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• In cellular systems, reuse 1 considered for increased
spectral efficiency.

• But cells are not isolated.

⇒ INTERFERENCE!

• Hence, interest in BS cooperation schemes:
1. Network MIMO
2. Interference Avoidance
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1. In single cell processing (SCP),

• BS’s only aware of own-cell
data and linearly precode to
own-cell mobiles

• BS’s oblivious to interference
created in other cell

• Single-user detection at
mobiles

• BS’s precode as if they were
single isolated cells, but with
more noise at mobile receivers
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As with SCP:

• BS’s only aware of own-cell
data and linearly precode to
own-cell mobiles

• Single-user detection at
mobiles

But:

• Both base stations aware of
system-wide channel gains

• Precoding becomes a joint,
two-cell optimization
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• BS’s aware of all mobiles’ data
(system-wide data knowledge)

• BS’s aware of system-wide
channel gains

• Both BS’s jointly precode as in
“network MIMO”

How do these three approaches
compare?
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N antennas
A MIMO BC is as follows:

• There are K single-antenna
receivers (mobiles)

• N transmit antennas at the BS

• Denote the total received
signal (at all mobiles) by the
K × 1 received vector Y
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Linear precoding in the MIMO-BC:

data: 

precode and transmit: 

H

Y1

Y2

Y3

Y4

Y5

d = (d1, d2, ..., dK )t

Wd Y = HWd + Z

where

• H is the K × N MIMO channel
matrix

• W is the N × K precoding
matrix

• d is the vector of data
symbols, and z is the noise
vector

10/31



Linear Precoding

Zero forcing schemes

The following pre-coding matrices are well known:

• zero-forcing (ZF): precode so as to null the interference at
all mobiles

W(ZF ) = c1HH
[

HHH
]−1

11/31



Linear Precoding

Zero forcing schemes

The following pre-coding matrices are well known:

• zero-forcing (ZF): precode so as to null the interference at
all mobiles

W(ZF ) = c1HH
[

HHH
]−1

• regularized zero-forcing (RZF): similar to zero-forcing, but
with an additional regularization term added

W(RZF ) = c2HH
[

HHH + αIN
]−1

where IN is the N × N identity matrix, and α is a regularization
parameter.
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One may also seek optimal precoding matrices.

base station power constraint

SINR target = 

minimize power

γ

for all mobiles

We will consider power
minimization subject to rate
targets:

• Each mobile has the same
SINR target

• Each base station has the
same average power
constraint

• The objective is to minimize
total power subject to the
SINR target and per base
station power constraints
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base station power constraint 

SINR = 

γ

for all mobiles
γ

maximize
• Each mobile has the same

SINR target

• Each base station has the
same average power
constraint

• The objective is to maximize
the SINR target subject to the
per base station power
constraints
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Optimization for fixed MIMO receivers”, IEEE Trans SP
2006 -SCP paper

• The only extra feature here is the interference coupling
between cells

• The interference coupling means that the power
minimization problem is not always feasible.

When is the power minimization problem feasible?
Our large systems analysis will shed light on this question.
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• The problem is formulated and solved in Dahrouj and Yu,
“Coordinated beamforming for the multicell, multi-antenna
wireless system”, IEEE Trans W 2010 -CBf paper

• They develop an elegant up-link-downlink duality theory to
handle per base station power constraints

• When is the power minimization problem feasible?

Our large systems analysis will shed light on the question of
feasibility, as well as the gain of CBF over SCP
We will also extend the theory to the case of MCP
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regularization of a ZF that forces to zero interference in the
other-cell as well as the same-cell

• We will optimize the system loading (K/N)

• The optimal regularization parameter will also be obtained
from our analysis

Both RZF (for SCP) and GRZF (for CBf) are much easier to
implement than the optimal solution
We show that the CBf strategy in the CBf paper “converges” to
GRZF beamforming in our model.
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• Local CSIT at each base station and no data sharing →

Single cell processing (SCP)

• Shared CSIT and no data sharing → Coordinated
beamforming (CBf)

• Shared CSIT and data sharing → Multicell processing
(MCP)

Using large system analysis, we can

• Efficiently compare these architectures

• Simplify beamforming design for the finite system case
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Large systems analysis

Power minimization problem for SCP

Theorem
Assume N, K → ∞ such that K

N → β < ∞. Then the target

SINR of γ is achievable if and only if β
(

γ
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(

γ
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+ ǫγ
)

< 1.

• The per BS power converges to P =
βσ2γ

(

1 − β γ
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− βǫγ
) .

• Up to a constant, the optimal DL beamformer for user k in
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ŵSCP
kj =



IN +
λ̄

N

∑

k̄ 6=k

hH
k̄ ,j ,jhk̄,j ,j





−1

hH
k ,j ,j . (1)

where λ̄ =
γ

1 − β γ
1+γ

− βǫγ
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Large systems analysis

Power minimization problem for MCP

Theorem
Assume N, K → ∞ such that K

N → β < ∞. Then the target
SINR of γ is achievable if and only if β γ

1+γ
< 1.
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Power minimization problem for MCP

Theorem
Assume N, K → ∞ such that K

N → β < ∞. Then the target
SINR of γ is achievable if and only if β γ

1+γ
< 1.

• The per BS power converges to P =
1

1 + ǫ

βσ2γ

(1 − β γ
1+γ

)
.

• Up to a constant, the optimal DL beamformer for user k in
cell j is

ŵMCP
kj =






I2N +

λ̄

N

∑

(k̄ ,̄j)6=(k ,j)

~hH
k̄ ,j~hk̄,j







−1

~hH
k ,j . (3)

where λ̄ =
1

1 + ǫ

γ

(1 − β γ
1+γ

)
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Large systems analysis

Maximum rates

Theorem
In each scenario, the rates either increase indefinitely with β, or
are maximized at a finite β.
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Maximum rates

Theorem
In each scenario, the rates either increase indefinitely with β, or
are maximized at a finite β.
The rates are increasing with β when

• SCP: σ2

P + ǫ > 1.

• CBf: σ2

P + ǫ − 2ǫ2 > 1.

• MCP: σ2

P > 1 + ǫ.

25/31



Large systems analysis

Maximum rates

Theorem
Subject to per base station power constraint P, as N, K → ∞

such that K
N → β < ∞, the maximum asymptotic network-wide

achievable SINR is the unique solution to the following fixed
point equation:
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Figure: Large system analysis results vs. finite system optimization
for K = 3, Nt = 4 and SNR = 10 dB.
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