Vector Precoding in Wireless Communications: A Replica Analysis

Ralf R. Müller, Benjamin Zaidel, Rodrigo V. de Miguel de Juan, Vesna Gardasevic
Department of Electronics & Telecommunications
Norwegian University of Science & Technology, Trondheim, Norway

Dongning Guo
Department of Electrical Engineering & Computer Science
Northwestern University, Evanston, IL, U.S.A.

Aris L. Moustakas
Physics Department
National & Capodistrian University of Athens, Greece

Finn F. Knudsen
Department of Mathematics
Norwegian University of Science & Technology, Trondheim, Norway
The Problem

Let

\[E := \frac{1}{K} \min_{x \in \mathcal{X}} x^\dagger J x \]

with \(x \in \mathbb{C}^K \) and \(J \in \mathbb{C}^{K \times K} \).
The Problem

Let

\[E := \frac{1}{K} \min_{x \in \mathcal{X}} x^\dagger J x \]

with \(x \in \mathbb{C}^K \) and \(J \in \mathbb{C}^{K \times K} \).

Example 1:

\[\mathcal{X} = \{ x : x^\dagger x = K \} \implies E = \min \lambda(J) \]
The Problem

Let

\[E := \frac{1}{K} \min_{x \in \mathcal{X}} x^\dagger J x \]

with \(x \in \mathbb{C}^K \) and \(J \in \mathbb{C}^{K \times K} \).

Example 1:

\[\mathcal{X} = \{ x : x^\dagger x = K \} \implies E = \min \lambda(J) \]

for Wishart matrix \(\rightarrow [1 - \sqrt{\alpha}]_+^2 \)
The Problem

Let

\[E := \frac{1}{K} \min_{x \in \mathcal{X}} x^\dagger J x \]

with \(x \in \mathbb{C}^K \) and \(J \in \mathbb{C}^{K \times K} \).

Example 1:

\[\mathcal{X} = \{ x : x^\dagger x = K \} \implies E = \min \lambda(J) \]

for Wishart matrix \(\rightarrow [1 - \sqrt{\alpha}]_+^2 \)

Example 2:

\[\mathcal{X} = \{ x : x^2 = 1 \}^K \implies ??? \]
The Problem

Let

\[E := \frac{1}{K} \min_{x \in \mathcal{X}} x^\dagger J x \]

with \(x \in \mathbb{C}^K \) and \(J \in \mathbb{C}^{K \times K} \).

Example 1:

\(\mathcal{X} = \{ x : x^\dagger x = K \} \quad \implies \quad E = \min \lambda(J) \)

for Wishart matrix \(\rightarrow [1 - \sqrt{\alpha}]^2 \)

Example 2:

\(\mathcal{X} = \{ x : x^2 = 1 \}^K \quad \implies \quad ??? \)

Example 3:

\(\mathcal{X} = \{ x : |x|^2 = 1 \}^K \quad \implies \quad ??? \)
The Gaussian Vector Channel

Let the received vector be given by

\[y = H t + n \]

where

- \(t \) is the transmitted vector
- \(n \) is uncorrelated (white) Gaussian noise
- \(H \) is a coupling matrix accounting for crosstalk

In many applications, e.g. antenna arrays, code-division multiple-access, the coupling matrix is modelled as a random matrix with independent identically distributed entries (i.i.d. model).

Crosstalk can be processed either at receiver or transmitter.
Processing at Transmitter

If the transmitter is a base-station and the receiver is a hand-held device one would prefer to have the complexity at the transmitter.

E.g. let the transmitted vector be

\[t = H^\dagger (HH^\dagger)^{-1}x \]

where \(x = s \) is the data to be sent.

Then,

\[y = s + n. \]

No crosstalk anymore due to channel inversion.
Problems of Simple Channel Inversion

Channel inversion implies a significant power amplification, i.e.

\[x^\dagger (HH^\dagger)^{-1} x > x^\dagger x. \]

In particular, let

- \(\alpha = \frac{K}{N} \leq 1; \)
- the entries of \(H \) are i.i.d. with variance \(1/N. \)

Then, for fixed aspect ratio \(\alpha \)

\[\lim_{K \to \infty} \frac{x^\dagger (HH^\dagger)^{-1} x}{x^\dagger x} = \frac{1}{1 - \alpha} \]

with probability 1.
Tomlinson-Harashima Precoding

Tomlinson ’71, Harashima & Miyakawa ’72
Tomlinson-Harashima Precoding

Tomlinson '71, Harashima & Miyakawa '72
Tomlinson-Harashima Precoding

Tomlinson ’71; Harashima & Miyakawa ’72
Instead of representing the logical "0" by +1, we present it by any element of the set \{\ldots, -7, -3, +1, +5, \ldots \} = 4\mathbb{Z} + 1. Correspondingly, the logical "1" is represented by any element of the set 4\mathbb{Z} - 1.

Choose that representation that gives the smallest transmit power.
Generalized TH Precoding

Let \mathcal{B}_0 and \mathcal{B}_1 denote the sets presenting 0 and 1, resp.

Let $(s_1, s_2, s_3, \ldots, s_K)$ denote the data to be transmitted.

Then, the transmitted energy per data symbol is given by

$$E = \frac{1}{K} \min_{x \in \mathcal{X}} x^\dagger J x$$

with

$$\mathcal{X} = \mathcal{B}_{s_1} \times \mathcal{B}_{s_2} \times \cdots \times \mathcal{B}_{s_K}$$

and

$$J = (HH^\dagger)^{-1}.$$
Zero Temperature Formulation

Quadratic programming is the problem of finding the zero temperature limit (ground state energy) of a quadratic Hamiltonian.

The transmitted power is written as a zero temperature limit

\[E = - \lim_{\beta \to \infty} \frac{1}{\beta K} \log \sum_{x \in X} e^{-\beta K \text{Tr}(Jxx^\dagger)} \]

with \(\frac{1}{\beta} \) denoting temperature.
Zero Temperature Formulation

Quadratic programming is the problem of finding the zero temperature limit (ground state energy) of a quadratic Hamiltonian.

The transmitted power is written as a zero temperature limit

\[
E = - \lim_{\beta \to \infty} \frac{1}{\beta K} \log \sum_{x \in \mathcal{X}} e^{-\beta K \text{Tr}(Jxx^\dagger)}
\]

\[
\quad\quad\quad\quad\rightarrow - \lim_{\beta \to \infty} \lim_{K \to \infty} E \frac{1}{\beta K} \log \sum_{x \in \mathcal{X}} e^{-\beta K \text{Tr}(Jxx^\dagger)}
\]

with \(\frac{1}{\beta}\) denoting temperature.
The Harish-Chandra Integral
(also called the Itzykson-Zuber integral, particular in the physics community)

Let \tilde{Q} be any positive semi-definite matrix of bounded rank n, then

$$\lim_{K \to \infty} \frac{1}{K} \log \mathbb{E} e^{-K \text{Tr} J\tilde{Q}} = -\sum_{a=1}^{n} \lambda_a \int_{0}^{\infty} R(-w) dw$$

with λ_a denoting the positive eigenvalues of \tilde{Q} (Marinari et al. '94; Guionnet & Maïda '05).

This is a large-deviations result for random matrices.

Recently, it was named the free Fourier transform.
Free Fourier Transform

We want

$$\lim_{K \to \infty} \frac{1}{K} \mathbb{E} \log \sum_{x \in \mathcal{X}} e^{-\beta K \text{Tr}(Jxx^\dagger)}.$$

We know (Itzykon & Zuber '80)

$$\lim_{K \to \infty} \frac{1}{K} \log \mathbb{E} e^{-K \text{Tr}(J\mathbf{P})} = -n \sum_{a=1}^{\lambda} \lambda_a \left(\int_0^R J(-w) dw \right).$$
Free Fourier Transform

We want

$$\lim_{K \to \infty} \frac{1}{K} \mathbf{E} \log \sum_{x \in \mathcal{X}} e^{-\beta K \text{Tr}(Jxx^\dagger)}.$$

We know (Itzykon & Zuber '80)

$$\lim_{K \to \infty} \frac{1}{K} \log \mathbf{E} e^{-K \text{Tr} J^P} = - \sum_{a=1}^{n} \lambda_a(P) \int_0^\infty R_J(-w) dw.$$
Free Fourier Transform

We want
\[
\lim_{K \to \infty} \frac{1}{K} \mathbf{E} \log \sum_{x \in \mathcal{X}} e^{-\beta K \operatorname{Tr}(Jxx^\dagger)}.
\]

We know (Itzykon & Zuber '80)
\[
\lim_{K \to \infty} \frac{1}{K} \log \mathbf{E} e^{-K \operatorname{Tr} JP} = -\sum_{a=1}^{n} \lambda_a(P) \int_{0}^{\infty} R_J(-w)dw.
\]

We would like to exchange expectation and logarithm:
\[
\mathbf{E} \log X = \lim_{n \to 0} \frac{1}{n} \log \mathbf{E} X^n.
\]
Replica Continuity

We want

$$\lim_{K \to \infty} \frac{1}{K} \mathbb{E} \log \sum_{x \in \mathcal{X}} e^{-\beta K \text{Tr}(J xx^\dagger)} = \lim_{K \to \infty} \lim_{n \to 0} \frac{1}{nK} \log \mathbb{E}_{J} \left(\sum_{x \in \mathcal{X}} e^{-\beta K \text{Tr}(J xx^\dagger)} \right)^n$$
We want
\[
\lim_{K \to \infty} \frac{1}{K} \mathbb{E} \log \sum_{x \in \mathcal{X}} e^{-\beta K \text{Tr}(Jxx^\dagger)} = \lim_{K \to \infty} \lim_{n \to 0} \frac{1}{nK} \log \mathbb{E} \left(\sum_{x \in \mathcal{X}} e^{-\beta K \text{Tr}(Jxx^\dagger)} \right)^n
\]
\[
= \lim_{K \to \infty} \lim_{n \to 0} \frac{1}{nK} \log \mathbb{E} \prod_{a=1}^{n} \sum_{x_a \in \mathcal{X}} e^{-\beta K \text{Tr}(Jx_a x_a^\dagger)}
\]
We want

\[
\lim_{K \to \infty} \frac{1}{K} \mathbb{E} \log \sum_{x \in \mathcal{X}} e^{-\beta K \text{Tr}(Jxx^\dagger)} = \lim_{K \to \infty} \lim_{n \to 0} \frac{1}{nK} \log \mathbb{E} \left(\sum_{x \in \mathcal{X}} e^{-\beta K \text{Tr}(Jxx^\dagger)} \right)^n
\]

\[
= \lim_{K \to \infty} \lim_{n \to 0} \frac{1}{nK} \log \mathbb{E} \prod_{a=1}^{n} \sum_{x_a \in \mathcal{X}} e^{-\beta K \text{Tr}(Jx_a x_a^\dagger)}
\]

\[
= \lim_{K \to \infty} \lim_{n \to 0} \frac{1}{nK} \log \mathbb{E} \sum_{x_1 \in \mathcal{X}} \cdots \sum_{x_n \in \mathcal{X}} e^{-K \text{Tr}(J \beta \sum_{a=1}^{n} x_a x_a^\dagger)}
\]

with

\[
Q := \sum_{a=1}^{n} x_a x_a^\dagger.
\]
Replica Calculations

\section*{Replica Continuity}

We want

\[
\lim_{K \to \infty} \frac{1}{K} \mathbb{E} \log \sum_{x \in \mathcal{X}} e^{-\beta K \text{Tr}(Jx x^\dagger)} = \lim_{K \to \infty} \lim_{n \to 0} \frac{1}{nK} \log \mathbb{E} \left(\sum_{x \in \mathcal{X}} e^{-\beta K \text{Tr}(Jx x^\dagger)} \right)^n
\]

\[
= \lim_{K \to \infty} \lim_{n \to 0} \frac{1}{nK} \log \mathbb{E} \left(\prod_{a=1}^n \sum_{x_a \in \mathcal{X}} e^{-\beta K \text{Tr}(Jx_a x_a^\dagger)} \right)
\]

\[
= \lim_{K \to \infty} \lim_{n \to 0} \frac{1}{nK} \log \mathbb{E} \sum_{x_1 \in \mathcal{X}} \cdots \sum_{x_n \in \mathcal{X}} e^{-K \text{Tr} \left(J \beta \sum_{a=1}^n x_a x_a^\dagger \right)}
\]

\[
= - \lim_{n \to 0} \frac{1}{n} \log \mathbb{E} \exp \left[\sum_{a=1}^n \beta \lambda_a(Q) \int_0 R_{J}(w) dw \right]
\]

with

\[
Q_{ab} := \frac{1}{K} x_a^\dagger x_b.
\]
Replica Symmetry

\[
Q := \begin{bmatrix}
q + \frac{\chi}{\beta} & q & \cdots & q & q \\
q & q + \frac{\chi}{\beta} & \cdots & q & q \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
q & q & \cdots & q + \frac{\chi}{\beta} & q \\
q & q & \cdots & q & q + \frac{\chi}{\beta}
\end{bmatrix}
\]

with some macroscopic parameters \(q \) and \(\chi \).

This is the most critical step. In general, the structure of \(Q \) is more complicated. Generalizations are called replica symmetry breaking (RSB).
RS Solution

Let $P(s)$ denote the limit of the empirical distribution of the information symbols s_1, s_2, \ldots, s_K as $K \to \infty$. Let q and χ be the simultaneous solutions to

$$q = \int \int \text{argmin}_{x \in B_s}^2 \left| z \sqrt{2qR'(-\chi)} - 2xR(-\chi) \right| d z \, d P(s)$$

$$\chi = \frac{1}{\sqrt{2qR'(-\chi)}} \int \int \text{argmin}_{x \in B_s} \left| z \sqrt{2qR'(-\chi)} - 2xR(-\chi) \right| z^* d z \, d P(s)$$

where

$$Dz = \exp(-z^2/2)dz/\sqrt{2\pi}, \quad R(\cdot) \text{ is the R-transform of the limiting eigenvalue spectrum of } J, \quad \text{and } 0 < \chi < \infty.$$

Then, replica symmetry (RS) implies

$$\frac{1}{K} \min_{x \in \chi} x^\dagger J x \to q \frac{\partial}{\partial \chi} \chi R(-\chi)$$

as $K \to \infty$.
Some R-Transforms

\begin{align*}
\mathbf{I} : & \quad R(w) = 1 \\
HH^\dagger : & \quad R(w) = \frac{1}{1 - \alpha w} \quad \text{Marchenko-Pastur (MP) law} \\
(HH^\dagger)^{-1} : & \quad R(w) = \frac{1 - \alpha - \sqrt{(1 - \alpha)^2 - 4\alpha w}}{2\alpha w} \quad \text{inv. MP} \\
U + U^\dagger : & \quad R(w) = \frac{-1 + \sqrt{1 + 4w^2}}{w}
\end{align*}
Odd Integer Quadrature Lattice
Complex TH Precoding

$E_b := \frac{E}{2} = \frac{4}{3}$ for $L \to \infty$.

$L = 1, 2, 3, 6, 100$
Complex TH Precoding

![Graph showing E [dB] vs. α]

- RS Solution
- Lower Bound

Vector Precoding in Wireless Communications

© Ralf R. Müller 2008
1st Order Replica Symmetry Breaking

\[Q := \begin{bmatrix}
q + p + \frac{x}{\beta} & q + p & q & \cdots & q & q \\
q + p & q + p + \frac{x}{\beta} & q & \cdots & q & q \\
q & q & q + p + \frac{x}{\beta} & q + p & \cdots & q & q \\
q & q & q + p & q + p + \frac{x}{\beta} & \vdots & \vdots & \\
\vdots & \vdots & \cdots & \ddots & q & q \\
q & q & q & \cdots & q & q + p + \frac{x}{\beta} & q + p \\
q & q & q & \cdots & q & q + p & q + p + \frac{x}{\beta}
\end{bmatrix} \]

with the macroscopic parameters \(q, p \) and \(x \) and the blocksize \(\frac{\mu}{\beta} \).
1st Order Replica Symmetry Breaking

\[E = \left(q + p + \frac{\chi}{\mu}\right) R(-\chi - \mu p) - \frac{\chi}{\mu} R(-\chi) - q(\mu p + \chi) R'(-\chi - \mu p) \]

The macroscopic parameters \(q, p, \chi \) and \(\mu \) are given by 4 coupled fixed point equations.

Solving those fixed point equations numerically is a very tedious task.
Complex Convex Relaxation

... allows for convex programming.
Energy Penalty Comparison (QPSK)

- RS Solution
- Lower Bound
- 1RSB Solution – L=2
- 1RSB Solution – L=3
- Discrete Lattice (L=2) – Simulation Results: K=27
- Discrete Lattice (L=2) – Simulation Results: K=64
- CR–QPSK – RS Solution
- CR–QPSK – Simulation Results: K=64
Spectral efficiency (per transmit antenna) is given by

\[C = \frac{1}{N} \sum_{k=1}^{K} I(x_k, y_k) \]
Spectral Efficiency (Optimum α)

- DPC ($\alpha=1$)
- DPC ($\alpha\to\infty$)
- Linear ZF – Gaussian Input
- Linear ZF – QPSK Input
- Nonlinear Precoding – QPSK – 2D Discrete Lattice
- Nonlinear Precoding – CR-QPSK

C [bit/sec/Hz/Tx Antenna] vs E_b/N_0 [dB]
Inverting Singular Channels

What happens if the MP-law has a mass point at zero \((K > N)\)?

Can we precode without interference?
Inverting Singular Channels

What happens if the MP-law has a mass point at zero \((K > N)\)?

Can we precode without interference?

The precoder produces

\[
\lim_{\epsilon \to 0} \arg \min_{x \in \mathcal{X}} \frac{x^\dagger (HH^\dagger + \epsilon I)^{-1} x}{K}
\]

The received signal becomes

\[
y = \lim_{\epsilon \to 0} HH^\dagger (HH^\dagger + \epsilon I)^{-1} x + n.
\]
Inverting Singular Channels

What happens if the MP-law has a mass point at zero ($K > N$)?

Can we precode without interference?

The precoder produces

$$\lim_{\epsilon \to 0} \arg \min_{x \in \mathcal{X}} \frac{x^\dagger (HH^\dagger + \epsilon \mathbf{I})^{-1} x}{K}$$

The received signal becomes

$$y = \lim_{\epsilon \to 0} HH^\dagger (HH^\dagger + \epsilon \mathbf{I})^{-1} x + n.$$

If the energy is finite, there is no interference.
Overloaded Convex Precoding

There is a high probability that a vector with finite energy can be found

\[
\Pr(E < \infty) = 2^{1-2K} \sum_{\ell=0}^{2N-1} \binom{2K-1}{\ell}
\]

As \(K, N \) to infinity, we get

\[
\Pr(E < \infty) = \begin{cases}
1 & K < 2N \\
1/2 & K = 2N \\
0 & K > 2N
\end{cases}
\]
Overloaded Convex Precoding

$\frac{1}{1-P(K,N)}$