Iterative Vehicular Channel Estimation for IEEE 802.11p

Thomas Zemen
Laura Bernadó, Nicolai Czink, Andreas Molisch

EURECOM, August 23, 2011

© FTW 2011

Outline

- Part I
 - Generalized discrete prolate spheroidal (DPS) sequences for iterative time-variant frequency-selective channel estimation
 - Backward compatible IEEE 802.11p pilot pattern evolution
 - Numerical simulation results for vehicle-to-infrastructure communications
- Part II
 - Outlook: Dynamic subspace selection

Introduction (I)

- Dependable connectivity is crucial for intelligent transportation systems (ITS)
 - Reliable
 - Low-latency
 - Strict packet delay bounds
- Safety-improvements
 - Collision avoidance
 - Emergency vehicle warning
 - Wrong-way driving warning
 - Lane change assistance

FTW Forschungszentrum Telekommunikation Wien

- 65 people carrying out research and development of technologies for future communication systems
- funded in the competence center program COMET by FFG
- with partners from academia and industry

FTW's ITS industry partners

FTW's ITS scientific partners
Safety Critical Scenarios

- Road crossing
 - Emergency vehicle warning
 - Intersection collision warning
 - Pre-crash sensing

- Merging lanes
 - Wrong way driving warning
 - Co-operative merging assistance

- Traffic congestion
- In-tunnel

Introduction (II)

- Intelligent transportation systems are based on
 - Vehicle-to-infrastructure (V2I) communications
 - Vehicle-to-vehicle (V2V) communications

- IEEE 802.11p protocol intended for vehicular communications
 - Based on the WiFi standard (802.11a)
 - Orthogonal frequency division multiplexing (OFDM)
 - 5.9 GHz band

Communication Scenarios

- mobile stations (MS) are moving, base station (BS) is fixed
- time-variant multi-path propagation
- interference

- transmitter and receiver are mobile
- safety critical scenarios

Measurement Scenario
Power Delay Profile

- Strong line of sight (LOS)
- Weak tail following LOS
- Multiple reflecting objects
- Delays change over time, as well as Doppler shifts
- Non-stationary fading process - can be assumed wide-sense stationary for a limited time interval (stationarity time) only

Local Scattering Function (LSF)

- Sampled time-variant frequency response $H[m, q]$
- Local scattering function [Matz 2005]

Time-Variant Multipath Propagation

- Time-variant frequency response
 \[
g[m, q] = g_{Tx}[q]g_{Rx}[q] \sum_{\ell=0}^{P-1} \eta_{\ell} e^{-2\pi i \nu_{\ell}(q) \theta_{\ell}} e^{2\pi i \nu_{\ell}}\]

 with $\nu(q) = ((q + N/2 \mod N) - N/2)$

- P propagation paths, with delay τ_{ℓ}, Doppler shift f_{ℓ} and complex weight η_{ℓ}
- Normalized Doppler shift $\nu_{\ell} = f_{\ell} T_{S}$
- Normalized delay (in an OFDM system) $\theta_{\ell} = \tau_{\ell} B / N$
A Priori Knowledge (I)

Local scattering function

A Priori Knowledge (II)

Doppler domain

- Maximum normalized Doppler bandwidth
 \[\nu_{\text{Dmax}} = \frac{\nu_{\text{max}} f_c}{c_0} \]
 \[T_S = B_{\text{Dmax}} T_S \ll \frac{1}{2} \]

- symmetric interval \(\mathcal{W}_t = (-\nu_{\text{Dmax}}, \nu_{\text{Dmax}}) \)

A Priori Knowledge (III)

Delay domain

- Maximum normalized path delay
 \[\theta_{\text{max}} = \frac{\tau_{\text{max}}}{B} < 1 \]

- asymmetric interval \(\mathcal{W}_t = (0, \theta_{\text{max}}) \)

Subspace Design (I)

- Two dimensional subspace channel model
 \[g[m, q] \approx \sum_{i=0}^{D_1-1} \sum_{k=0}^{D_2-1} u_i[m] \cdot u_k[q] \psi_{i,k} \]
 exploiting the low-dimensional subspace of the time-variant impulse response \(D_1D_2 < MN \).

- Discrete prolate spheroidal sequences (Slepian 78, Zemen et al. 05)
 - band-limited to a symmetric interval \((-\nu_0, \nu_0) \)
 - energy-concentrated in \(m \in \mathcal{I}_M = \{0, \ldots, M - 1\} \)
 - generalization needed for time-variant frequency-selective channels!
Subspace Design (II)

- Generalized discrete prolate spheroidal (DPS) sequences (Zemen et al. 2007)
 - band-limited to a region \mathcal{W}
 \[\mathcal{W} = \bigcup_{i=1}^{D} B_i \cup B_2 \cup \ldots \cup B_J \]
 - energy-concentrated in $m \in I_M = \{0, \ldots, M-1\}$
 \[\sum_{\ell=0}^{M-1} u_i[\ell, \mathcal{W}, \ell] \int_{\mathcal{W}} e^{i2\pi(\ell,m)\nu} d\nu = \lambda_i(\mathcal{W}, M) u_i[m, \mathcal{W}, M] \]
 - $\{u_i[m, \mathcal{W}, M]\}$ are doubly orthogonal on I_M and \mathcal{Z}
 - Essential subspace dimension $D'(\mathcal{W}) = |\mathcal{W}| + 1$

Subspace Design (III)

- Two dimensional generalized DPS channel model (Zemen et al. 11)
 \[g[m, q] \approx \sum_{i=0}^{D-1} \sum_{k=0}^{D-1} u_i[m, \mathcal{W}_i, M] \cdot u_k[q, \mathcal{W}_i, N] \psi_{i,k} \]

 - Time domain subspace:
 - models $g[m,q]$ for a single subcarrier q and $m \in I_M$
 - parameterized by max. support of Doppler power spectral density:
 \[\mathcal{W}_i = [-\nu_{\text{Dmax}}, \nu_{\text{Dmax}}] \]
 - Frequency domain subspace:
 - models $g[m,q]$ for a single OFDM symbol m and $q \in I_N$
 - parameterized by max. support of power delay profile:
 \[\nu_{\text{D}} = [0, \nu_{\text{Dmax}}] \]

IEEE 802.11p Pilot Pattern

OFDM Channel Estimation

- Coherent detection based on channel state information (CSI)
- CSI obtained from pilot symbols interleaved in time and frequency
- Pilot placement
 - Distance in time: $\Delta_t \leq \frac{B}{2f_{\text{Dmax}}(N + G)}$
 - Distance in frequency: $\Delta_f \leq \frac{N}{\tau_{\text{max}}B}$

IEEE 802.11p pilot pattern violates sampling theorem for non-line of sight situations when both τ_{max} and f_{Dmax} are large!
We introduce a postamble in a transparent fashion:

- The LENGTH field of the header indicates the length of the data symbols as before.
- One of the reserved SERVICE bits is used to indicate the existence of the postamble.

Iterative Channel Estimation

- Linear minimum mean square error (MMSE) filter used for
 - time-variant channel estimation
 - data detection

Frame Lengths Dependence

- Simulation parameters:
 - Modulation: QPSK
 - Car speed: 100 km/h
 - Frame length: 200 bytes
 - Channel model: exp. decaying PDP plus Clarke Doppler spectrum, non line of sight (NLOS) most critical situation

from a distribution with mean along a highway is shown in Fig. 18. A road-side Tx and a ve-

heits from vehicular measurements at

11p compliant

11p compliant + transparent postamble

Simulation parameters
- Modulation: QPSK
- Car speed: 100 km/h
- Frame length: 800 bytes
- Channel model: Clarke’s, non line of sight (NLOS) – most critical situation

Geometry Based Channel Model

Initial geometry

Diffuse Scatters

Discrete Static Non-Stationary Scatterers

Discrete Mobile Scatters

Rx

Tx

Diversity Changes Over Distance

Simulation parameters
- Modulation: QPSK
- Car speed: 100 km/h
- Frame length: 200 bytes
- Channel model: non-stationary GSCM
- Distances: 1, 50, 100, 200 m
- Perfect channel state information (CSI)

Required Number of Iterations

Simulation parameters
- E_b/N_0: 10 dB
- Modulation: QPSK
- Car speed: 100 km/h
- Frame length: 200, 400, and 800 bytes
- Channel model: JAKES, non line of sight (NLOS) – most critical situation
Non-Stationary Channel Model

Simulation parameters
- E_b/N_0: 8 dB
- Modulation: QPSK
- Car speed: 100 km/h
- Frame length: 200 bytes
- Channel model: non-stationary GSCM with strong line of sight component
- Distances: 1, 50, 100, 200 m

Summary – Part I

- IEEE 802.11p pilot pattern violates sampling theorem for NLOS situations
- Generalized DPS sequences enable tight two dimensional subspace design for time-variant channel estimation
- Iterative channel estimator reduces bit error rate by more than three magnitudes for NLOS and LOS situations
- Pilot pattern with transparent postamble reduces iterative channel estimation complexity by a factor of two to three