Optimal Resource Allocation in Downlink of a two cell OFDMA network

Dhananjaya Ponukumati

Eurecom
Outline

1 Introduction
 - Background
 - Network Model
 - Problem formulation

2 Analysis
 - Application of theory
 - Algorithm

3 Numerical Results
 - Simulation setting
 - Numerical Results (1)
 - Numerical Results (2)
 - Numerical Results (3)
 - Numerical Results (4)

4 Conclusions
Background

- resource allocation in OFDMA
 - subcarriers
 - power
- resource allocation in a single cell
 - disjoint resource allocation
 - joint resource allocation [Seong:06]
- multi cell networks
 - inter cell interference limits independent resource allocation
 - fixed frequency reuse
 - Random frequency reuse [Kiani:06]
- we propose joint resource allocation in the network
K_1 users in cellA and K_2 users in cellB

N subcarriers in each cell

$p_{kn}^{(1)}, p_{jn}^{(2)}$ are powers allocated to user k in cellA and to user j in cellB respectively
Network Model (2)

- $h_{kn}^{(11)}, h_{jn}^{(22)}$ are direct channel gain in cellA and cellB respectively.
- $h_{kn}^{(21)}, h_{jn}^{(12)}$ are interference channel gains in cellA and cellB respectively.
- $r_{kn}^{(1)}, r_{jn}^{(2)}$ are rates of user k in cellA and user j in cellB respectively.
Problem formulation

- **Objective:** Maximise sum rate of two cells with power constraints.
 \[
 \max \sum_{n=1}^{N} \left(\sum_{k=1}^{K_1} r_{kn}^{(1)} + \sum_{j=1}^{K_2} r_{jn}^{(2)} \right)
 \]

- **Subject to**
 - OFDMA constraints: Each subcarrier is allocated to a single user in a cell \(p_{in}^{(1)} p_{jn}^{(1)} = 0 \forall i \neq j \) and also \(p_{in}^{(2)} p_{jn}^{(2)} = 0 \)
 - Total power constraints
 - power allocated in cell A is less than the \(P_{tot} \)
 - power allocated in cell B is less than the \(P_{tot} \)
Application of Lagrange dual theory

- **Primal objective function**
 \[
 \max \sum_{n=1}^{N} \left(\sum_{k=1}^{K_1} r_{kn}^{(1)} + \sum_{j=1}^{K_2} r_{jn}^{(2)} \right)
 \]

- **Constraints**
 - Each subcarrier in a cell should be used by a single user
 - Total power allocated in each cell is less than the \(P_{\text{tot}} \)

- Construct the Lagrangian with Lagrange multipliers
- Dual objective is unconstrained maximum of the Lagrangian is \(g(\alpha_1, \alpha_2) \)
- Minimise Dual objective \(g(\alpha_1, \alpha_2) \) and \(\alpha_1 > 0, \alpha_2 > 0 \)
Algorithm

- Initialise α_1, α_2 to large value.
- while ((power consumed in cell1 < total power) and (power consumed in cell2 < total power))
 - For all the subcarriers
 - Choose the best user combination among of $K_1 * K_2$
 - end
- Minimise dual objective $g(\alpha_1, \alpha_2)$ with gradient search method.
Simulation setting

- Frequency non selective Rayleigh fading
- \(K1=2; K2=2; N=8 \)
- Standard deviation of channel coefficients: \(h11=1; h22=1; h12=0.1; h21=0.1 \)
Profile of the lagrangian for a subcarrier

Shape of the lagrangian for a tone in high interference condition

Shape of the lagrangian for a tone in low interference condition
Comparison of power allocation for different schemes for N=8 and N=16

Figure: Comparison of power allocation for different schemes for N=8 and N=16
Numerical Results (3)

Figure: Comparison of sum rate for different schemes for N=8 and N=16
Figure: Comparison of sum rate for different schemes in a pathloss model
Conclusions

- Proposed scheme shows significant gains compared to fixed frequency reuse
- Soft frequency reuse
- Distributed schemes should be explored
