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Initialization of variational parameters has a huge role in the conver- PROTEIN
gence of stochastic variational inference but received little to no attention S
in current literature. o
)]
Contributions: = o
» New initialization for svi based on Bayesian linear models; = 08
» Applied to regression, classification and CNNs; = y
» Experimental comparison against other initializations: = S I . 14 A—
» SoTA performance with Gaussian svi on large-scale CNNs. Step 10° 10° G op 10 10
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Figure: Progression of test error and test MNLL with different initializations on a 5x100
A DNN is a composition of nonlinear vector-valued functions £V In a nutshell: architecture.

» Inspired by residual networks and greedy initialization of DNNs.

f(x) = (£ (W oo fO(WO)) . :
(x) ( Jo...of ™ )) () » Grounded on Bayesian Linear regression but extended to

Prior on model parameters classification and to convolutional layers. I-BLM for Bayesian CNNs - VGG16
jective of B ian inferen i ' .
Objective of Bayesian infe ey > Regression ?nltrar.l]:for.me(f lgblels obﬁamedﬂghrough tfhe » Another initialization for Gaussian svi based on a MAP optimization
WX Y) D (YIX, W)p(W) LjnterpretatloDn 0 hcl atscsjl. tcanE abels as the coefficients of a (MAP INIT).
bosterior Overthe/v\/;;{tz S p(Y|X) | - egene:aLe.l. e he' IZI rlh . I|<on. i batchi » Loss optimized for the same amount of time required by 1-BLM.
Intractable for DNNs \__—— Marginal Likelihood > Scalability achieved thanks to mini-batching Solution used to initialize the means, while the log-variances are —5.5.
| - . . But how does it work? » Models are trained for 100 minutes for the entire end-to-end
svI reformulates this problem as minimization of th.e negative evidence Transform the labels if it's a classification task [3]. training (curves are shifted by the initialization time).
lower bound (or NELBO) under an approximate distribution qo (W) [2]: For each layer (1): 0s —
q;(W) st. O =arg mein{N ELBO} » Propagate a mini-batch of X up to the previous layer (1 —1); § 6 VGG16: 3.5M+ params
e . | =
NELBO = Eq, [—log p(YIX, W)] + KL (qo(W)|lp(W)) » [Extract the paifches f1t's a convolutlona.l layer; | o ¥
. e e . » Learn a Bayesian linear model and use its solution to Initialize
Commonly used family of variational distribution: mean field Gaussian W) MNLL ERROR
(Or fully factorized GaUSSian) qo . o G-SVI & I-BLM| 0.637 0167
=
wl) — N (' !}), o) 9 = (}), cN:1=0 ... [ —1 — . Effect of batch-size: the full training set = G-SVI & MAP| 0.750 ' 0.201
q ) 1:[ Wi T 03 Wi 037) } Bayesian Linear Regression - BLR leads to a better estimate of the posteriors o S A mco [1] 0.821 0.215
o eo_o o Likelihood: 102 103 _ [ ] *
? NOISY-KFAC (4] 0.750% 0.164
How do we initialize ©: oYW, 1) = TTNCYapws, 1 105.0 N
A poor initialization can prevent svi from converging to good solutions l TR G-SVI W, 1-BLM (this work) ——MCD —— NOISY-KFAC —— G-SVI W. MAP INIT
even for simple problems. It is even more severe for complex architec- = 175 . | | |
tures, where svi systematically converges to trivial solutions. 3 35 Figure &Table: Comparison between Gaussian factorized svi, MCD and NOISY-KFAC On
| Posterior- 3.0 | VGG16 with CIFAR10
After Poor Initialization After Our Initialization pWAIY, X, L A) = T NWAEXTLY,, 54 2 MCD G-SVI & I-BLM INIT
i 8000 |+ - Average = 0.026 8000 - Average = 0.035
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Some more Insights! o Y FE S
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Timing profiling (LENET-5): before training, 3 out of 4 optimal initializers I m—
are 1=sLM Figure: Entropy distribution while testing on mNIsT and NOT-MNIST (higher average
-BLM 4g 2.40 entropy on NOT-MNIST means better uncertainty estimation).
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Figure: Comparison of initialization time versus test MNLL.
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