Coordination on the MISO Interference Channel Using the Virtual SINR Framework

Randa Zakhour David Gesbert

Mobile Communications Department
EURECOM

Workshop on Smart Antennas (WSA)
17-18 Feb. 2009
Outline

Motivation
 Cooperation in multi-cell/link systems
 MISO IC

System Model and Performance Measures

Virtual SINR Framework
 Definition
 Two link case

Proposed Algorithm

Numerical Results
Outline

Motivation
Cooperation in multi-cell/link systems
MISO IC

System Model and Performance Measures

Virtual SINR Framework
Definition
Two link case

Proposed Algorithm

Numerical Results
Outline

Motivation
Cooperation in multi-cell/link systems
MISO IC

System Model and Performance Measures

Virtual SINR Framework
Definition
Two link case

Proposed Algorithm

Numerical Results
Outline

Motivation
Cooperation in multi-cell/link systems
MISO IC

System Model and Performance Measures

Virtual SINR Framework
Definition
Two link case

Proposed Algorithm

Numerical Results
Outline

Motivation

Cooperation in multi-cell/link systems
MISO IC

System Model and Performance Measures

Virtual SINR Framework

Definition
Two link case

Proposed Algorithm

Numerical Results
Outline

Motivation
- Cooperation in multi-cell/link systems
- MISO IC

System Model and Performance Measures

Virtual SINR Framework
- Definition
- Two link case

Proposed Algorithm

Numerical Results
Why Cooperate?

- In cellular systems, *reuse 1* considered for increased spectral efficiency.
- But cells are not isolated.

⇒ INTERFERENCE!

- Hence, interest in cooperative schemes:
 1. Network MIMO
 2. Interference Avoidance
Why Cooperate?

- In cellular systems, *reuse 1* considered for increased spectral efficiency.
- But cells are not isolated.

⇒ INTERFERENCE!

- Hence, interest in cooperative schemes:
 1. Network MIMO
 2. Interference Avoidance
Why Cooperate?

▶ In cellular systems, *reuse 1* considered for increased spectral efficiency.
▶ But cells are not isolated.

⇒ INTERFERENCE!

▶ Hence, interest in cooperative schemes:
 1. Network MIMO
 2. Interference Avoidance
Why Cooperate?

- In cellular systems, *reuse 1* considered for increased spectral efficiency.
- But cells are not isolated.

⇒ INTERFERENCE!

- Hence, interest in cooperative schemes:
 1. Network MIMO
 2. Interference Avoidance
Why Cooperate?

▶ In cellular systems, reuse 1 considered for increased spectral efficiency.
▶ But cells are not isolated.

⇒ INTERFERENCE!

▶ Hence, interest in cooperative schemes:
 1. Network MIMO
 2. Interference Avoidance
Why Cooperate?

- In cellular systems, *reuse 1* considered for increased spectral efficiency.
- But cells are not isolated.

⇒ INTERFERENCE!

- Hence, interest in cooperative schemes:
 1. Network MIMO
 2. Interference Avoidance
Outline

Motivation
Cooperation in multi-cell/link systems
MISO IC

System Model and Performance Measures

Virtual SINR Framework
 Definition
 Two link case

Proposed Algorithm

Numerical Results
Scenario considered

Cooperation Issues:

▶ Data sharing
▶ Channel state information (CSI) sharing

We consider:

▶ MISO interference channel (IC)
▶ local channel information
 ➤ Transmitter k knows:

\[h_{ki}, i = 1, \ldots, K \]
Scenario considered

 Cooperation Issues:
 ▶ Data sharing
 ▶ Channel state information (CSI) sharing

We consider:
 ▶ MISO interference channel (IC)
 ▶ local channel information
 ▶ Transmitter k knows:

\[h_{ki}, i = 1, \ldots, K \]
Scenario considered

Cooperation Issues:

▶ Data sharing
▶ Channel state information (CSI) sharing

We consider:

▶ MISO interference channel (IC)
▶ local channel information
 ▶ Transmitter k knows:

$$h_{ki}, i = 1, \ldots, K$$
Scenario considered

Cooperation Issues:

- Data sharing
- Channel state information (CSI) sharing

We consider:

- MISO interference channel (IC)
- Local channel information

Transmitter k knows:

$$h_{ki}, i = 1, \ldots, K$$
Scenario considered

Cooperation Issues:

- Data sharing
- Channel state information (CSI) sharing

We consider:

- MISO interference channel (IC)
- Local channel information
 - Transmitter k knows: $h_{ki}, i = 1, \ldots, K$
Scenario considered

Cooperation Issues:
- Data sharing
- Channel state information (CSI) sharing

We consider:
- MISO interference channel (IC)
- local channel information
 - Transmitter k knows:
 \[h_{ki}, i = 1, \ldots, K \]
Scenario considered

Cooperation Issues:
 ► Data sharing
 ► Channel state information (CSI) sharing

We consider:
 ► MISO interference channel (IC)
 ► local channel information
 ► Transmitter k knows:

\[h_{ki}, i = 1, \ldots, K \]
System Model
System Model

\[h_{11}, \ldots, h_{1K} \]
System Model
Linear precoding at each TX:

\[x_k = \sqrt{p_k} w_k s_k, \]
\[\text{s.t. } \|w_k\| = 1, \ p_k \leq P \]

Single user decoding at each RX:

\[\gamma_k = \frac{p_k |h_{kk} w_k|^2}{\sigma^2 + \sum_{j \neq k} p_j |h_{jk} w_j|^2} \]
System Model

Linear precoding at each TX:

\[x_k = \sqrt{p_k} w_k s_k, \]

s.t. \(\|w_k\| = 1, p_k \leq P \)

Single user decoding at each RX:

\[\gamma_k = \frac{p_k |h_{kk} w_k|^2}{\sigma^2 + \sum_{j \neq k} p_j |h_{jk} w_j|^2} \]
Linear precoding at each TX:

\[\mathbf{x}_k = \sqrt{p_k} \mathbf{w}_k \mathbf{s}_k, \]

s.t. \(\| \mathbf{w}_k \| = 1, p_k \leq P \)

Single user decoding at each RX:

\[\gamma_k = \frac{p_k |\mathbf{h}_{kk} \mathbf{w}_k|^2}{\sigma^2 + \sum_{j \neq k} p_j |\mathbf{h}_{jk} \mathbf{w}_j|^2} \]

How to distributely design the \(\mathbf{w}_k \)?
Performance Measures

The rate region \mathcal{R} is defined as the set of rates that may be achieved simultaneously at the different base stations, given the power constraints at each base station. I.e.:

$$\mathcal{R} = \{(R_1, \ldots, R_K) \in \mathbb{R}_+^K \mid R_k = \log_2(1 + \gamma_k), p_k \leq P \forall k \in \{1, \ldots, K\}\}$$ (1)

Its boundary is the set of Pareto optimal rate-tuples: one cannot increase any R_k without decreasing at least one of the other rates.
The higher the sum rate, the better. Being close to the Pareto boundary is also desirable.
Performance Measures

The rate region \mathcal{R} is defined as the set of rates that may be achieved simultaneously at the different base stations, given the power constraints at each base station. I.e.:

$$\mathcal{R} = \{(R_1, \ldots, R_K) \in \mathbb{R}_+^K \mid R_k = \log_2(1 + \gamma_k), p_k \leq P \forall k \in \{1, \ldots, K\}\}$$ \hspace{1cm} (1)

Its boundary is the set of Pareto optimal rate-tuples: one cannot increase any R_k without decreasing at least one of the other rates.

The higher the sum rate, the better. Being close to the Pareto boundary is also desirable.
Performance Measures

The rate region \mathcal{R} is defined as the set of rates that may be achieved simultaneously at the different base stations, given the power constraints at each base station. I.e.:

$$\mathcal{R} = \{(R_1, \ldots, R_K) \in \mathbb{R}_+^K \mid R_k = \log_2(1 + \gamma_k), p_k \leq P \forall k \in \{1, \ldots, K\}\}$$ (1)

Its boundary is the set of Pareto optimal rate-tuples: one cannot increase any R_k without decreasing at least one of the other rates.

The higher the sum rate, the better. Being close to the Pareto boundary is also desirable.
Outline

Motivation
 Cooperation in multi-cell/link systems
 MISO IC

System Model and Performance Measures

Virtual SINR Framework
 Definition
 Two link case

Proposed Algorithm

Numerical Results
Virtual SINR

Definition

- General form:

\[
\gamma^\text{virtual}_k = \frac{p_k |h_{kk}w_k|^2}{\sigma^2 + \sum_{j\neq k} \alpha_{kj} p_k |h_{kj}w_k|^2},
\]

where \(\alpha_{kj} \in \mathbb{R}_+ \), \(j, k = 1, \ldots, K \) are a given set of weights.

- Ratio of useful power generated to sum of noise plus weighted sum of interference caused.

- Specialization to full-power use:

\[
\gamma^\text{virtual}_k = \frac{|h_{kk}w_k|^2}{1/p + \sum_{j\neq k} \alpha_{kj} |h_{kj}w_k|^2},
\]

where \(\rho = \frac{P}{\sigma^2} \).
Virtual SINR

Definition

- General form:

\[
\gamma_k^{\text{virtual}} = \frac{p_k |h_{kk} w_k|^2}{\sigma^2 + \sum_{j \neq k} \alpha_{kj} p_k |h_{kj} w_k|^2},
\]

where \(\alpha_{kj} \in \mathbb{R}_+, j, k = 1, \ldots, K \) are a given set of weights.

- Ratio of useful power generated to sum of noise plus weighted sum of interference caused.

- Specialization to full-power use:

\[
\gamma_k^{\text{virtual}} = \frac{|h_{kk} w_k|^2}{1 + \sum_{j \neq k} \alpha_{kj} |h_{kj} w_k|^2},
\]

where \(\rho = \frac{P}{\sigma^2} \).
Virtual SINR

Definition

- General form:

\[\gamma_k^{\text{virtual}} = \frac{p_k |h_{kk} w_k|^2}{\sigma^2 + \sum_{j \neq k} \alpha_{kj} p_k |h_{kj} w_k|^2}, \] (2)

where \(\alpha_{kj} \in \mathbb{R}_+, j, k = 1, \ldots, K \) are a given set of weights.

- Ratio of useful power generated to sum of noise plus weighted sum of interference caused.

- Specialization to full-power use:

\[\gamma_k^{\text{virtual}} = \frac{|h_{kk} w_k|^2}{\frac{1}{\rho} + \sum_{j \neq k} \alpha_{kj} |h_{kj} w_k|^2}, \] (3)

where \(\rho = \frac{P}{\sigma^2} \).
Outline

Motivation
 Cooperation in multi-cell/link systems
 MISO IC

System Model and Performance Measures

Virtual SINR Framework
 Definition
 Two link case

Proposed Algorithm

Numerical Results
Results from the Two-link case

Theorems

Theorem
Any point on the Pareto boundary may be attained by solving the virtual SINR optimization problem with full power use, for an appropriate choice of $\alpha_{12}, \alpha_{21} \in \mathbb{R}^+$.

Theorem
The rate pair obtained by using virtual SINR maximizing beamformers with $\alpha_{12} = \alpha_{21} = 1$ lies on the Pareto boundary of the two-link rate region.
Theorem
Any point on the Pareto boundary may be attained by solving the virtual SINR optimization problem with full power use, for an appropriate choice of $\alpha_{12}, \alpha_{21} \in \mathbb{R}^+$.

Theorem
The rate pair obtained by using virtual SINR maximizing beamformers with $\alpha_{12} = \alpha_{21} = 1$ lies on the Pareto boundary of the two-link rate region.
Results from the Two-link case

Illustration
Proposed Algorithm

- Always use full power (this is also optimal for the multi-link case provided $N_t \geq K$): $p_k = P, \forall k = 1, \ldots, K$.

- Design beamforming vectors as the solutions to the following virtual SINR maximization problem:

$$w_k = \arg \max_{\|w\|^2=1} \frac{|h_{kk}w|^2}{\frac{1}{\rho} + \sum_{j \neq k} |h_{kj}w|^2}.$$ \hfill (4)
Proposed Algorithm

- Always use full power (this is also optimal for the multi-link case provided $N_t \geq K$): $p_k = P, \forall k = 1, \ldots, K$.
- Design beamforming vectors as the solutions to the following virtual SINR maximization problem:

$$w_k = \arg \max_{\|w\|^2=1} \frac{|h_{kk}w|^2}{\frac{1}{\rho} + \sum_{j\neq k} |h_{kj}w|^2}. \quad (4)$$
Numerical Results

Sum rate

For 7 cells and a channel model including path loss, lognormal slow fading and Rayleigh fast fading:

![Graph showing sum rate vs SNR edge for different algorithms and number of transmit antennas.](image-url)
Numerical Results For 7 cells and a channel model including path loss, lognormal slow fading and Rayleigh fast fading:

![Graph showing extra power used vs. SNR edge for different numbers of tiers, Nt = 2, 4, 5.]
Conclusion

- A distributed algorithm for beamforming on the MISO IC was proposed.
- Its optimality was illustrated for the two-link case, in terms of achieving rates on the Pareto boundary.
- Simulation results illustrate that gains are achieved in the more general case as well.

Outlook

- Different models of local CSI could be considered.
- A more general model of cooperation could be looked at under different CSI conditions.
Conclusion

- A distributed algorithm for beamforming on the MISO IC was proposed.
- Its optimality was illustrated for the two-link case, in terms of achieving rates on the Pareto boundary.
- Simulation results illustrate that gains are achieved in the more general case as well.

Outlook

- Different models of local CSI could be considered.
- A more general model of cooperation could be looked at under different CSI conditions.
Conclusion

▶ A distributed algorithm for beamforming on the MISO IC was proposed.
▶ Its optimality was illustrated for the two-link case, in terms of achieving rates on the Pareto boundary.
▶ Simulation results illustrate that gains are achieved in the more general case as well.

Outlook

▶ Different models of local CSI could be considered.
▶ A more general model of cooperation could be looked at under different CSI conditions.
Conclusion

- A distributed algorithm for beamforming on the MISO IC was proposed.
- Its optimality was illustrated for the two-link case, in terms of achieving rates on the Pareto boundary.
- Simulation results illustrate that gains are achieved in the more general case as well.

Outlook

- Different models of local CSI could be considered.
- A more general model of cooperation could be looked at under different CSI conditions.
Conclusion

- A distributed algorithm for beamforming on the MISO IC was proposed.
- Its optimality was illustrated for the two-link case, in terms of achieving rates on the Pareto boundary.
- Simulation results illustrate that gains are achieved in the more general case as well.

Outlook

- Different models of local CSI could be considered.
 - A more general model of cooperation could be looked at under different CSI conditions.
Conclusion

▶ A distributed algorithm for beamforming on the MISO IC was proposed.
▶ Its optimality was illustrated for the two-link case, in terms of achieving rates on the Pareto boundary.
▶ Simulation results illustrate that gains are achieved in the more general case as well.

Outlook

▶ Different models of local CSI could be considered.
▶ A more general model of cooperation could be looked at under different CSI conditions.
Thank You! Questions?