other one.
However, note that, this is not a water-filling strategy (unlike [4]) the power levels are always strictly bounded away from zero.

Interestingly, it can be shown that the principle above, beyond simple intuition, bears close connection to symbol error rate optimization and thus can be formally justified [26].

We now examine two scenario examples of application of this result.

Example 1 (Precoding for Kronecker Correlation): We can make the model used in (13) a Kronecker one by setting $R_{r_0} = R_{r_1}$, in which case the eigenvalues are characterized by $\lambda_{r_0 j} = \lambda_{r_1 j}$ which according to (15) yields $f^2_0 = f^2_1 = \frac{1}{2}$. In other words, if the transmit antennas are uncorrelated and the receive antenna are correlated but in a way that is independent of which transmit antenna is taken, then the best strategy is to pour power equally across the transmit antennas, which makes good intuitive sense. It means that the fact that the receive antennas are correlated when the transmitter antennas are uncorrelated, cannot be compensated for at the transmitter through precoding of the OSTBC signals in the Kronecker case.

Example 2 (Precoding for Non-Kronecker Correlation): Consider the distributed space-time coding of signals with $M_t = 2$ with the case where the two transmit antennas see two widely different receive correlation matrices. Transmit antenna number 0 sees an uncorrelated receiver $R_{r_0} = I_{M_r}$. This corresponds to a link with M_r orders of diversity with a wide angle spread in the direction of arrival. While antenna number 1 sees a fully correlated receiver $R_{r_1} = 1_{M_r \times M_r}$, where the matrix $1_{M_r \times M_r}$ contains only ones and has size $M_r \times M_r$. Hence, transmit link from transmitter antenna number 1 corresponds to a link with no receive diversity, due to, e.g., a small angle spread in the direction of arrival, see Figure 2. However, the overall MIMO channel still exhibits transmit diversity of order two.

In this example, $\lambda_{r_0 i} = 1$ \forall $i \in \{0, 1, \ldots, M_r - 1\}$ and $\lambda_{r_1 i} = M_r$ and $\lambda_{r_1 i} = 0$ \forall $i \in \{1, \ldots, M_r - 1\}$. Theorem 4 yields directly $\tan \theta = \sqrt{\frac{1}{M_r}}$, thus, $f^2_0 = \frac{M_r}{M_r + 1}$ and $f^2_1 = \frac{1}{M_r + 1}$. Interestingly, this result is reminiscent of the classical water-filling result in information theory. Here, the channel quality is measured in terms of receive diversity order instead of average SNR. Hence, more power is poured into the transmit channel that exhibits more diversity and less into the other transmit channel.
VI. OPTIMIZATION ALGORITHM FOR GENERAL CORRELATION CASE

We now return to general case of arbitrary joint transmit-receive correlation, where a closed-form precoder is difficult to derive. Instead, we focus on a fast-converging numerical algorithm for the SER minimization problem.

Let $K_{k,l}$ be the commutation matrix [16] of size $kl \times kl$. The constrained maximization Problem 1 can be converted into an unconstrained optimization problem by introducing a Lagrange multiplier μ':

$$\mathcal{L}(F) = \text{SER} + \mu' \text{Tr}\left\{FF^H\right\}.$$ \hfill (16)

Since the objective function should be minimized, $\mu' > 0$. Define the $M_t^2 \times M_t^2$ matrix Π as

$$\Pi = \left[I_{M_t^2} \otimes \vec{(I_{M_r})}\right] \left[I_{M_t} \otimes K_{M_t,M_r} \otimes I_{M_r}\right].$$ \hfill (17)

In order to present the results compactly, define the following $BM_t \times 1$ vector $s(F, \theta, g, \mu)$:

$$s(F, \theta, g, \mu) = \mu \left[FF^T \otimes I_{M_t}\right] \Pi \left[R^{1/2} \otimes \left(R^{1/2}\right)^*\right] \frac{\vec{\left[I_{M_t,M_r} + \delta \frac{g}{\sin^2(\theta)\Phi}\right]}^{-1}}{\sin^2(\theta) \det\left(I_{M_t,M_r} + \delta \frac{g}{\sin^2(\theta)\Phi}\right)}.$$ \hfill (18)

Theorem 5: The precoder that is optimal for Problem 1 must satisfy:

$$\vec{F} = \int_{0}^{\frac{\pi}{M}} s(F, \theta, g_{PSK}, \mu) d\theta,$$ \hfill (19)

$$\vec{F} = \int_{0}^{\frac{\pi}{2}} s(F, \theta, g_{PAM}, \mu) d\theta,$$ \hfill (20)

$$\vec{F} = \frac{1}{\sqrt{M}} \int_{0}^{\frac{\pi}{4}} s(F, \theta, g_{QAM}, \mu) d\theta + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} s(F, \theta, g_{QAM}, \mu) d\theta.$$ \hfill (21)

for the M-PSK, M-PAM, and M-QAM constellations, respectively. μ is a positive scalar chosen such that the power constraint in Problem 1 is satisfied.

The proof of this theorem can be found in Appendix XI.

(19), (20), and (21) can be used in a fixed point iteration for finding the precoder that solves Problem 1. A description of way of minimizing the SER with respect to the precoder is summarized with pseudo-code in Table I. Notice that, the positive constants μ' and μ are in general different. When the fixed point iterations were used to find solutions, convergence was always observed.

3The commutation matrix $K_{k,l}$ is the unique $kl \times kl$ permutation matrix satisfying $K_{k,l} \vec{(A)} = \vec{(A^T)}$ for all matrices $A \in \mathbb{C}^{k \times l}$.
VII. RESULTS AND COMPARISONS

Comparisons are made against a system using trivial precoding, i.e., \(\mathbf{F} = \sqrt{\frac{P}{K_{\text{total}} M_t}} \mathbf{I}_{M_t} \) and the system minimizing an upper bound of the PEP [10]. In the simulations, \(\sigma_x^2 = 1/2 \), \(P = 1 \), and \(M_r = 6 \). All figures show the results obtained by the exact SER expressions proposed in this article.

Scenario 1: The following parameters are used in Scenario 1: The signal constellation was 8-PAM. The OSTBC \(\mathbf{C}(x) = \mathbf{G}_1^T \) in [14] was used, such that \(a = 2 \), \(K = M_t = B = 4 \), and \(N = 8 \). Let the correlation matrix \(\mathbf{R} \) be given by \((R)_{k,l} = 0.9^{|k-l|} \), where the notation \((\cdot)_{k,l} \) picks out element with row number \(k \) and column number \(l \).

Scenario 2: The OSTBC \(\mathbf{C}(x) = \mathbf{G}_2^T \) in [14] was used, such that \(a = 1 \) and \(K = M_t = B = N = 2 \). Let the correlation matrix \(\mathbf{R} \) be given by (13) with \(M_t = 2 \), \(\mathbf{R}_{r_0} = \mathbf{I}_{M_r} \), and \(\mathbf{R}_{r_1} = \mathbf{I}_{M_r \times M_r} \). 9-QAM was used.

Scenario 3: The OSTBC \(\mathbf{C}(x) = \mathbf{G}_4^T \) in [14] was used, such that \(a = 2 \), \(K = M_t = B = 4 \), and \(N = 8 \). Let the correlation matrix \(\mathbf{R} \) be given by (2) with \((R_t)_{k,l} = 0.5^{|k-l|} \) and \((R_r)_{k,l} = \rho^{|k-l|} \), where \(\rho \) is a scalar. In [4], [5], the optimization criterion used was an upper bound of the pairwise error probability when the Kronecker model is valid with \(\mathbf{R}_r = \mathbf{I}_{M_r} \). If the notation used in this article is used the criterion used in [4], [5] can be written as \(\det \left(\mathbf{I}_{M_t} + \delta g \mathbf{R}_t^{1/2} \mathbf{F} \mathbf{F}^H \mathbf{R}_t^{1/2} \right) \). In [10], this criterion was extended to any \(\mathbf{R} \), and it is equivalent to maximizing \(\det \left(\mathbf{I}_{M_t M_r} + \delta g \mathbf{P} \right) \). Let SNR = 10 dB and 9-QAM constellation was used.

Figures 3 and 4 show the SER versus SNR performance for Scenario 1 and 2, respectively, for the trivial precoder, the minimum upper bound PEP precoder [10], and the proposed minimum SER precoder in Theorem 5. For Scenario 2, the analytical precoder in Theorem 4 is also shown. From Figure 3, it is seen that the proposed minimum SER precoder outperforms the trivial precoder system systems for all values of SNR, however, the performance of the proposed system is similar to the minimum PEP precoder for low and high values of SNR. For moderate values of SNR, a gain up to 0.13 dB can be achieved, as seen from magnified version of the results within Figure 3. In Figure 4, the performance of the minimum SER, PEP and the precoder in Theorem 4 are indistinguishable in this example, and the performance of these three precoders are up to 1 dB better than the trivial precoder.

Figure 6 shows the SER versus SNR performance for Scenario 3 when \(\rho = 1 \). It is that for SNR = 10 dB, the results in Figures 5 and 6 agree. It is also seen that the performance of the proposed precoder
and the precoder based on the PEP criterion [10] perform very similar for all values of SNR. Furthermore, it is seen that the trivial precoder performs well for high values of SNR and this is in agreement with Proposition 2.

In Figure 5, the SER versus ρ performance of the systems are shown for Scenario 3. The proposed minimum SER precoder performs best, however, the maximum determinant precoder in [10] performs very close to the minimum SER coder. It is observed from Figure 5, that when the $R = 1_{M_r \times M_r}$, i.e., $\rho = 1$, then the trivial precoder performs better than the precoder in [4], [5] which was designed based on the transmitter correlation only.

Monte Carlo simulations verify the exact theoretical SER expressions, but the Monte Carlo simulations are not shown in the figures.

VIII. CONCLUSIONS

For an arbitrary given OSTBC, exact SER expressions, which are easy to evaluate, have been derived for a precoded MIMO system with arbitrary joint correlations in the transmitter and the receiver, for a ML receiver. Several key properties of the optimal precoder were derived. In particular, we show that receive correlation has an impact on precoding in general, to the sole exception of the case with zero transmit correlation and Kronecker-based receiver correlation. In the special case of cooperative diversity with two transmitters, we present a closed-form precoder which approximates well the optimal precoder. In the general case, an iterative method was proposed for finding the minimum SER precoder for M-PSK, M-PAM, and M-QAM signaling.

APPENDIX I

PROOF OF LEMMA 1

Proof: Let F be an optimal solution of Problem 1 and $W \in \mathbb{C}^{B \times B}$ be an arbitrary unitary matrix. It is then seen by insertion of FW as the precoder that the objective function and the power constraint are unaltered by the unitary matrix.

APPENDIX II

PROOF OF PROPOSITION 1

Proof: Let $B = M_t$ and assume that the singular value decomposition of the optimal precoder can be expressed as: $F = V_0 \Sigma V_1^H$, where $V_i \in \mathbb{C}^{M_t \times M_t}$ is unitary and the $M_t \times M_t$ matrix Σ contains
the (non-negative) singular values of the precoder on its main diagonal and zeros elsewhere. It follows from Lemma 1, that the precoder $FV_1V_0^H = V_0\Sigma V_0^H$ is also optimal. But this precoder is Hermitian. Symmetry follows in a similar way since $FV_1V_0^T = V_0\Sigma V_0^T$ is also optimal and symmetric.

APPENDIX III

PROOF OF PROPOSITION 2

Proof: Let $\text{SNR} = P/N_0 \rightarrow \infty$. By studying the expressions for SER in (9), (10), and (11), it follows that the identity matrices inside the determinants in these equations can be eliminated if R is non-singular. Then, the problem can be rewritten as finding the maximum of $\det(\Phi)$ under the power constraint. This problem is again equivalent to maximize $\det(FF^H)$ subject to $\text{Tr}\{FF^H\} = \frac{P}{aK\sigma_x^2}$. By using Hadamard’s inequality in Theorem 11.18 in [16], it is seen that the objective function is maximized when FF^H is diagonal. Then it follows from the theorem of the arithmetic and geometric means, see for example Theorem 11.3 in [16], that the solution of this problem is the trivial precoder.

APPENDIX IV

PROOF OF PROPOSITION 3

Proof: Let $FF^H = U_{FF^H} \Lambda_{FF^H} U_{FF^H}^H$ be the eigen-decomposition of FF^H. Observe that $R = I_{MtMr} = I_{Mt} \otimes I_{Mr}$. For M-PAM and M-PSK signal constellations, the optimization problem can be formulated as to find the minimum of

$$
\int_{\theta_{\min}}^{\theta_{\max}} \frac{d\theta}{\det(I_{Mt} \otimes I_{Mr} + \frac{\delta g}{\sin^2 \theta} (F^*F^T) \otimes I_{Mr})} = \int_{\theta_{\min}}^{\theta_{\max}} \frac{d\theta}{\det(I_{Mt}^H + \frac{\delta g}{\sin^2 \theta} \Lambda_{FF^H}^F)}
$$

under the constraint that $\|F\|_F^2 = \frac{P}{K\sigma_x^2} = \text{Tr}\{A_{FF^H}\}$. This is a symmetrical problems where all the independent variables can be interchanged without altering the objective function and the constraint. For this reason, in the optimum, all independent variables will be equal in the optimum point. Because of the power constraint, the optimal solution can be written as: $FF^H = \frac{P}{K\sigma_x^2Mt} I_{Mt}$, and then the results follows from Lemma 1 for M-PSK and M-PAM signaling. For M-QAM signaling a similar proof can be given with the only difference that the objective function has two integrals with similar form.

APPENDIX V

PROOF OF PROPOSITION 4

Proof: Let $\text{rank}(R) = d$, and let the eigen-decomposition of R be given by:
$$
R = \mathbf{U} \mathbf{A} \mathbf{U}^H = \begin{bmatrix} \mathbf{U}_+ & \mathbf{U}_0 \end{bmatrix} \begin{bmatrix} \mathbf{\Lambda}_+ & \mathbf{0}_{d \times (M_r M_t - d)} \\ \mathbf{0}_{(M_t M_r - d) \times d} & \mathbf{0}_{(M_t M_r - d) \times (M_t M_r - d)} \end{bmatrix} \begin{bmatrix} \mathbf{U}_+^H \\ \mathbf{U}_0 \end{bmatrix},$$
\number{23}
where \(\mathbf{\Lambda}_+ \) of size \(d \times d \), contains the positive eigenvalues of \(\mathbf{R} \), the \(M_t M_r \times d \) matrix \(\mathbf{U}_+ \) contains the normalized eigenvectors corresponding to the positive eigenvalues, and \(\mathbf{U}_0 \) of size \(M_t M_r \times (M_t M_r - d) \), contains the normalized eigenvectors corresponding to the eigenvalue 0. The eigen-decomposition of \(\mathbf{R}^{1/2} \) follows from (23), and with this, the integral inside the SER expression can be written as

$$
\int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \frac{d\theta}{\det \left(\mathbf{I}_{M_t M_r} + \frac{\delta g}{\sin^2 \theta} \mathbf{R}^{1/2} \left[(\mathbf{F}^* \mathbf{F}^T) \otimes \mathbf{I}_{M_r} \right] \mathbf{R}^{1/2} \right)} = \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \frac{d\theta}{\det \left(\mathbf{I}_{d} + \frac{\delta g}{\sin^2 \theta} \left[\mathbf{\Lambda}_+^{1/2} \mathbf{0}_{d \times (M_t M_r - d)} \right] \mathbf{U}^H \left[(\mathbf{F}^* \mathbf{F}^T) \otimes \mathbf{I}_{M_r} \right] \mathbf{U} \left[\mathbf{\Lambda}_+^{1/2} \mathbf{0}_{(M_t M_r - d) \times d} \right] \right)}.
\number{24}
$$

The diversity is found by letting \(\text{SNR} \to +\infty \). This implies that in the matrix sum within the determinant of (24), the identity matrix can be eliminated and (24) approaches:

$$
\int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \frac{d\theta}{\det \left(\frac{\delta g}{\sin^2 \theta} \left[\mathbf{\Lambda}_+^{1/2} \mathbf{0}_{d \times (M_t M_r - d)} \right] \mathbf{U}^H \left[(\mathbf{F}^* \mathbf{F}^T) \otimes \mathbf{I}_{M_r} \right] \mathbf{U} \left[\mathbf{\Lambda}_+^{1/2} \mathbf{0}_{(M_t M_r - d) \times d} \right] \right)} = \delta^{-d} \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \frac{d\theta}{\sin^{2d} \theta} = \delta^{-d} \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \frac{d\theta}{\sin^{2d} \theta},
\number{25}
$$

which shows that \(\text{SNR} \) is proportional with \(\delta^{-d} \). This means that the diversity of the system with a precoder satisfying \(\text{rank} \left(\mathbf{F}^* \mathbf{F}^T \right) = \text{rank} \left(\mathbf{F} \right) = M_t \) is \(d = \text{rank} \left(\mathbf{R} \right) \).

Remark 3: The expression in (25) gives an asymptotic expression for the SER for large values of SNR and it shows how SER depends on the correlation matrix \(\mathbf{R} \) through \(\mathbf{U} \) and \(\mathbf{\Lambda}_+^{1/2} \) for high values of SNR. (25) can be used to find the explicit dependency of SER on the transmitter and receiver correlation matrix in the Kronecker model (2) for high SNR values. For full ranked matrices \(\mathbf{R} \), the asymptotic expression in (25) can be simplified.

Appendix VI

Proof of Proposition 5

Proof: If \(B < M_t \), then \(\text{rank} \left(\mathbf{F} \right) = \text{rank} \left(\mathbf{F}^* \mathbf{F}^T \right) \leq B < M_t \). This means that \(\text{rank} \left(\mathbf{\Phi} \right) = M_r \text{rank} \left(\mathbf{F}^* \mathbf{F}^T \right) < M_t M_t \), and, therefore, diversity is lost in comparison the case where \(B = M_t \).
APPENDIX VII

PROOF OF THEOREM 1

First, a lemma is derived to help deriving the main result.

Lemma 2: Let $A(\theta) \in \mathbb{C}^{N \times N}$ be a positive definite matrix for all $\theta \in [\theta_{\text{min}}, \theta_{\text{max}}]$, and let the operator $d g : \mathbb{C}^{N \times N} \rightarrow \mathbb{C}^{N \times N}$ return the matrix with zero off-diagonal elements and with the same diagonal elements as the matrix it is applied to. Then the following inequality holds:

$$\int_{\theta_{\text{min}}}^{\theta_{\text{max}}} d\theta \det (A(\theta)) \geq \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} d\theta \det (d g (A(\theta))),$$

(26)

with equality if and only if $A(\theta)$ is diagonal for all $\theta \in [\theta_{\text{min}}, \theta_{\text{max}}]$.

Proof: Since $A(\theta)$ is positive definite, it follows from Theorem 1.28 in [16] that

$$\det (A(\theta)) \leq \det (d g (A(\theta))),$$

(27)

for all $\theta \in [\theta_{\text{min}}, \theta_{\text{max}}]$ and with equality if and only if $A(\theta)$ is diagonal. Since $A(\theta)$ is positive definite, (27) is equivalent to

$$\frac{1}{\det (A(\theta))} \geq \frac{1}{\det (d g (A(\theta)))},$$

(28)

for all $\theta \in [\theta_{\text{min}}, \theta_{\text{max}}]$ and equality is achieved if and only if $A(\theta)$ is a diagonal matrix. Since (28) is valid for all $\theta \in [\theta_{\text{min}}, \theta_{\text{max}}]$, it follows by considering integrals as a sum, that (26) holds. If $A(\theta)$ is diagonal for all $\theta \in [\theta_{\text{min}}, \theta_{\text{max}}]$, it follows from Theorem 1.28 in [16] that (26) holds with equality. Assume now that (26) holds with equality. From (28), it follows that one of the integrands are always less than or equal to the other integrand for all values of θ. Then, the only way the two integrals can be equal is that the integrands are equal for all values of $\theta \in [\theta_{\text{min}}, \theta_{\text{max}}]$.

Proof: Let the receiver correlation matrix have the following eigen-decomposition: $R_r = U_r \Lambda_r U_r^H$, where $U_r \in \mathbb{C}^{M_r \times M_r}$ is unitary and and Λ_r is diagonal of size $M_r \times M_r$. The integral in the SER, using R from (2), can be rewritten as:

$$\int_{\theta_{\text{min}}}^{\theta_{\text{max}}} d\theta \det \left(I_{M_tM_r} + \frac{\delta g}{\sin^2 \theta} \Phi \right) = \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} d\theta \det \left(I_{M_tM_r} + \frac{\delta g}{\sin^2 \theta} \left[\Lambda_t^{1/2} U_t^T F^* F^T U_t^* \Lambda_t^{1/2} \right] \otimes \Lambda_r \right).$$

(29)

Using Lemma 2, it is seen that the SER is minimized if and only if $\Lambda_t^{1/2} U_t^T F^* F^T U_t^* \Lambda_t^{1/2}$ is diagonal. Therefore, it follows that there is no loss of optimality to restrict $F^* F^T$ to the following form

$$F^* F^T = U_t^* D U_t^T,$$

(30)

where D is a diagonal $M_t \times M_t$ matrix. Since F is of size $M_t \times B$ is satisfying (30), it is seen that the theorem follows with $(\Delta)_{i,i} = \sqrt{(D)_{i,i}}$.

\[\blacksquare\]
APPENDIX VIII

PROOF OF THEOREM 2

We need a lemma to establish the proof below. First, let the eigenvalue decomposition of R_{r_i} be given by $R_{r_i} = V_r A_{r_i} V_r^H$, where $V_r \in \mathbb{C}^{M_r \times M_r}$ is unitary and $A_{r_i} \in \mathbb{R}^{M_r \times M_r}$ is diagonal with non-negative diagonal elements. It follows that the eigenvalue decomposition of $R = V_R A_R V_R^H$ is given by the matrices

$$V_R = \begin{bmatrix} V_{r_0} & 0_{M_r \times M_r} & \cdots & 0_{M_r \times M_r} \\ 0_{M_r \times M_r} & V_{r_1} & \cdots & 0_{M_r \times M_r} \\ \vdots & \vdots & \ddots & \vdots \\ 0_{M_r \times M_r} & 0_{M_r \times M_r} & \cdots & V_{r_{M_r-1}} \end{bmatrix}, \quad A_R = \begin{bmatrix} A_{r_0} & 0_{M_r \times M_r} & \cdots & 0_{M_r \times M_r} \\ 0_{M_r \times M_r} & A_{r_1} & \cdots & 0_{M_r \times M_r} \\ \vdots & \vdots & \ddots & \vdots \\ 0_{M_r \times M_r} & 0_{M_r \times M_r} & \cdots & A_{r_{M_r-1}} \end{bmatrix}. \quad (31)$$

Lemma 3: Let the correlation matrix R satisfy (13) and let $W \in \mathbb{C}^{M_t \times M_r}$. The matrix given by

$$B = \frac{\delta g}{\sin^2 \theta} A_R^{1/2} V_R^H [W \otimes I_{M_r}] V_R A_R^{1/2}$$

is diagonal if and only if W is diagonal.

Proof: Block element number (k, l) of size $M_r \times M_r$ of B is given by $rac{\delta g}{\sin^2 \theta} A_R^{1/2} V_r A_{r_k}^{1/2} A_{r_l}^{1/2}$. From this expression it is seen that B is diagonal if and only if W is diagonal.

The SER objective function that should be minimized is proportional to:

$$\int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \frac{d\theta}{\det \left(I_{M_r M_r} + \frac{\delta g}{\sin^2 \theta} A_R^{1/2} V_R^H [(F^* F^T) \otimes I_{M_r}] V_R A_R^{1/2} \right)}.$$ \quad (32)

By using (32) together with Lemmas 3 and 2, it follows that that SER is minimized under the power constraint if and only if $F^* F^T$ is diagonal. Hence, from Lemma 1, it follows that F can be chosen diagonally without loss of optimality. From the expressions for SER and the power constraint, it is seen that without loss of optimality, the diagonal elements of F can be chosen real and non-negative.

APPENDIX IX

PROOF OF THEOREM 3

The correlation matrix is given by (13) with equal block diagonal element matrices. Let $R_r = V_r A_r V_r^H$. From Theorem 2, it follows that F can be chosen diagonal without loss of optimality. By inserting a diagonal $F^* F^T$ into (32), the goal is to minimize:

$$\int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \frac{d\theta}{\prod_{i=0}^{M_t-1} \det \left(I_{M_r} + \frac{\delta g}{\sin^2 \theta} (F^* F^T)_{i,i} A_r \right)},$$ \quad (33)

subject to the power constraint $\text{Tr} \left\{ F^* F^T \right\} = P / (Ka\sigma_x^2)$. This is a symmetrical optimization problem in the unknown diagonal elements of the precoder F, it follows that all the diagonal elements of F should be made equal and then the theorem follows from the power constraint.
APPENDIX X

PROOF OF THEOREM 4

Proof: We rewrite the cost function in Problem 2 in terms of β (unconstrained):

$$J(\beta) = \sum_{j=0}^{M_r-1} \left[\left(\cos^2(\beta) \lambda_{r_0j} - \frac{1}{2} \right)^2 + \left(\sin^2(\beta) \lambda_{r_1j} - \frac{1}{2} \right)^2 \right]. \quad (34)$$

The minimum is reached when $\frac{\partial J}{\partial \beta} = 0$. By eliminating false uninteresting extremal points, we find:

$$\sum_{j=0}^{M_r-1} \left(\cos^2(\beta) \lambda_{r_0j} - \frac{1}{2} \right) \lambda_{r_0j} = \sum_{j=0}^{M_r-1} \left(\sin^2(\beta) \lambda_{r_1j} - \frac{1}{2} \right) \lambda_{r_1j},$$

which, knowing $\sum_{j=0}^{M_r-1} \lambda_{r_0j} = \sum_{j=0}^{M_r-1} \lambda_{r_1j} = M_r$, gives the result in (15). Since the right hand side of (15) is positive and the function $\tan(\cdot)$ is periodic with period π, it is enough to consider $\beta \in \left[0, \frac{\pi}{2}\right]$.

APPENDIX XI

PROOF OF THEOREM 5

Proof: The necessary condition for the optimality of Problem 1 is found by setting the derivative of the Lagrangian in (16) with respect to $\text{vec}(F^*)$ equal to zero. Finding the derivative with respect to the complex valued vector $\text{vec}(F^*)$ can be done by generalizing the works in [16], [27]. The following two expressions, which are found after several matrix manipulations, are useful:

$$\frac{\partial}{\partial \text{vec}(F^*)} \text{Tr}\left\{ F F^H \right\} = \text{vec}(F), \quad (35)$$

$$\frac{\partial}{\partial \text{vec}(F^*)} \int_{\theta_{\min}}^{\theta_{\max}} \frac{d\theta}{\det(I_{M_t M_r} + \frac{\delta g}{\sin^2 \theta} \Phi)} = - \delta g [F^T \otimes I_{M_t}] \Pi \left[R^{1/2} \otimes \left(R^{1/2} \right)^* \right]$$

$$\times \int_{\theta_{\min}}^{\theta_{\max}} \frac{\text{vec}\left(\left[I_{M_t M_r} + \frac{\delta g}{\sin^2 \theta} \Phi \right]^{-1} \right)}{\sin^2 \theta \det\left(I_{M_t M_r} + \frac{\delta g}{\sin^2 \theta} \Phi \right)} d\theta. \quad (36)$$

The necessary condition for optimality is found by utilizing the results from (35) and (36) and setting the derivative of the Lagrangian in (16) equal to zero. If this is done, and scalar factors are collected into the scalar named μ, the results in (19), (20), and (21) are found. Since the precoder matrix F should be scaled according to the power constraint in Problem 1, it is not necessary to decide the exact value of the scalar μ. This scalar can be found by adjusting the norm of the precoder according to the power constraint after each time the fixed point iteration is used.

REFERENCES

Fig. 1. (a) Block model of the linear precoded OSTBC MIMO system. (b) Equivalent SISO system.

Fig. 2. Illustration of non-Kronecker correlation in distributed space-time coding. Circles indicate scatterers. Unlike Access point 0, Access point 1 experiences small angle spread at the receiver, yielding high receive correlation. The two access points, remotely located, are uncorrelated.
TABLE I
PSEUDO-CODE OF THE GENERAL NUMERICAL OPTIMIZATION ALGORITHM.

Step 1: Initialization
Choose values for P, OSTBC, N, B, a, σ_x^2, K, constellation, M, M_t, and M_r, which is assumed to be known
ϵ is chosen as the termination scalar
Estimate the additive noise variance N_0 and the general correlation matrix R
Initialize the precoder F to an already optimized precoder or to $F^{(0)} = \sqrt{\frac{P}{K a \sigma_x^2}} A$, where A has size $M_t \times B$, contains ones on its main diagonal and zeros elsewhere

Step 2: Precoder optimization
$p = 0$
repeat
$p := p + 1$
Calculate the right side of (19), (20), or (21) depending on the signal constellation used. The result found now is a candidate for the optimal precoder $F^{(p)}$ but it is not normalized according to the power constraint
Normalize the result found such that: $\|\text{vec}(F^{(p)})\| = \sqrt{\frac{P}{a K \sigma_x^2}}$
until $\|\text{vec}(F^{(p)} - F^{(p-1)})\| < \epsilon$
The optimized precoder is given by $F = F^{(p)}$

Fig. 3. Scenario 1: SER versus SNR performance of the proposed minimum SER precoder $-+$ in Theorem 5, the trivial precoder $-o-$, and the minimum PEP precoder $-x-$ proposed in [10]. A magnified portion of the curves is shown to illustrate the differences in performance. The following parameters were used: 8-PAM, $C(x) = g_4^T$ in [14], $a = 2$, $K = M_t = B = 4$, $M_r = 6$, and $N = 8$.
Fig. 4. Scenario 2: SER versus SNR performance of the proposed precoder $-$ $+$ $-$ in Theorem 5, the PEP precoder $-\times-$, the precoder in Theorem 4 $-\square-$, and the trivial precoder $-\circ-$. The following parameters were used: 9-QAM, $C(x) = G_2^T$ in [14], $a = 1$, $M_r = 6$, and $K = M_t = B = N = 2$.

Fig. 5. Scenario 3: The SER versus ρ performances are shown for the following four systems: The proposed minimum SER precoder: $-\circ-$ in Theorem 5, the PEP precoder $-\times-$ in [10], the analytical precoder $-\square-$ in [4], [5], and the trivial precoder $-+ -$. The following parameters were used: SNR = 10 dB, 9-QAM, $C(x) = G_4^T$ in [14], $a = 2$, $K = M_t = B = 4$, $M_r = 6$, and $N = 8$.
Fig. 6. Scenario 3: SER versus SNR performance of the proposed minimum SER precoder: – o – in Theorem 5, the PEP precoder – x – in [10], the analytical precoder – D – in [4], [5], and the trivial precoder – + –. The following parameters were used: 9-QAM, $C(x) = G^T_4$ in [14], $a = 2$, $K = M_t = B = 4$, $M_r = 6$, $N = 8$, and $\rho = 1$.