Near-far gain in a multiuser diversity system

Kimmo Kansanen, Ralf R. Müller

Norwegian University of Science and Technology

Eurecom seminar 23.10.2008

NTNU
1. Introduction
2. Overview of PFS
3. Group scheduling
4. Asymptotic behavior analysis
5. Summary
Multiuser diversity and near-far

- Time varying channels
- Unbalance between channels
- Selection diversity over users
Multiuser diversity and near-far, examples

Sum-rate greedy scheduler
Schedule one user with strongest channel \rightarrow time division.

Hard-fair scheduler
Schedule all users (invert channel, guarantee rate) \rightarrow code division.
Motivation

Initial thought

- PFS is sum-rate suboptimal
 \[
 \text{(maximizes } \sum_{k=1}^{K} \log(E[R_k])\text{).}
 \]
- We should be able to improve by simultaneous scheduling

What shall we analyze

- Average spectral efficiency / sum rate.
- Focus on high and low spectral efficiency regimes (wideband regime)
The system

Single cell system – uplink (multiple access channel)

- K users.
- Each user has fixed random pathloss s_k (exponential).
- Each user has i.i.d. short term fading f_k (Rayleigh).
- Channel gain of user k is $d_k = s_k f_k$.
At time t PFS schedules the user k with maximum metric

$$\frac{R_k(t)}{T_k(t)}$$

where

$$R_k(t) = \log_2 \left(1 + \frac{d_k(t)}{N_0} \right)$$ \hspace{1cm} (1)$$

$$T_k(t + 1) = \lambda T_k(t) + (1 - \lambda)R_k(t)$$ \hspace{1cm} (2)$$

The forgetting factor $\lambda \in [0, 1)$

if $\lambda \to 0$, PFS is more round-robin
if $\lambda \to 1$, PFS is at its greediest
When $\lambda \to 1$ (infinite forgetting), PFS

- schedules the user with largest short term fading f,
- allocates rate according to channel state d,
- enforces orthogonal transmission (TDMA),
- provides no rate guarantee, and
- is (still) not sum rate optimal.
Group scheduling

Key idea

- Choose K_A users with largest short term fading f_k
- Allocate each user the power $1/K_A$
- Allocate each user rate assuming superposition coding.

Answers we have

- System capacity behavior.
- Optimal number of simultaneous users.

Answers to find

- Can we formulate a simple recursive allocation cf. PFS?
- What did we just do to “fairness”?
Group scheduling

Scheduling \(k \in \mathcal{A} \)

- Received energy \(y = \frac{1}{K_A} \sum_{k \in \mathcal{A}} f_k s_k \).
- Sum rate \(R(y) = \log_2 (1 + y \text{SNR}) \).

Average system capacity and system energy per bit

\[
C = \int_0^\infty R(y) dF(y) \quad (3)
\]

\[
\left(\frac{E_b}{N_0} \right)_{sys} = \frac{\text{SNR}}{C} \quad (4)
\]

\(F(y) \) is the distribution of the \(K_A \) largest \(f_k \) (out of \(K \)) each multiplied with a random path loss \(s_k \).
System capacity

Low spectral efficiency approximation

\[
\left(\frac{E_b}{N_0} \right)_{\text{sys}} \bigg|_{\text{dB}} = \left(\frac{E_b}{N_0} \right)_{\text{min}} \bigg|_{\text{dB}} + \frac{3 \text{dB}}{L_0} C + o(C), \quad (5)
\]

High spectral efficiency approximation

\[
\left(\frac{E_b}{N_0} \right)_{\text{sys}} \bigg|_{\text{dB}} = \frac{3 \text{dB}}{L_\infty} C - 10 \log_{10} (C) + L_\infty 10 \log_{10} (2) + o(1), \quad (6)
\]
The same visually

\[C (\text{b/s/Hz}) \]

\[S_0 \]

\[\text{Eb/N0}_\text{min} \]

\[3\text{dB} \]

\[L_{\text{inf}} \]

\[\text{Eb/N0} \text{ (dB)} \]
Minimum E_b/N_0

\[
\left(\frac{E_b}{N_0} \right)_{\text{min}} = \frac{\log(2)}{C'(0)}
\]

\[
= \frac{\log(2)}{\int_{0}^{\infty} \frac{y}{1+SNR_y} dF_y(y) \bigg|_{SNR=0}}
\]

\[
= \frac{\log(2)}{E[y]}
\]

\[
= \frac{\log(2)}{E[s] \frac{1}{K_A} \sum_{i=K-K_A+1}^{K} E[f_i;K]}.
\]
Wideband slope

\[S_0 = \frac{2C' (0)^2}{-C'' (0)} \]

\[= 2 \left(\int_0^\infty \frac{y}{1+\text{SNR}} dF_y(y) \right)^2 \]

\[\Rightarrow \int_0^\infty \left(\frac{y}{1+\text{SNR}} \right)^2 dF_y(y) \text{ SNR} \to 0 \]

\[= 2 \mathbb{E} [y]^2 \]

\[\frac{\mathbb{E} [y^2]}{\mathbb{E} [y^2]} \]

\[= 2 \left(\sum_{i=K-K_A+1}^K \mathbb{E}[f_i^2] \right)^2 \]

\[= \sum_{i=K-K_A+1}^K \left(\frac{\mathbb{E}[s^2]}{\mathbb{E}[s]^2} \mathbb{E}[f_i^2] + \sum_{j=K-K_A+1,j \neq i}^K \mathbb{E}[f_i f_j \mid f_i^2] \right) \]

\[\text{ (11)} \]

\[\text{ (12)} \]

\[\text{ (13)} \]

\[\text{ (14)} \]
Increase K_A, lose in $(E_b/N_0)_{\text{min}}$, win in wideband slope.

For larger K you lose less! (solid $K = 10$, dashed $K = 1000$)
System capacity 1.1: low spectral efficiency

What is happening

- For larger K, the difference of K_A largest f_k diminishes
- Second moment of y inversely proportional to K_A^2
- For large K_A:

\[
2 \mathbb{E} \left[\frac{1}{K_A} \sum_{k \in A} d_k \right]^2 \quad \frac{2 \mathbb{E} \left[\mathbb{E} [d] \right]^2}{\mathbb{E} \left[\mathbb{E} [d^2] \right]} = 2
\]

Taking $K_A = \gamma K \to \infty$, $\gamma \leq 1$

- $(E_b/N_0)_{\text{min}} = \frac{\log(2)}{E[s] E_{\mathcal{A}|f}}$
- $S_0 = 2$
Reminder for dB penalty

\[C (\text{b/s/Hz}) \]

\[S_0 \]

\[\text{Eb/N0_min} \]

\[\text{3dB L_{inf}} \]

\[\text{3dB} \]

\[\text{Eb/N0 (dB)} \]
\[\mathcal{L}_\infty = \lim_{\text{SNR} \to \infty} \left(\log_2 \text{SNR} - \int_0^\infty \log_2 (1 + y\text{SNR}) \, dF_y(y) \right) \quad (15) \]

\[= -\mathbb{E}_y [\log_2(y)] \quad (16) \]

\[\leq -\mathbb{E}_s \left[\log_2 \left(\frac{1}{K_A} \sum_{i=1}^{K_A} s_i \right) \right] \quad (17) \]

\[-\mathbb{E}_{f_{K-K_A+1},K} [\log_2 (f_{K-K_A+1},K)] \cdot \quad (18) \]
Larger K_A gives
- smaller penalty due to (17) – near-far gain (Jensen)
- larger penalty due to (18) – lost diversity gain.

Also
- Near-far gain is bounded.
- Multiuser diversity loss is a function of user population size.
- There is a K-dependent optimal K_A.
System capacity 2: high spectral efficiency
Comparison to PFS: I

Exact behavior at low spectral efficiency ($K = 100$).
Already with 10 users scheduling 2 at a time is ok.
Asymptotic tools can simplify your life.
Minimum E_b/N_0, wideband slope and dB penalty useful parameters to analyze
Scheduling multiple users with group-PFS
 - increases wideband slope
 - increases minimum E_b/N_0
 - decreases dB penalty with high enough K