Spectral Efficiency of Cognitive Radio Systems

Majed Haddad, Aawatif Menouni Hayar and Mérouane Debbah
Mobile Communications Group

Institut Eurécom, France

March 17, 2007
RF Spectrum occupation from 1.39 to 5.923 GHz

Figure: Mid-Band.

Figure: High-Band.
Why Cognitive Radio?

- In some locations and/or at some times of the day, 70 percent of the allocated spectrum may be sitting idle.
- The FCC has recently recommended that significantly greater spectral efficiency could be realized by deploying wireless devices that can coexist with the licensed users.

Cognitive Radio Overview

- A new class of radios was defined by the term *cognitive radio*
- Several definitions (and variations) of Cognitive Radio exist:
 1. Mitola\(^2\) - "Cognitive radio signifies a radio that employs model based reasoning to achieve a specified level of competence in radio related domains".
 2. FCC - "A cognitive radio (CR) is a radio that can change its transmitter parameters based on interaction with the environment in which it operates".
- Such devices must be able to:
 1. *sense* the spectral environment over a wide bandwidth,
 2. *detect* the presence/absence of legacy users (primary users),
 3. *adapt* the parameters of their communication scheme only if the communication does not interfere with primary users.

1. The System Model
 - The Cognitive Radio Scenario,
 - Sensing.

2. Performance Analysis
 - spectral efficiency analysis,
 - asymptotic performance.

3. Simulation results
1. The System Model
 - The Cognitive Radio Scenario,
 - Sensing.

2. Performance Analysis
 - spectral efficiency analysis,
 - asymptotic performance.

3. Simulation results
1. The System Model
 - The Cognitive Radio Scenario,
 - Sensing.

2. Performance Analysis
 - spectral efficiency analysis,
 - asymptotic performance.

3. Simulation results
Part I
System model
The System model

Figure: Two-user cognitive radio TDD-uplink system in a wideband/multiband context.
The cognitive radio scenario

- We investigate the idea of using cognitive radio to reuse locally unused spectrum to increase the total system capacity,
- We consider a multiband/wideband system in which users wish to communicate to the base station, subject to mutual interference,
- We assume that each user knows only his channel and the unused spectrum through adequate sensing,
- We impose the constraint that users successively transmit over available bands through proper water filling:

\[P_i = \left(\frac{1}{\gamma_0} - \frac{N_0}{|h_i|^2} \right)^+ \]

- The cognitive user will listen to the channel and, if sensed idle, will transmit during the voids.
The cognitive radio scenario

Sensing

Figure: One primary user and two cognitive users in a system with $N = 8$ sub-bands.
The received signal at user i can therefore be written as:

$$y_i^i(k) = \begin{cases}
 c_{i-1,i}^i(k)\sqrt{P_{i-1}^i S_{i-1}^i(k)} + n_{i-1}^i(k), & \text{if } P_{i-1}^i \neq 0 \\
 n_{i-1}^i(k), & \text{otherwise}
\end{cases}$$

Possible ways to detect the presence/absence of a primary user:

1. power detection,
2. radar detection (Neyman Pearson test)
Part II

Performance Analysis
The capacity per band of user l given a number of sub-bands N is:

$$C_{l,N} = \frac{1}{\text{card}(\Omega_l)} \sum_{i \in \Omega_l} \log_2 \left(1 + \frac{P_i^l \mid h_i^l \mid^2}{\sigma^2} \right)$$ \hspace{1cm} (1)$$

Where Ω_l represents the set of the remaining idle sub-bands sensed by user l.

The optimal power allocation which maximizes the transmission rate of user l is:

$$P_i^l = \left(\frac{1}{\gamma_0} - \frac{N_0}{\mid h_i^l \mid^2} \right)^+$$
The spectral efficiency per band of user l is given by:

$$\Phi_{l,N} = \frac{1}{N} \sum_{i \in \Omega_l} \log_2 \left(1 + \frac{P_i |h_i|^2}{\sigma^2} \right)$$ (2)

By multiplying and dividing (2) by $\text{card}(\Omega_l)$, we obtain:

$$\Phi_{l,N} = \begin{cases}
\Delta_{1,N} \cdot C_{1,N}, & \text{if } l = 1 \\
\Delta_{l,N} \cdot C_{l-1,N}, & \text{for } l \in [2, L]
\end{cases}$$ (3)

We define $\Delta_{l,N}$ as the **band factor gain** of user l for N sub-bands, namely:

$$\Delta_{l,N} \triangleq \frac{\text{card}(\Omega_l)}{N}, \text{ for } l \in [1, L]$$ (4)
The sum spectral efficiency of a system with N sub-bands per user is given by:

$$\Phi_{sum,N} = \sum_{l=1}^{L} \Phi_{l,N}$$
Asymptotic Performance

- Devices are assumed to operate in a wide-band context (i.e. $N \to \infty$).

- The instantaneous capacity of user l for a finite number of sub-bands in (1) becomes:

$$C_{l,\infty} = \int_{0}^{\infty} \log_2 \left(1 + \frac{P_l(t) \cdot t}{\sigma^2} \right) \cdot e^{-t} dt, \quad \text{for} \quad l \in [1, L]$$

- Similarly to our approach for finite N, we define the band factor gain Δ as the fraction of the band sensed idle from user l to user $l + 1$ over the total bandwidth W:

$$\Delta \triangleq \frac{\Delta f}{W}, \quad \text{for} \quad l \in [2, L]$$
The asymptotic spectral efficiency of user l is given by:

$$\Phi_{l,\infty} = \begin{cases}
C_{1,\infty}, & \text{if } l = 1 \\
\Delta_{\infty} \cdot C_{l-1,\infty}, & \text{for } l \in [2, L]
\end{cases}$$

(6)

Where Δ_{∞} is given by:

$$\Delta_{\infty} = 1 - \exp(-\gamma_0 \sigma^2)$$

The overall asymptotic sum spectral efficiency for a system with L users is therefore:

$$\Phi_{\text{sum,}\infty} = \frac{1 - \Delta_{\infty}^L}{1 - \Delta_{\infty}} \cdot C_{1,\infty} \geq 1$$

(7)
Part III

Simulation Results
Figure: Comparison between theoretical expression of the sum spectral efficiency and simulated one for $L = 5$ and $N=32$.
Figure: Sum spectral efficiency gains of the system with 5 users.
Simulation Results

Figure: The maximum number of users for different number of sub-bands, N.
Simulation Results

Thank You for attention!

Any Questions?