Diversity Aspects of Linear and Decision-Feedback Equalizers for Frequency-Selective Multi-Antenna Channels

Dirk T.M. Slock

Eurecom Institute

Sophia Antipolis - FRANCE
Outline

- SIMO MFB and SINR of LE and DFE
- outage-rate tradeoff
- outage analysis of suboptimal receiver SINR
- Linear Equalization (LE)
 - LE in Single Carrier Cyclic Prefix (SC-CP) systems
 - non-causal infinite length LE
 - FIR LE
- Decision-Feedback Equalization (DFE)
 - DFE with ideal Feedforward and reduced Feedback filters
 - DFE for SC-CP systems
 - FIR DFE
- frequency-selective MIMO tradeoff
SIMO system

\[
\begin{align*}
\mathbf{y}_k &= \mathbf{h}[q] a_k + \mathbf{v}_k \\
&= \begin{pmatrix} y_k \\ y_{k-1} \end{pmatrix} = \begin{pmatrix} h \end{pmatrix} \begin{pmatrix} q \end{pmatrix} \begin{pmatrix} a_k \end{pmatrix} + \begin{pmatrix} v_k \end{pmatrix}
\end{align*}
\]

- \(p \) is the number of subchannels
- The noise power spectral density matrix is \(S_{\mathbf{vv}}(z) = \sigma_v^2 I \)
- \(q^{-1} \) is the unit sample delay operator: \(q^{-1} a_k = a_{k-1} \)
- \(h[z] = \sum_{i=0}^{L} h_i z^{-i} \) is the channel transfer function
- \(L = \text{channel delay spread in symbol periods} \)
- In the Fourier domain: \(h(f) = h[e^{j2\pi f}] \)
Let $\mathbf{h} = \begin{bmatrix} h_0 \\ \vdots \\ h_L \end{bmatrix}$ contain all channel elements.

By default $\mathbf{h} \sim \mathcal{CN}(0, \frac{1}{L+1} I_{p(L+1)})$ i.i.d. channel model

so that spatio-temporal diversity of order $p(L + 1)$ is available.

$\rho = \frac{\sigma_v^2}{\sigma^2}$ average per subchannel SNR

full CSIR, no CSIT
introduce $\delta = \begin{cases}
0 & \text{, MMSE-ZF design,} \\
1 & \text{, MMSE design.}
\end{cases}$

- $\text{MFB} = \rho \int_{-\frac{1}{2}}^{\frac{1}{2}} \| \mathbf{h}(f) \|^2 \, df = \rho \int_{-\frac{1}{2}}^{\frac{1}{2}} (\| \mathbf{h}(f) \|^2 + \frac{\delta}{\rho}) \, df - \delta$

 arithmetic average

- $\text{SINR}^{\delta}_{DFE} = \rho \exp \left[\int_{-\frac{1}{2}}^{\frac{1}{2}} \log(\| \mathbf{h}(f) \|^2 + \frac{\delta}{\rho}) \, df \right] - \delta$

 geometric average

- $\text{SINR}^{\delta}_{LE} = \rho \left[\int_{-\frac{1}{2}}^{\frac{1}{2}} (\| \mathbf{h}(f) \|^2 + \frac{\delta}{\rho})^{-1} \, df \right]^{-1} - \delta$

 harmonic average

$\text{SINR}^{\delta}_{LE} \leq \text{SINR}^{\delta}_{DFE} \leq \text{MFB} \, , \, \text{SINR}^{0} \leq \text{SINR}^{1}$
Outage-Rate Tradeoff

- normalized SINR γ, $\text{SINR} = \rho \gamma$
- dominating term in cdf of γ: $\text{Prob}\{\gamma \leq \epsilon\} = c \epsilon^k$ for small $\epsilon > 0$
- outage probability $\text{Prob}\{\text{SINR} \leq \alpha\} = c \left(\frac{\alpha}{\rho}\right)^k = \left(\frac{\alpha}{g \rho}\right)^k$

$k =$ diversity order, $g = c^{-1/k} =$ coding gain (reduction in SNR required for identical outage probability)

- suboptimal Rx (LE, DFE): channel-equalizer cascade $= \text{AWGN}$ channel with Mutual Information $C = \log(1 + \text{SINR})$
 also true for MFB, by using non-causal UMMSE DFE
- MMSE ZF design: Gaussianity OK
- MMSE design: Gaussianity OK if input Gaussian, or ISI negligible effect at high SNR for QAM inputs
Outage-Rate Tradeoff (2)

- at high SNR ρ, $C = \log(1 + \text{SINR}) \approx \log \rho$

So consider rate $R = r \log \rho$ (nats),

$r \in [0, 1]$ is the normalized rate.

Then the outage probability at high SNR is

$$P_o = \text{Prob}\{C < R\} = \text{Prob}\{\log(1 + \text{SINR}) < \log(\rho^r)\}$$

$$= \text{Prob}\{\rho \gamma < \rho^r - 1\} = \text{Prob}\{\gamma < \frac{1}{\rho(1-r)} - \frac{1}{\rho}\}$$

$$= \text{Prob}\{\gamma < \frac{1}{\rho(1-r)}\}, \text{ for } r > 0$$

$$= c \frac{1}{\rho^{(1-r)k}} = \frac{1}{(g \rho)^{(1-r)k}}$$
Outage-Rate Tradeoff (3)

- Hence for $r \in (0, 1]$:

\[
d(r) = (1 - r)^k, \quad g(r) (\text{dB}) = -\frac{10}{(1 - r)^k} \log_{10} c
\]

$d(r) = \text{diversity(order)-rate tradeoff}$,
$g(r) = \text{tradeoff dependent coding gain}$.

As $c > 1$ usually, the coding gain is actually a coding loss that decreases with increasing diversity order k and decreasing rate r.
The case $r = 0$ (fixed rate) requires separate investigation.
Optimal Outage-Rate Tradeoff

- MI with white Gaussian input

\[
\int_{-\frac{1}{2}}^{\frac{1}{2}} \log(1 + \rho \| h(f) \|^2) df = \log(1 + \text{SINR}_{\text{DFE}}^{\text{MMSE}})
\]

[MedlesSlock:isit04]: \(\text{SINR}_{\text{DFE}}^{\text{MMSE}} \geq \beta_L \text{ MFB} \Rightarrow k = p(L+1) \)

and

\[
d^*(r) = (1 - r) p(L + 1), \quad r \in [0, 1]
\]

which is valid for Rayleigh \(h \) with non-singular \(R_{hh} \).

- This tradeoff can be achieved by transmitting i.i.d. QAM symbols from a constellation of size \(e^R = \rho^r \) and using a MMSE DFE Rx. [MedlesSlock:ITsubm04] \Rightarrow \text{at high SNR the probability of (symbol or frame) error is dominated by the outage probability.}
Outage Analysis of Suboptimal Rx SINR

- A perfect outage occurs when $\text{SINR} = 0$
- For the MFB this can only occur if $\mathbf{h} = 0$.
- For a suboptimal Rx however, the SINR can vanish for any \mathbf{h} on the Outage Manifold $\mathcal{M} = \{\mathbf{h} : \text{SINR}(\mathbf{h}) = 0\}$.
- At fixed rate R, the diversity order = codimension of (the tangent subspace of) the outage manifold, assuming this codimension is constant almost everywhere and assuming a channel distribution with finite positive density everywhere (e.g. Gaussian with non-singular covariance matrix).
 For example, for the MFB the outage manifold is the origin, the codimension of which is the total size of \mathbf{h}.
Outage Analysis of Suboptimal Rx SINR (2)

- The codimension is the (minimum) number of complex constraints imposed on the complex elements of \mathbf{h} by putting $\text{SINR}(\mathbf{h}) = 0$.

- An actual outage occurs whenever \mathbf{h} lies in the Outage Shell, a (thin) shell containing the outage manifold. The thickness of this shell shrinks as the rate increases.

- More precisely, the diversity order may depend on the channel distribution details within the outage shell.
LE in SC-CP systems

- after cyclic prefix (CP) insertion, block of N symbols: beq

\[Y = HA + V \]

\[
H = \begin{bmatrix}
 h_0 & & & h_L \\
 \vdots & & \ddots & \vdots \\
 h_L & & & h_0 \\
\end{bmatrix}
\]

- applying DFT at Rx

\[
\begin{bmatrix}
 F_{N,p}Y \\
 U
\end{bmatrix} = \begin{bmatrix}
 F_{N,p}H \overset{F_N^{-1}}{\mathcal{H}} \overset{F_N A}{X} + F_{N,p}V \\
 W
\end{bmatrix}
\]

where \(F_{N,p} = F_N \otimes I_p \),

\(\mathcal{H} = \text{blockdiag}\{h_0, \ldots, h_{N-1}\} \) with \(h_n = h(f_n), f_n = \frac{n}{N} \).

At tone \(n \):

\[u_n = h_n x_n + w_n. \]
LE in SC-CP systems (2)

- ZF ($\delta = 0$) or MMSE ($\delta = 1$) LE produces per tone
 $\hat{x} = (h^H h + \frac{\delta}{\rho})^{-1} h^H u$ from which \hat{a} is obtained after IDFT with

 \[
 \text{SINR}_{\text{CP-LE}}^{\delta} = \rho \left(\frac{1}{N} \sum_{n=0}^{N-1} (\|h_n\|^2 + \frac{\delta}{\rho})^{-1} \right)^{-1} - \delta
 \]

- For $N \geq L+1$, the (ZF) outage manifold is the collection of
 manifolds for which $h_n = 0$ for some n (SINR = 0). As a result
 the codimension is p. Hence

 \[
 d_{\text{CP-LE}}^{\text{ZF}}(r) = (1 - r)p , \quad r \in [0, 1]
 \]

 any frequency diversity is lost! Also for MMSE, except

 $d_{\text{CP-LE}}^{\text{MMSE}}(0) = p (L + 1)$: the MMSE has full diversity at constant
 rate R (at finite SNR, some $r > 0$ also).
LE in SC-CP systems (3)

\[d(r) \]

\[p(L + 1) \]

OPTIMAL

\[p \]

MMSE LE

MMSE ZF LE

0

0

1

r
Non-Causal Infinite Length Linear Equalizer

- \(\text{SINR}_{LE}^{ZF} = \frac{\rho}{\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\|h(f)\|^2} df} \)

- The outage manifold is clearly \(\{ h : h(f) = 0 \text{ for any } f \} \). For any given \(f \) the codimension is again \(p \).

- In spite of the ambiguity on \(f \), the diversity order is \(p \).

Consider e.g. the case \(L = 1 \): \(\{ h : h_0 = h_1 e^{-j(2\pi f+\pi)} \} \) which for the SISO case becomes \(|h_0| = |h_1| \), for which it is easy to verify that the diversity order is 1.
FIR Linear Equalization

- FIR LE of length N.
- SIMO channels: \exists ZF FIR equalizers of length N for FIR channels (Bezout identity) if $N \geq \frac{L}{p-1}$. LE design is based on a banded block Toeplitz input-output matrix

$$
\mathbf{H} = \begin{bmatrix}
\mathbf{h}_L & \cdots & \mathbf{h}_0 \\
\mathbf{h}_L & \cdots & \cdots \\
& \cdots & \cdots & \cdots \\
\mathbf{h}_L & \cdots & \mathbf{h}_0
\end{bmatrix}
$$

- for a certain equalizer delay d

$$
\text{SINR}_{FIR-LE}^\delta + \delta = \frac{\rho}{e_d^H \left(\mathbf{H}^H \mathbf{H} + \frac{\delta}{\rho} \right)^{-1} e_d} = \frac{\rho}{\sum_i \frac{1}{\lambda_i + \frac{\delta}{\rho}} |V_{i,d}|^2}
$$

where $e_d = [\underbrace{0 \cdots 0}_{d} 1 0 \cdots 0]^T$,

SVD $\mathbf{H}^H \mathbf{H} = \mathbf{V} \Lambda \mathbf{V}^H = \sum_i \lambda_i \mathbf{V}_i \mathbf{V}_i^H$.

FIR Linear Equalization (2)

• The (ZF) outage manifold is determined (again) by $\lambda_{min} = 0$. For $N \geq \frac{L}{p-1}$, $\mathbf{H}^H \mathbf{H}$ singular $\iff \mathbf{H}$ loses full column rank $\iff \mathbf{h}[z_o] = 0$ for some z_o: the subchannel transfer functions have a zero in common. This imposes on the $p-1$ other subchannels to have a zero equal to a zero of the first subchannel. Hence the codimension of the outage manifold is $p-1$. So

$$d_{FIR-LE}(r) = (1 - r)(p - 1), \quad r \in (0, 1), \quad d \in [0, L+N]$$

$$d_{MMSE}(0) = p \min\{N, L+1\} \text{ for appropriate } d$$

• $V_{min} = \sqrt{\frac{1-|z_o|^2}{1-|z_o|^2(N+L)}} \begin{bmatrix} 1 & z_o & z_o^2 & \cdots & z_o^{N+L-1} \end{bmatrix}^T$ associated to $\lambda_{min} = 0$. For $r = 0$, ZF, diversity jumps from $p-1$ to p as $N \to \infty$ since weighting $|V_{min,d}|^2 \to 0$ unless $|z_o| = 1$.
DFE with Ideal FFF and Reduced FBF

- DFE reaches full diversity as long as the feedback order \(M = L \).
- Consider the MSE in a DFE design, after optimization of the unconstrained feedforward filter, with the feedback filter \(b(f) \) still to be designed

\[
\text{MSE} = \sigma_v^2 \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{|b(f)|^2}{\| h(f) \|^2 + \frac{\delta}{\rho}} \, df
\]

With \(M = 0 \) (\(b(f) = 1 \)), the MSE explodes whenever \(h(f) = 0 \) (outage manifold LE). When \(M = L \), as \(h(f) = 0 \) can be zero only in at most \(L \) frequencies, the optimized feedback filter \(b(f) \) will put zeros in those frequencies and hence can always prevent the MSE from exploding. When \(M < L \), we have an outage whenever \(h(f) \) has \(M+1 \) zeros.

- So the diversity for any \(M \) is \(d_{DFE}^{ZF}(r) = p(M+1)(1-r) \).
DFE in Single Carrier Cyclic Prefix Systems

- The problem of infinite length non-causal feedforward filters (FFFs) in the DFE can be overcome by introducing a CP and performing the FFF’ing in the frequency domain (SC-CP) and the feedback filtering in the time domain, see [Falconer:WhitePaper02] (where oversampling leads to increased DFT size which is not necessary).

- The same expressions as for the infinite length FFF case are obtained by replacing integration in the frequency domain by averaging over tones. The same diversity results hold.
FIR Decision-Feedback Equalization

- Consider now a FFF of length N, feedback filter order $M = L$ and equalization delay equal to $N - 1$.

FIR FFF DFE design is based on a banded block Toeplitz matrix

$$
\overline{H} = \begin{bmatrix}
 h_L & \cdots & h_0 \\
 h_L & \cdots & h_0 \\
 \vdots & \ddots & \vdots \\
 h_L & \cdots & h_0 \\
\end{bmatrix}, \quad N > L+1
$$

outage: last column of \overline{H} is \perp w.r.t. other columns fades

- For $N = 1$, $d^{ZF}(0) = p$ whereas $d^{ZF}(0) = p(L+1)$ for $N \to \infty$. For intermediate N, intermediate diversity orders are obtained.

- For instance with $L = 1$, for $N = 2$, $d^{ZF}(0) = 2p-1$ and fractional diversities $\in (2p-1, 2p)$ are obtained for $N > 2$.
MIMO Channel Model

\[H(q) = \sum_{l=0}^{L-1} H_l q^{-l}, \quad q^{-1} x_k = x_{k-1}. \]

\[H_l: N_r \times N_t. \]

\(L \): channel delay spread. SNR \(\rho = \frac{P}{N_t \sigma_v^2} \).

\[y_k = H(q) a_k + v_k = \sum_{l=0}^{L-1} H_l a_{k-l} + v_k, \]

entries of \(H_l, l = 0, \ldots, L - 1 \): i.i.d. Gaussian \(H_l^{rt} \sim \mathcal{CN}(0, 1) \).

Notation: SIMO: \(L+1 \) \quad \rightarrow \quad MIMO: \(L \)
Diversity vs Multiplexing Background

[Zheng&Tse’03]

- A coding scheme $\mathcal{C}(\rho)$ is a family of codes of block length T, that supports a bit rate $R(\rho)$.

- **Spatial multiplexing** r: $\lim_{\rho \to \infty} \frac{R(\rho)}{\ln(\rho)} = r$.

- **Diversity gain** d: $\lim_{\rho \to \infty} \frac{\ln P_e(\rho)}{\ln(\rho)} = -d$.

$d^*(r)$ denotes the supremum of the diversity advantage achieved over all possible schemes.

In practice: $P_e(\rho) = P_{out}(\rho)$, $d^*(r) = d_{out}^*(r)$.

Proof of $d_{out}(r)$ corrected here w.r.t. [Medles&Slock’ISIT05].
Diversity vs Multiplexing Background (2)

- **Flat MIMO channel** ($L = 1$) For $T \geq N_t$, the optimal trade-off curve $d^*(r)$ is given by the piecewise-linear function connecting the points $(k, d^*(k))$, $k = 0, 1, \ldots, p$, where

\[
d^*(k) = (p - k)(q - k),
\]

\[
p = \min\{N_r, N_t\},
\]

\[
q = \max\{N_r, N_t\}.
\]

Achieved by the family of codes with non-vanishing determinant [Elia, Pawar et al’ ALLERTON04].

- **SIMO/MISO frequency selective channel** The optimal trade-off curve is given by the linear function $d^*(r) = Lq(1 - r)$ [Grokop & Tse’ISIT04]. For SIMO achieved by using QAM at Tx and MMSE DFE at Rx [Medles & Slock’ISIT04].
Diversity vs Multiplexing Background (3)

Diversity Gain: $d^*(r)$

Spatial Multiplexing Gain: r

(0, N_r, N_t)

(1, ($N_r - 1$)($N_t - 1$))

(2, ($N_r - 2$)($N_t - 2$))

(r, ($N_r - r$)($N_t - r$))

(min(N_r, N_t), 0)

Diversity vs. Multiplexing optimal tradeoff for flat MIMO channel
Div. vs Mul. for MIMO FS Channel

- Assume $T >> L$, mutual information for white input

$$I_T(H) \approx I(H) = \frac{1}{2\pi j} \int \frac{dz}{z} \ln \det(I + \rho H(z)H^\dagger(z)).$$

- The behavior of $I(H)$ is characterized by

$$I(H) \doteq \ln \det(I + \rho \bar{H}\bar{H}^H), \text{ where } \bar{H} = \begin{bmatrix} H_0 \\ \vdots \\ H_{L-1} \end{bmatrix} \text{ for } N_t \leq N_r,$$

$$\bar{H} = [H_0, H_1, \ldots, H_{L-1}] \text{ for } N_t \geq N_r.$$
The optimal trade-off curve $d^*(r)$ is given by the piecewise-linear function connecting the points $(k, d^*(k)), k = 0, 1, \ldots, p$, where

$$d^*(k) = (Lq - k)(p - k),$$

$$p = \min\{N_r, N_t\},$$

$$q = \max\{N_r, N_t\}.$$

For $N_t \leq N_r$, diversity is the same as for a flat MIMO channel with $N'_t = N_t$ and $N'_r = LN_r$.

Coding over L independent OFDM subcarriers (spacing of $\frac{1}{L}$):

$$d(r) = L(q - r)(p - r) \leq d^*(r) \rightarrow \text{suboptimal}.$$

Difference $d^*(r) - d(r) = (L - 1) r (p - r)$, peaks at $r = \frac{p}{2}$.

For large L and $N_r = N_t$, $d^*(p/2) \approx 2 d(p/2)$.
Div. vs Mul. for MIMO FS Channel (3)

Diversity Gain: \(d^* (r) \)

Spatial Multiplexing Gain: \(r \)

(0, \(L.N_r.N_t \))

(1, \((L.N_r - 1)(N_t - 1)\))

(2, \((L.N_r - 2)(N_t - 2)\))

(\(r, (L.N_r - r)(N_t - r) \))

(\(N_t, 0 \))

Diversity vs. Multiplexing optimal tradeoff for MIMO FS channel with \(N_t \leq N_r \)
Outage Manifolds Analysis

- parameterization FIR channel of rank $k \leq p = N_t \leq N_r = q$

$$\begin{align*}
\text{H}(z) &= \text{H}(z) \begin{bmatrix} I_k & \text{H} \end{bmatrix} \mathcal{P} \\
&= \text{FIR}_L \times p \quad \text{FIR}_L \times k \quad k \times (p-k) \quad \text{permutation} \\
&= \text{constant} \\
\end{align*}$$

degrees of freedom in $q \times p$ rank-k FIR-L manifold:

$$\begin{align*}
qkL + (p-k)k &= qL - (qL - k)(p - k) \\
\end{align*}$$

- To send at rate k, need to be guaranteed rank k. The diversity degree is the remaining number of degrees of freedom in $\text{H}(z)$:

$$d^*(k) = qL - (qL - (qL - k)(p - k)) = (qL - k)(p - k)$$
Concluding Remarks

- Existing diversity-rate tradeoff
 - at high SNR
 - focuses only on diversity order and not on coding gain/SNR offset

To observe the MIMO FS tradeoff, need to go to very high SNR (e.g. 50dB).
Also: MMSE LE.

- Work at finite SNR required.