
On Managing Prefixes For Vocabularies
Published in LOD

Ghislain Auguste Atemezing1, Bernard Vatant2,
Pierre-Yves Vanderbussche3 and Raphaël Troncy1

1 EURECOM, Sophia Antipolis, France,
<firstName.lastName@eurecom.fr>

2 Mondeca, Paris, France, <bernard.vatant@mondeca.com>
3 Fujitsu, Galway, Ireland, <py.vanderbussche@fujitsu.com>

Abstract. As the vocabularies are more and more reused in Linked
Data ecosystem, there is a need to manage the prefixes associated to their
Uniform Resource Identifiers (URIs). Developers and data modellers
need a consistent way to look up easily to unique namespaces and retrieve
exactly the same URI. This could help to refer easily to the vocabularies
just by the prefix, namespace or QName. Who has ever experiment how
difficult is to remember the prefix for http://purl.org/dc/elements/1.1/,
using dcterms instead of the official dce; while foaf is widely accepted to
be http://xmlns.com/foaf/0.1/. However, the practice is not always
the case that a namespace referred to the same couple prefix, URI, as
developers don’t have time or enough control on what some services they
use in their daily tasks can help them managing those different prefixes.
In this paper, we propose a solution of aligning two services with the aim
at managing and harmonizing vocabularies namespaces. We use prefix.cc
that provide a look up service for namespaces in general and Linked Open
Vocabularies (LOV) that extract metadata for vocabularies and help re-
trieving them as well. We address three different scenarios: (i) conflicts
between prefix.cc and LOV; (ii) prefixes in LOV not present in prefix.cc
and (iii) URIs in prefix.cc that are actually LOV-able vocabularies. For
each of the above issues, we specify how we solve them with some actions
ranging from updating the different services to contacting the editors of
the vocabularies for fixing clashes prefixes founded. Finally the new API
released by LOV help checking those namespaces in prefix.cc are actually
vocabularies to be inserted in the LOV ecosystem.

Keywords: vocabulary consumption, Linked Open Vocabularies, pre-
fix.cc, namespaces reconciliation, Vocabulary Management,

1 Introduction

The LOV initiative1 aims at promoting and facilitating the reuse of vocabu-
laries used to describe linked data. LOV provides a dataset, expressed in RDF

1
http://lov.okfn.org/dataset/lov/

Highlight
to easily look up u. n.

Highlight
experienced?

Highlight
by "namespace" you mean URI?

Highlight
pair

Highlight
in practice it is not...

Highlight
the

Highlight
delete word

Highlight
of

Highlight
vocabularies'

Highlight
s

Highlight
rephrase; past of "find" is "found"

Highlight
s

Highlight
whether

Highlight
not sure "consumption" will be widely understood in this context

Highlight

Highlight
dce? Never heard. Please cite source!



language, which identifies and describes such vocabularies using various meta-
data, including relationships showing how they rely on each other. The Web of
data is by definition uncontrolled and constantly evolving. As well as the Web
of Data, LOV task has the intrinsic characteristic of being unfinished and in-
complete, with a specific scope to include only vocabularies defining classes and
properties, also known as Metadata Element Sets [7] and to exclude concept
schemes (also known as Value Vocabularies) usually expressed in SKOS [8]. The
particularity of LOV is to focus on linked reusable vocabularies designed for the
description of linked data. Beyond the simple inventory, it adds to metadata
explicitly provided in the vocabularies themselves information harvested either
in documentation or through exchanges with vocabulary curators. The result
is the definition of relationships between vocabularies, which are automatically
inferred, enabling the curators and potential users to assess at a glance the
connectivity of a vocabulary with the ecosystem without having to explore it
thoroughly. Another feature is the timeline view of vocabulary versions, allow-
ing at a glance to figure out if the vocabulary is recent or old, frequently updated
or not, and in the best case to retrieve stored versions.

On the other side, prefix.cc2 is the service aims at simplifying the tasks in
the work of remembering and looking up URI prefixes by RDF developers. It
provides ways at looking up prefixes from both from the search box or directly
by typing URLs into a browser bar, such as http://prefix.cc/rdf. The ser-
vice allows anyone to add new prefix mappings, leading sometimes to conflicts.
However, the only mechanism for multiple conflicting URIs submitted with the
same namespace, is to vote by upvoting or downvoting a given URI, with the
restriction of only one vote or namespace submission per day.

Nevertheless, prefix.cc has a limitation per its scope, as it is not intended to
manage the conflicts among different namespaces and prefixes. It simply reflects
the moving, wild, inconsistent prefix/namespace mappings, or trying to help
bringing a bit of order and governance in it. At some point, through usage,
some prefixes become more that simple local short cuts, they become de facto
identifiers built-in applications etc. Our aim is to be possible through services
both prefix.cc and LOV be able to distinguish “stable” prefixes that all sensible
data providers, vocabulary publishers and applications should stick to and avoid
to conflate with. Starting of course with standards such as: rdf, rdfs, owl,

skos, but also some others de facto “ quasi-standards” such as dc, dcterms,

foaf, sioc, void, geo, yago, etc.

The remainder of this paper is structured as follows. In Section 2, we mo-
tivate the challenge of aligning and reconciling prefixes form both services . In
Section 3, we present the process of detecting the conflicts where the same
prefix claims having two different namespaces. We also provide some actions
undertaken in such cases as well as how we update prefix.cc from the prefix/-
namespace from LOV. The goal is to have the intersection of both services equal
to the smallest subset. In Section 4, we check in prefix.cc those URIs that
could be LOV-able vocabularies, to be added in LOV. By doing so, we present

2
http://prefix.cc/about

Highlight
never heard this term in the context of SKOS; please refer to literature

Highlight



the results of using an API checker related to LOV Bot3 to help the work of
finding more vocabularies spread on the wild. We discuss some lessons learned
and recommendations (Section 5) before concluding and outlining future work
(Section 6).

2 Motivation

Many developers uses prefix.cc to look up for prefix/namespaces while consuming
RDF data. At the same time, it is more and more recommended to reuse vocab-
ularies in Linked Data. Prefix.cc and LOV are respectively addressing those two
issues separately. Many other tools are created around the dataset4 of prefix.cc,
like Triple-Checker 5, a tool aims at finding typos and common errors in RDF
data; while some tools for assisting in the process of publishing Government
Linked Data, such as Datalift [9] already integrate LOV in their workflow, at
the modelling and reusing vocabularies stage.

The purpose of this work is to make possible the two services “working”
together to manage the prefixes/namespaces of the vocabularies published in
Linked Data. One of the benefits is to solve different types of conflicts which
could occurred during the process of aligning namespaces in both services, and
ultimately find a more stable solution to have both services updated and syn-
chronized when any type of event (adding/removing) or (upvoting/downvoting)
are likely to appear respectively in LOV or prefix.cc.

3 Aligning LOV with Prefix.cc

In this section, we present how we perform the alignment and mapping tasks
between the two services LOV and prefix.cc. The main goals are to align Qnames
to a unique URI in LOV side and make sure that all the vocabularies in LOV
are actually inserted in prefix.cc.

Technological Requirements

We need to perform SPARQL queries that grabs the all the file of prefix.cc
http://prefix.cc/popular/all.file.vann in the FROM clause, and com-
pares it to the contents of the LOV SPARQL endpoint6 via a SERVICE7 call.
To be more generic and standards-compliant, the queries could be run with the
Jena ARQ command-line tool to produce a CSV, JSON file that could be easily
consumed either by the prefix.cc backend via phpMyAdmin or by LOV backend.

3
http://lov.okfn.org/dataset/lov/bot/

4
http://prefix.cc/popular/all.file.txt

5
https://github.com/cgutteridge/TripleChecker

6
http://lov.okfn.org/endpoint/lov

7
http://www.w3.org/2009/sparql/docs/fed/service

Highlight
I don't hope so! Valid RDF/XML, Turtle, RDFa, etc. should define all occurring prefixes.

Highlight
This is not yet so widely known: explain!



3.1 First Task: prefixes in LOV not present in Prefix.cc

We first have to compute < LOV > INTERSECTS < PREFIX.CC > and
then < LOV > MINUS {< LOV > INTERSECTS < PREFIX.CC >}.
The following SPARQL query finds namespace URIs in LOV that don’t exist in
prefix.cc, along with their LOV prefix.

PREFIX vann: <http://purl.org/vocab/vann/>

SELECT ?prefix ?lovURI

FROM <http://prefix.cc/popular/all.file.vann> {

SERVICE <http://lov.okfn.org/endpoint/lov> {

SELECT ?prefix ?lovURI {

[] vann:preferredNamespacePrefix ?prefix;

vann:preferredNamespaceUri ?lovURI;

}

}

FILTER(NOT EXISTS { [] vann:preferredNamespaceUri ?lovURI })

OPTIONAL {

[] vann:preferredNamespacePrefix ?prefix;

vann:preferredNamespaceUri ?pccURI;

}

}

ORDER BY ?prefix

The first results8 shown the following: card(LOV )
⋂

card(PREFIX.cc) = 1889

and card(Diff(LOV, PREFIX.cc)) = 13310 prefixes in LOV not yet registered
in prefix.cc. At this point, a first batch of 80 prefixes/namespaces from LOV
where safely imported in prefix.cc since there were no conflicts. For the remaining
conflicting ones, they needed more in-deep process and analysis.

3.2 Second Task: Dealing with Conflicts between Prefix.cc and LOV

In the process of alignment, there were two types of conflicts identified and where
an adequate solutions where provided:

– Clashes: Cases where we have in both services the same prefix but different
URIs.

– Disagreements on preferred namespace: where for the same URI, we
found different prefixes.

8 The results shown here were conducted in two weeks between March, 2nd and March,
20th 2013, as this work is always a continuous task. As of the starting of the exper-
iments, card(LOV) = 321 vocabularies, card(Prefix.cc) = 925.

9
http://www.eurecom.fr/~atemezin/iswc2013/experiments/firstAlignments/

intersection-prefixLOV-02-03.csv
10

http://www.eurecom.fr/~atemezin/iswc2013/experiments/firstAlignments/

inLovNotINPrefixcc-02-03.csv

Highlight
improve formatting

Highlight

Highlight

Highlight



Clashes: The following query identifies those clashes (30) vocabularies. In Table
1, we identify seven different type of issues to deal with, such as (i) real conflicts,
(ii) URIs are 404, (iii) URIs are obsolete versions and (iv) both URIs redirecting
to the same resource.

PREFIX vann: <http://purl.org/vocab/vann/>

SELECT ?prefix ?lovURI ?pccURI

FROM <http://prefix.cc/popular/all.file.vann> {

SERVICE <http://lov.okfn.org/endpoint/lov> {

SELECT ?prefix ?lovURI {

[] vann:preferredNamespacePrefix ?prefix;

vann:preferredNamespaceUri ?lovURI;

}

}

FILTER(NOT EXISTS { [] vann:preferredNamespaceUri ?lovURI })

[] vann:preferredNamespacePrefix ?prefix;

vann:preferredNamespaceUri ?pccURI;

}

ORDER BY ?prefix

Type of issues # Vocabularies Percentage

Real conflicts 6 20%
pccURI is 404 4 13,3%
pccURI and lovURI redirect to same resource 8 26,67%
lovURI already in prefix.cc as secondary 7 23,3%
pccURI is an obsolete version 3 10%
lovURI is an older version 1 3,3%
lovURI is 404 1 3,3%

Table 1. Types of issues encountered on the clashes vocabularies

Disagreements on namespaces: The general idea is that if vocabulary ed-
itors have not included explicitly a vann:preferredNamespacePrefix in their
description, the curators of LOV are free to change it and put whatever seems
appropriate. At the same time, in prefix.cc, having multiple prefixes for the same
namespace IRI in not a problem. However, we computed those prefixes in LOV
that have different prefixes in prefix.cc. The following query retrieves the URIs
falling in those disagreements:

PREFIX vann: <http://purl.org/vocab/vann/>

SELECT ?prefix ?lovURI ?prefixcc

FROM <http://prefix.cc/popular/all.file.vann> {

SERVICE <http://lov.okfn.org/endpoint/lov> {



SELECT ?prefix ?lovURI {

[] vann:preferredNamespacePrefix ?prefix;

vann:preferredNamespaceUri ?lovURI;

}

}

FILTER (?pccURI = ?lovURI && ?prefix != ?prefixcc)

OPTIONAL {

[] vann:preferredNamespacePrefix ?prefixcc;

vann:preferredNamespaceUri ?pccURI;

}

}

ORDER BY ?prefix

From the results of this task (61 cases), we have three actions to perform:

– add the lovPrefix to pccPrefix (e.g: adding geod:http://vocab.lenka.no/geo-deling#)
to existing ngeoi in pccPrefix.)

– add more URIs to the existing prefix in pccPrefix (e.g: adding
prov:http://purl.org/net/provenance/ns#) to existing hartigprov, prv

in pccPrefix )
– change a prefix in LOV (e.g: lovPrefix dc for http://purl.org/dc/terms

not in the list {dcterm, dcq, dct, dcterms}. So, we use dcterms in LOV in-
stead.

– No changes when the lovPrefix is contains in the set of pccPrefix.

3.3 Social Aspects

It is also part of the alignment process to contact the authors, creators or main-
tainers (if exist) of vocabularies to involve them as well in the process of changing
prefixes, and agree with them to fix some issues regarding their vocabularies11.
By doing so, we use any social platform (Google +, Twitter, etc.) and email con-
tacts provided in the metadata. Table 2 summarizes some cases of real conflicts
where the LOV curators have to find and contact the editors of the vocabularies
for negotiation.

4 Finding Vocabularies in Prefix.cc

In this scenario, we want to find out in prefix.cc, which of the couples (prefix,
URI) could be potentially a vocabulary to be further assess to be included in
LOV catalogue. To address this issue, we first compute all the differences on
prefix.cc NOT in LOV, i.e. PREFIX.CC MINUS (LOV < INTERSECT >
PREFIX.CC), performing the following SPARQL query:

11 As of March 20th, 2013; the first process of aligning LOV and prefix.cc ended with
all the vocabularies of LOV inserted in prefix.cc.

Highlight
separate

Highlight
I thought that here you are describing the case that you have multiple prefixes for one URI.

Highlight
Where did you get this list from?

Highlight
Were these also provided in the metadata?



prefix lovURI pccURI Remark

sp http://data.lirmm.fr/ontologies/sp# http://spinrdf.org/sp# contact editor at LIRMM (sp ⇒
osp)

scot http://scot-project.net/scot/ns# http://scot-project.org/scot/ns# contact editors at lovURI
media http://purl.org/media# http://purl.org/microformat/hmedia/ contact editors for negotiation
pro http://purl.org/spar/pro/ http://purl.org/hpi/patchr# contact editors for negotiation
swp http://www.w3.org/2004/03/trix/swp-

1/
http://www.w3.org/2004/03/trix/swp-
2/

contact editors, fix on LOV side

wo http://purl.org/ontology/wo/core# http://purl.org/ontology/wo/ contact editors
idemo http://rdf.insee.fr/def/demo# http://rdf.insee.fr/graphes/def/demo# to resolve with INSEE

Table 2. LOV prefix.cc conflicts resolution yielding to contact vocabularies editors for
negotiation

PREFIX vann: <http://purl.org/vocab/vann/>

SELECT DISTINCT ?pccURI

FROM <http://prefix.cc/popular/all.file.vann> {

[] vann:preferredNamespacePrefix ?prefixcc;

vann:preferredNamespaceUri ?pccURI.

FILTER (NOT EXISTS {

SERVICE <http://lov.okfn.org/endpoint/lov> {

SELECT ?prefixcc ?pccURI {

[] vann:preferredNamespacePrefix ?prefixcc;

vann:preferredNamespaceUri ?pccURI;

}

}

})

} order by ?prefixcc

The result gives us a file of 742 containing the URIs to be checked12.

4.1 LOV Check API

We have implemented an API that could help the users to perform remotely
a useful service of LOV for checking vocabularies. The Check API13 allows a
user to run the LOV BOT over a distant vocabulary. It takes as parameter
the vocabulary URI to process and the time out (integer) specified to stop the
process. The result of this action is a dictionary with 26 main keys; from which
we are interested in using only 8 of them, which are:

– uri (string) – uri of the vocabulary.
– namespace (string) – namespace of the vocabulary.

12
http://www.eurecom.fr/~atemezin/iswc2013/experiments/output/botAnalysis_experiment4.js

13
http://lov.okfn.org/dataset/lov/apidoc/

Highlight
a JavaScript file? Or JSON?



– prefix (string) – prefix of the vocabulary
– inLOV (boolean) – indicates if the vocabulary is already in the Linked Open

Vocabularies ecosystem.
– nbClasses (int) – Number of classes defined in the vocabulary namespace.
– nbProperties (int) – Number of properties defined in the vocabulary names-

pace.
– dateIssued (string) – Vocabulary date of issue.
– title (Taxonomy) – List of titles with language information if available.

The code below gives a sample output of the response of our algorithm for
http://ns.aksw.org/Evolution/ the retrieving some metadata describing it
as a potential vocabulary with properties and classes, title and the prefix.

[caption={Sample output of a response of the Check API}]

{

"dateIssued": "None",

"inLOV": false,

"namespace": "http://ns.aksw.org/Evolution/",

"nbClasses": 14,

"nbProperties": 9,

"pccURI": "http://ns.aksw.org/Evolution",

"prefix": "ns0",

"title": [

{

"dataType": null,

"language": null,

"value": "OntoWiki Evolution Pattern Ontology"

}

],

"uri": "http://ns.aksw.org/Evolution/"

},

4.2 Experiments

We wrote a small script calling the LOV Check API on the URIs in pre-
fix.cc for determining the candidates vocabularies to be inserted in LOV, us-
ing the algorithm in 1. Due to some instabilities of the network, we ran four
times the experiments to determine from which results who should assess. Ta-
ble 3 gives an overview of the number of URIs with respectively the attribute
“inLOV=false”(TP), “inLOV=true”(FP) and the errors occurred (Null returned,
http/proxy or time out reached by the API).

According to Figure 1, Experiment4 gives stable results with less network
errors. Therefore, we stick on this experiment to report our findings and analysis.
We found that 227 (43, 48%) are vocabularies in the sense of LOV, because they
have at least one property or one class, and the rest, i.e 297 (56, 51%) might have
some problems (or event are not vocabularies at all) as they have no classes nor

Highlight
looks like an auto-generated prefix intended for local use. Maybe choose a better example

Highlight
use "." in English

Highlight
Why don't you output RDF? In RDF this would be easier to encode? Note that there is also JSON-LD for encoding RDF in JSON.



TP(inLOV=false) FP(inLOV=true) Errors

Experiment1 525 44 173
Experiment2 403 26 313
Experiment3 351 28 363
Experiment4 522 44 176

Table 3. Experiments looking for stable results of finding vocabularies in prefix.cc.

properties. Regarding the presence of prefixes names, we found 140 (61, 67%)
already present in the vocabularies.

In fact, those 227 vocabularies could be easily integrated in LOV. In this list,
we found schema Vocabularies like rdf, rdfs, owl that are used to built the
rest of vocabularies, but are not integrated in LOV catalogue.

Fig. 1. Experiments using the LOV API to check the uris in prefix.cc are vocabularies

Sticky Note
poor quality; use vector format. Or actually omit: doesn't add value over the table, and I'm not sure the "time" axis is relevant.



Algorithm 1 finding vocabulary in LOV from prefix.cc algorithm

1: Open notInLOV.jsonfile containing the prefix.cc URIs not in LOV
2: initialize item as List
3: Initialize output− result as collection of item
4: for each pccURI ∈ notInLOV file do
5: uri← value of pccURI
6: uriv ← construct-valid uri
7: call LOV-Check API with parameter uriv
8: try/catch HTTPError, URLError, IOError, ValueError
9: while no error raised do

10: initialize item to an empty List
11: append pccURI, prefix, inLOV, namespace, title, dateIssued, nbClasses, nbProperties

in item List
12: append item to output− result
13: end while
14: end for
15: print output− result

Anaysing Errors

From the list of URIs that were not LOV-able vocabularies, we wanted to do
more analysis by checking the RDF files using the tool Triple-Checker. Our
aim is to be sure if we didn’t left out some potential vocabularies, or if they
are probably other types of errors, such as parsing errors. Table 4 reveals us 4
categories founded:

– Potential vocabularies (12.20%);
– Those that are not clearly vocabularies e.g: RDF datasets, html pages (6.45%)
– Different errors such as loading the files, parsing them or proxy errors (78.30%)
– Others, which are mainly parsing errors (3,05%), which could be either vo-

cabularies or datasets if fixed.

Total URIs 295 100%

Vocabularies 36 12.20%
RDF data 02 0.67%
Loading/404 errors 182 61.69%
Proxy errors 27 9.15%
Web Pages containers 9 3.05%
No triples found 8 2.71%
Parsing errors 9 3.05%
50X, 400 errors 22 7.45%

Table 4. Analysis of the URIs with no classes and no properties while using the LOV-
Bot API

Highlight
I thought you are finding vocabularies NOT in LOV.

Highlight
misleading format; looks like "minus"

Highlight
How do you tell a vocabulary from a dataset? They are not strictly separate in RDF.



5 Discussion

Prefixes are important because they are part of the DNA of a vocabulary. For
this reason, their choices should be taken seriously into consideration as well as
defining a policy for the URI of the vocabulary namespace. We recommend the
following guidance to the editors and modellers of vocabularies:

– Choose a meaningful prefix, related as much as possible to the vocabulary
– Choose a short combination of characters, preferably between two and eight

characters.
– When publishing a vocabulary, use a service like prefix.cc to claim the URI

you assign for the vocabulary and define in the metadata properties for the
preferredNamespacePrefix and the preferredNamespaceURI.

– Use stable URIs for vocabularies and use the principles of “Cool URIs don’t
change”14 also applied in URIs vocabulary design decisions.

– Suggest your vocabulary when released or published to LOV via the sugges-
tion page.15

6 Conclusion

In this paper, we have presented a way to manage vocabularies prefixes using
two services, LOV and prefix.cc. We have shown that in the process of mapping
namespaces with prefixes, some conflicts have to be managed contacting the
editors themselves through social networks or mail contacts provided in the
Vocabulary specification. The methods and results shown in this work could be
easily automated by any other tool using either LOV or prefix data.

One direction of the future work is to have a new strategy on the LOV-BOT
API to take into account vocabularies published in n3 and turtle formats. This
could leads to change the strategy on how we get the files, by first testing the tur-
tle ones, and on how we get the namespaces. This latter could be more improved
using more checking functions on the explicit vann:preferredNamespace, sim-
ilarity algorithm to get the closer namespace given a URI and more statistical
approach to compute the classes and properties.

The other direction of this work is to create a small agent in LOV side fetching
each day to automate this process described above in live.

Acknowledgments

This work is partially supported by the project Datalift founded by the French
Research Agency (ANR) under grant number ANR-10-CORD-009. The Linked
Open Vocabularies initiative is hosted by the Open Knowledge Foundation. The
authors are very grateful for the support and help of Richard Cyganiak, author
and maintainer of prefix.cc service.

14
http://www.w3.org/Provider/Style/URI.html

15
http://lov.okfn.org/dataset/lov/suggest/

Highlight
How many of them responded?

Highlight
??? Is your current approach limited to other serializations of RDF?



References

1. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. Inter-
national Journal on Semantic Web and Information Systems, 5:1–22, 2009.

2. D. Brickley. Rdf vocabulary description language 1.0: Rdf schema. http://www.
w3. org/tr/rdf-schema/, 2004.

3. J. Demter, S. Auer, M. Martin, and J. Lehmann. Lodstats – an extensible frame-
work for high-performance dataset analytics. In Proceedings of the EKAW 2012.
29

4. J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag New York Inc,
2007.

5. A. Ferrara, A. Nikolov, and F. Scharffe. Data linking for the semantic web. Interna-
tional Journal on Semantic Web and Information Systems (IJSWIS), 7(3):46–76,
2011.

6. T. Heath and C. Bizer. Linked Data: Evolving the Web into a Global Data Space:
Theory and Technology, volume 1. Morgan & Claypool Publishers, 2011.

7. W. W. Y. J. Isaac, A. and M. Zeng. Library linked data incubator group: Datasets,
value vocabularies, and metadata element sets. W3C Incubator Group Report.
Online: http://www.w3.org/2005/Incubator/lld/XGR-lld-vocabdataset-20111025/,
October 2011. [accessed 25-April-2013].

8. M. B. W. M. Miles, A. and D. Brickley. SKOS core: simple knowledge organisation
for the web. International Conference on Dublin Core and Metadata Applications,
pages 3–4, December 2005.

9. F. Scharffe, G. Atemezing, R. Troncy, F. Gandon, S. Villata, B. Bucher, F. Hamdi,
L. Bihanic, G. Képéklian, F. Cotton, J. Euzenat, Z. Fan, P.-Y. Vandenbussche,
and B. Vatant. Enabling linked-data publication with the datalift platform. In
26th Conference on Artificial Intelligence (AAAI-12), 2012.

10. P.-Y. Vandenbussche and B. Vatant. Metadata recommendations for linked open
vocabularies. http://lov.okfn.org/dataset/lov/suggest/, 2012. [Online pdf file for
recommendations; accessed 25-April-2013].

11. J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Discovering and Maintaining
Links on the Web of Data. In International Semantic Web Conference (ISWC’09),
2009.

Highlight
???

Highlight

Highlight
There are newer references for SKOS

Highlight

Highlight




