Random Feature Expansions for Deep Gaussian Processes

Kurt Cutajar1 Edwin V. Bonilla2 Pietro Michiardi1 Maurizio Filippone1

1 EURECOM, Sophia Antipolis, France
2 University of New South Wales, Sydney, Australia

October 26th, 2017
The Deep Learning Revolution

- Large representational power
- Mini-batch-based learning
- Exploit GPU and distributed computing
- Automatic differentiation
- Mature development of regularization (e.g., dropout)
- Application-specific representations (e.g., convolutional)
Infinite Gaussian random variables with parameteric and input-dependent covariance
Regression example
Gaussian Processes - Prior over Functions

- Regression example
Classification example
Classification example
Bayesian Gaussian Processes

- Inputs = X
- Labels = Y
- $K = K(X, \theta)$

\[p(\theta|Y, X) = \frac{p(Y|X, \theta)p(\theta)}{\int p(Y|X, \theta)p(\theta)d\theta} \]
Challenges and Limitations

- Can only model stationary functions (shallow model)
- $p(Y|X, \theta)$ might be expensive to compute
- $p(Y|X, \theta)$ might not even be computable!

Marginal likelihood

$$p(Y|X, \theta) = \int p(Y|F, X)p(F|\theta)dF$$
Can we exploit what made Deep Learning successful for practical and scalable learning of Gaussian processes?
Composition of processes

\[(f \circ g)(x)\]
Composition of processes
Inference requires calculating integrals of this kind:

\[
p(Y|X, \theta) = \int p \left(Y|F^{(N_h)}, \theta^{(N_h)} \right) \times p \left(F^{(N_h)}|F^{(N_h-1)}, \theta^{(N_h-1)} \right) \times \ldots \times \]

\[
p \left(F^{(1)}|X, \theta^{(0)} \right) dF^{(N_h)} \ldots dF^{(1)}
\]

Extremely challenging!
DGPs - Bochner’s theorem

- Continuous shift-invariant covariance function

\[k(x_i - x_j | \theta) = \sigma^2 \int p(\omega | \theta) \exp \left(\iota(x_i - x_j)^\top \omega \right) d\omega \]
DGPs - Bochner’s theorem

- Continuous shift-invariant covariance function

\[k(x_i - x_j | \theta) = \sigma^2 \int p(\omega | \theta) \exp \left(\iota (x_i - x_j)^\top \omega \right) d\omega \]

- Monte Carlo estimate

\[k(x_i - x_j | \theta) \approx \frac{\sigma^2}{N_{\text{RFF}}} \sum_{r=1}^{N_{\text{RFF}}} z(x_i | \tilde{\omega}_r)^\top z(x_j | \tilde{\omega}_r) \]

with

\[\tilde{\omega}_r \sim p(\omega | \theta) \]

\[z(x | \omega) = [\cos(x^\top \omega), \sin(x^\top \omega)]^\top \]

Define

\[\Phi^{(l)} = \sqrt{\frac{\sigma^2}{N_{RFF}^{(l)}}} \left[\cos \left(F^{(l)} \Omega^{(l)} \right), \sin \left(F^{(l)} \Omega^{(l)} \right) \right] \]

and

\[F^{(l+1)} = \Phi^{(l)} W^{(l)} \]

At each layer, the priors over the weights are

\[p \left(\Omega^{(l)} \right) = \mathcal{N} \left(0, \left(\Lambda^{(l)} \right)^{-1} \right) \]

and

\[p \left(W^{(l)} \right) = \mathcal{N} \left(0, I \right) \]
DGPs with random features become DNNs

\[
X \xrightarrow{\Phi(0)} F(1) \xrightarrow{\Phi(1)} F(2) \xrightarrow{} Y
\]

\[
X \xrightarrow{\Omega(0)} W(0) \xrightarrow{} \Omega(1) \xrightarrow{} W(1) \xrightarrow{} Y
\]

\[
\theta(0) \quad \theta(1)
\]

Maurizio Filippone Deep Gaussian Processes
Define $\Psi = (\Omega^{(0)}, \ldots, W^{(0)}, \ldots)$

Lower bound for $\log [p(Y|X, \theta)]$

$$E_{q(\psi)} \left(\log [p(Y|X, \psi, \theta)] \right) - \text{DKL} [q(\psi)||p(\psi|\theta)] ,$$

where $q(\psi)$ approximates $p(\psi|Y, \theta)$.

DKL computable analytically if q and p are Gaussian!

Optimize the lower bound wrt the parameters of $q(\psi)$
\[v'_{\text{par}} = v_{\text{par}} + \frac{\alpha_t}{2} \nabla_{v_{\text{par}}} (\text{LowerBound}) \quad \alpha_t \to 0 \]

Robbins and Monro, AoMS, 1951
Assume that the likelihood factorizes

\[
p(Y | X, \psi, \theta) = \prod_k p(y_k | x_k, \psi, \theta)
\]

Doubly stochastic **unbiased** estimate of the expectation term

- **Mini-batch**

\[
E_{q(\psi)} \left(\log [p(Y | X, \psi, \theta)] \right) \approx \frac{n}{m} \sum_{k \in I_m} E_{q(\psi)} \left(\log [p(y_k | x_k, \psi, \theta)] \right)
\]

- **Monte Carlo**

\[
E_{q(\psi)} \left(\log [p(y_k | x_k, \psi, \theta)] \right) \approx \frac{1}{N_{MC}} \sum_{r=1}^{N_{MC}} \log[p(y_k | x_k, \tilde{\psi}_r, \theta)]
\]

with \(\tilde{\psi}_r \sim q(\psi) \).
Reparameterization trick

\[
(\tilde{\mathbf{W}}_r^{(l)})_{ij} = \sigma_{ij}^{(l)} \varepsilon_{rij}^{(l)} + \mu_{ij}^{(l)},
\]

with \(\varepsilon_{rij}^{(l)} \sim \mathcal{N}(0, 1) \)

... same for \(\Omega \)

Variational parameters

\[
\mu_{ij}^{(l)}, (\sigma^2)^{(l)}_{ij} \ldots
\]

... and the ones for \(\Omega \)

Optimization with automatic differentiation in TensorFlow

Kingma and Welling, *ICLR*, 2014
Comparison with MCMC

- Generate data from

$$\mathcal{N}(y \mid h(h(x)), 0.01)$$

with

$$h(x) = 2x \exp(-x^2)$$
Results - Classification

EEG dataset

\((n = 14979, d = 14)\)

![Graph showing Error rate and MNLL](image)

- **Error rate**
- **MNLL**

- **Models**: DGP-RBF, DGP-ARC, DGP-EP, DNN, VAR-GP

Maurizio Filippone
Deep Gaussian Processes
Results - Multiclass Classification

MNIST dataset
\((n = 60000, d = 784)\)

<table>
<thead>
<tr>
<th>log_{10}(sec)</th>
<th>Error rate</th>
<th>MNLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.05</td>
<td>1</td>
</tr>
<tr>
<td>3.5</td>
<td>0.07</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>0.09</td>
<td>3</td>
</tr>
<tr>
<td>4.5</td>
<td>0.12</td>
<td>0</td>
</tr>
</tbody>
</table>

- DGP-RBF
- DGP-ARC
- DGP-EP
- DNN
- VAR-GP

Maurizio Filippone
Deep Gaussian Processes
Variant of MNIST with 8.1M images
99+\% accuracy!
Also, check out Krauth et al., UAI 2017
Airline dataset
\[(n = 5M+, \ d = 8) \]

Error rate

MNLL

\[.10^6 \text{Neg. Lower Bound} \]

- Red: 2 layers
- Blue: 10 layers
- Green: 20 layers
- Orange: 30 layers
- Dashed: SV-DKL
Conclusions

Contributions

- Novel formulation of DGPs based on random features
- We study the connections with DNNs
- Scalable and practical DGPs inference - no inverses!
Conclusions

Contributions
- Novel formulation of DGPs based on random features
- We study the connections with DNNs
- Scalable and practical DGPs inference - no inverses!

Ongoing work
- Large dimensional problems with Fastfood
- Other random features
- Improving distributed implementation
- Adding convolutional layers for image problems
- Unsupervised learning, Bayesian Optimization, Calibration, ...
References and Acknowledgments

- **Reference:**

- **Code:**

github.com/mauriziofilippone/deep_gp_random_features
References and Acknowledgments

Reference:

Code:
github.com/mauriziofilippone/deep_gp_random_features

Thank you!

Maurizio Filippone

Deep Gaussian Processes