Introduction

- **Routing is a crucial task for wireless networks**
 - Having robust and correct algorithms is essential
 - Given their distributed behavior, designing such algorithms is a complex and error prone task

- **Formal Verification**
 - Is a technique to guarantee that a formal specified system has/has not an specific property
Formal Verification Approaches

- Still not very commonly applied to routing
 - Although, some researchers have been working on it
 - Considered hard and not worthy by many

- Existing methods
 - Hard to implement
 - Not general enough
 - Focus one specific case or algorithm
 - Specific topologies, number of nodes
 - Not able to handle the *dynamic* behavior of the network
 - Topology changes and mobility
Methodology

- Intend to be a simple and general

- Step by step guide
 - List of procedures that should be followed to formal verify a given algorithm
 - Most of the steps are well known and used in the field

- Based on model checking
 - Almost all the procedures exist to avoid the combinatorial state explosion problem
Ground Principles

- The methodology is grounded on some basic principles
 - Topology abstraction
 - Node position independence
 - Lower layers services trustability
Modeling

- Represent all possible relations
- Communicating channel
 - Common to every node in the network
- Three *kinds* of nodes to represent the network
- Flooding representation
 - Two messages can represent all existing relations in a flooding
Modeling

- **Mobility**
 - The main consequence of the mobility is the occurrence of broken links. If we model all possible relations we also model mobility.

- **Information modeling**
 - Model as variable, boolean if possible
 - Initialization should be random whenever possible
Modeling

- **Simplifications and abstractions**
 - As far does not compromise the protocol representation

- **Analysis**
 - Every response MUST to be analyzed to guarantee it is an error in the protocol and not in the model
Methodology Applied

- To validate the method three different algorithms where chosen
 - LAR, DREAM, OLSR
 - Two geographic algorithms
 - One newer and standardized
 - We used SPIN model checker but, in principle, any tool that enables the channel implementation could be used

- All of them present designing errors, some of these not reported before
Methodology Applied

- **LAR 1 and 2**
 - Geographical
 - Controlled flooding

- **Failures**
 - Loop
 - Delivering message failure
Methodology Applied

- **DREAM**
 - Geographical
 - Controlled flooding

- **Failures**
 - Loop
 - Delivering message failure
Methodology Applied

- **OLSR**
 - May fail delivering messages during routing table recalculation
 - Does not control counter overflow
 - Older information may be kept on the routing tables instead of newer ones
 - The two previous errors can also lead to routing loop, at least for a period of time
 - Control messages may be discarded and not all two hop neighbors may receive it
Conclusion

- The method presented is simple, but effective
 - Formal verification does not NEED to be hard to give useful results

- Independent approach
 - Handles mobility
 - Handles flooding
 - Independent of number of nodes

- General verified procedures can be aggregate into a library to make the verification of newer protocols even easier
Methodology for Formal Verification of Routing Protocols for Ad Hoc Wireless Networks

D. Câmara, A. A. F. Loureiro, F. Filali