Large Systems Analysis of Cellular Network
MIMO

Stephen Hanly and Randa Zakhour

National University of Singapore

10/06/2010
Eurecom visit
Outline

Motivation

Linear Precoding

Optimization Framework

Large systems analysis

Numerical results

Conclusions
Motivation

Linear Precoding

Optimization Framework

Large systems analysis

Numerical results

Conclusions
Motivation

Why Network MIMO?
Why Network MIMO?

- In cellular systems, *reuse 1* considered for increased spectral efficiency.
Why Network MIMO?

• In cellular systems, *reuse 1* considered for increased spectral efficiency.
• But cells are not isolated.

⇒ INTERFERENCE!
Why Network MIMO?

- In cellular systems, *reuse 1* considered for increased spectral efficiency.
- But cells are not isolated.

⇒ INTERFERENCE!

- Hence, interest in BS cooperation schemes:
Motivation

Why Network MIMO?

• In cellular systems, *reuse 1* considered for increased spectral efficiency.
• But cells are not isolated.

⇒ INTERFERENCE!

• Hence, interest in BS cooperation schemes:
 1. Network MIMO
Why Network MIMO?

- In cellular systems, *reuse 1* considered for increased spectral efficiency.
- But cells are not isolated.

⇒ INTERFERENCE!

- Hence, interest in BS cooperation schemes:
 1. Network MIMO
 2. Interference Avoidance
Motivation

Three architectures
Three architectures

1. In single cell processing (SCP),
 - BS’s only aware of own-cell data and linearly precode to own-cell mobiles
Three architectures

1. In single cell processing (SCP),
 - BS’s only aware of own-cell data and linearly precode to own-cell mobiles
 - BS’s oblivious to interference created in other cell
Three architectures

1. In single cell processing (SCP),
 - BS’s only aware of own-cell data and linearly precode to own-cell mobiles
 - BS’s oblivious to interference created in other cell
 - Single-user detection at mobiles
Three architectures

1. In single cell processing (SCP),
 - BS’s only aware of own-cell data and linearly precode to own-cell mobiles
 - BS’s oblivious to interference created in other cell
 - Single-user detection at mobiles
 - BS’s precode as if they were single isolated cells, but with more noise at mobile receivers
Three architectures

2. In coordinated beamforming (CBf),
Three architectures

2. In coordinated beamforming (CBf),
As with SCP:

- BS’s only aware of own-cell data and linearly precode to own-cell mobiles
- Single-user detection at mobiles
Three architectures

2. In coordinated beamforming (CBf),
As with SCP:
- BS’s only aware of own-cell data and linearly precode to own-cell mobiles
- Single-user detection at mobiles

But:
- Both base stations aware of system-wide channel gains
Three architectures

2. In coordinated beamforming (CBf),
As with SCP:

- BS’s only aware of own-cell data and linearly precode to own-cell mobiles
- Single-user detection at mobiles

But:

- Both base stations aware of system-wide channel gains
- Precoding becomes a joint, two-cell optimization
Three architectures

3. In multicell processing (MCP),
 - BS’s aware of all mobiles’ data (system-wide data knowledge)
Three architectures

3. In multicell processing (MCP),
 - BS’s aware of all mobiles’ data (system-wide data knowledge)
 - BS’s aware of system-wide channel gains
Motivation

Three architectures

3. In multicell processing (MCP),
- BS’s aware of all mobiles’ data (system-wide data knowledge)
- BS’s aware of system-wide channel gains
- Both BS’s jointly precode as in “network MIMO”
Motivation

Three architectures

3. In multicell processing (MCP),
 - BS’s aware of all mobiles’ data (system-wide data knowledge)
 - BS’s aware of system-wide channel gains
 - Both BS’s jointly precode as in “network MIMO”

How do these three approaches compare?
Outline

Motivation

Linear Precoding

Optimization Framework

Large systems analysis

Numerical results

Conclusions
Linear precoding

In SCP, we have coupled (interfering) MIMO broadcast channels (MIMO-BC).

\[
Y = \begin{pmatrix}
Y_1 \\
Y_2 \\
\vdots \\
Y_K
\end{pmatrix}
\]
Linear Precoding

In SCP, we have coupled (interfering) MIMO broadcast channels (MIMO-BC).

A MIMO BC is as follows:

- There are K single-antenna receivers (mobiles)
Linear precoding

In SCP, we have coupled (interfering) MIMO broadcast channels (MIMO-BC).

A MIMO BC is as follows:

- There are K single-antenna receivers (mobiles)
- N transmit antennas at the BS

$Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_K \end{pmatrix}$
In SCP, we have coupled (interfering) MIMO broadcast channels (MIMO-BC).

A MIMO BC is as follows:

- There are K single-antenna receivers (mobiles)
- N transmit antennas at the BS
- Denote the total received signal (at all mobiles) by the $K \times 1$ received vector \mathbf{Y}
Linear precoding in the MIMO-BC:

Data: \(d = (d_1, d_2, \ldots, d_K)^t \)

Precode and transmit: \(Wd \)
Linear Precoding

Linear precoding in the MIMO-BC:

Data: $d = (d_1, d_2, ..., d_K)^t$

Precode and transmit: Wd

$$Y = HWd + Z$$

Where:

- H is the $K \times N$ MIMO channel matrix
- W is the $N \times K$ precoding matrix
- d is the vector of data symbols, and z is the noise vector
Zero forcing schemes

The following pre-coding matrices are well known:

- zero-forcing (ZF): precode so as to null the interference at all mobiles

\[W^{(ZF)} = c_1 H^H \left[H H^H \right]^{-1} \]
Zero forcing schemes

The following pre-coding matrices are well known:

- zero-forcing (ZF): precode so as to null the interference at all mobiles
 \[
 W^{(ZF)} = c_1 H^H \left[H H^H \right]^{-1}
 \]

- regularized zero-forcing (RZF): similar to zero-forcing, but with an additional regularization term added
 \[
 W^{(RZF)} = c_2 H^H \left[H H^H + \alpha I_N \right]^{-1}
 \]

where I_N is the $N \times N$ identity matrix, and α is a regularization parameter.
Outline

Motivation

Linear Precoding

Optimization Framework

Large systems analysis

Numerical results

Conclusions
Power minimization problem

One may also seek optimal precoding matrices.
Power minimization problem

One may also seek optimal precoding matrices.

minimize power

base station power constraint

SINR target = γ
for all mobiles
Power minimization problem

One may also seek optimal precoding matrices.

We will consider power minimization subject to rate targets:

\[\text{minimize power} \]

\[\text{base station power constraint} \]

\[\text{SINR target} = \gamma \]

for all mobiles
Power minimization problem

One may also seek optimal precoding matrices.

We will consider power minimization subject to rate targets:

- Each mobile has the same SINR target

\[
\text{minimize power}
\]

base station power constraint

\[
\text{SINR target } = \gamma
\]

for all mobiles
Power minimization problem

One may also seek optimal precoding matrices.

We will consider power minimization subject to rate targets:

- Each mobile has the same SINR target
- Each base station has the same average power constraint
Power minimization problem

One may also seek optimal precoding matrices.

We will consider power minimization subject to rate targets:

- Each mobile has the same SINR target
- Each base station has the same average power constraint
- The objective is to minimize total power subject to the SINR target and per base station power constraints
Rate maximization problem

We will also consider rate maximization:

- Each mobile has the same SINR target

$$\text{maximize } \gamma$$

base station power constraint

$$\text{SINR} = \gamma$$

for all mobiles
Rate maximization problem

We will also consider rate maximization:

- Each mobile has the same SINR target
- Each base station has the same average power constraint

\[\text{maximize } \gamma \]

base station power constraint

\[\text{SINR} = \gamma \]

for all mobiles
Rate maximization problem

We will also consider rate maximization:

- Each mobile has the same SINR target
- Each base station has the same average power constraint
- The objective is to maximize the SINR target subject to the per base station power constraints
Optimization in cellular networks

Such problems can be considered for SCP, CBf, and MCP, respectively.
Optimization in cellular networks

Such problems can be considered for SCP, CBf, and MCP, respectively. For SCP:

- This is essentially the classic MIMO-BC scenario
Optimization in cellular networks

Such problems can be considered for SCP, CBf, and MCP, respectively. For SCP:

- This is essentially the classic MIMO-BC scenario
- The MIMO-BC optimization problems are solved in Wiesel, Eldar and Shamai, “Linear Precoding via Conic Optimization for fixed MIMO receivers”, IEEE Trans SP 2006
Optimization in cellular networks

Such problems can be considered for SCP, CBf, and MCP, respectively. For SCP:

- This is essentially the classic MIMO-BC scenario
- The MIMO-BC optimization problems are solved in Wiesel, Eldar and Shamai, “Linear Precoding via Conic Optimization for fixed MIMO receivers”, IEEE Trans SP 2006 -SCP paper
Optimization in cellular networks

Such problems can be considered for SCP, CBf, and MCP, respectively. For SCP:

- This is essentially the classic MIMO-BC scenario
- The MIMO-BC optimization problems are solved in Wiesel, Eldar and Shamai, “Linear Precoding via Conic Optimization for fixed MIMO receivers”, IEEE Trans SP 2006 - SCP paper
- The only extra feature here is the interference coupling between cells
Optimization in cellular networks

Such problems can be considered for SCP, CBf, and MCP, respectively. For SCP:

- This is essentially the classic MIMO-BC scenario
- The MIMO-BC optimization problems are solved in Wiesel, Eldar and Shamai, “Linear Precoding via Conic Optimization for fixed MIMO receivers”, IEEE Trans SP 2006 - SCP paper
- The only extra feature here is the interference coupling between cells
- The interference coupling means that the power minimization problem is not always feasible.
Optimization in cellular networks

Such problems can be considered for SCP, CBf, and MCP, respectively. For SCP:

- This is essentially the classic MIMO-BC scenario
- The MIMO-BC optimization problems are solved in Wiesel, Eldar and Shamai, “Linear Precoding via Conic Optimization for fixed MIMO receivers”, IEEE Trans SP 2006 -SCP paper
- The only extra feature here is the interference coupling between cells
- The interference coupling means that the power minimization problem is not always feasible.

When is the power minimization problem feasible?
Optimization in cellular networks

Such problems can be considered for SCP, CBf, and MCP, respectively. For SCP:

- This is essentially the classic MIMO-BC scenario
- The MIMO-BC optimization problems are solved in Wiesel, Eldar and Shamai, “Linear Precoding via Conic Optimization for fixed MIMO receivers”, IEEE Trans SP 2006 -SCP paper
- The only extra feature here is the interference coupling between cells
- The interference coupling means that the power minimization problem is not always feasible.

When is the power minimization problem feasible?
Our large systems analysis will shed light on this question.
Optimization in cellular networks

For CBf:

- This is a joint two-cell optimization problem
Optimization in cellular networks

For CBf:

- This is a joint two-cell optimization problem
- The problem is formulated and solved in Dahrouj and Yu, “Coordinated beamforming for the multicell, multi-antenna wireless system”, IEEE Trans W 2010
Optimization in cellular networks

For CBf:

- This is a joint two-cell optimization problem
- The problem is formulated and solved in Dahrouj and Yu, “Coordinated beamforming for the multicell, multi-antenna wireless system”, IEEE Trans W 2010 -CBf paper
For CBf:

- This is a joint two-cell optimization problem
- The problem is formulated and solved in Dahrouj and Yu, “Coordinated beamforming for the multicell, multi-antenna wireless system”, IEEE Trans W 2010 -CBf paper
- They develop an elegant up-link-downlink duality theory to handle per base station power constraints
For CBf:

- This is a joint two-cell optimization problem.
- The problem is formulated and solved in Dahrouj and Yu, “Coordinated beamforming for the multicell, multi-antenna wireless system”, IEEE Trans W 2010 -CBf paper.
- They develop an elegant up-link-downlink duality theory to handle per base station power constraints.
- When is the power minimization problem feasible?
Optimization in cellular networks

For CBf:

- This is a joint two-cell optimization problem
- The problem is formulated and solved in Dahrouj and Yu, “Coordinated beamforming for the multicell, multi-antenna wireless system”, IEEE Trans W 2010 -CBf paper
- They develop an elegant up-link-downlink duality theory to handle per base station power constraints
- When is the power minimization problem feasible?

Our large systems analysis will shed light on the question of feasibility, as well as the gain of CBF over SCP
For CBf:

- This is a joint two-cell optimization problem
- The problem is formulated and solved in Dahrouj and Yu, “Coordinated beamforming for the multicell, multi-antenna wireless system”, IEEE Trans W 2010 -CBf paper
- They develop an elegant up-link-downlink duality theory to handle per base station power constraints
- When is the power minimization problem feasible?

Our large systems analysis will shed light on the question of feasibility, as well as the gain of CBF over SCP
We will also extend the theory to the case of MCP
Connections with generalized ZF

For SCP

- It was recognized in SCP paper that with a lot of symmetry in channel, optimal BF turns out to be RZF
Connections with generalized ZF

For SCP

- It was recognized in SCP paper that with a lot of symmetry in channel, optimal BF turns out to be RZF
- We will show that RZF emerges from large systems analysis
Connections with generalized ZF

For SCP

- It was recognized in SCP paper that with a lot of symmetry in channel, optimal BF turns out to be RZF
- We will show that RZF emerges from large systems analysis
- We will optimize the system loading (K/N) and find a phase-transition effect
Connections with generalized ZF

For SCP

- It was recognized in SCP paper that with alot of symmetry in channel, optimal BF turns out to be RZF
- We will show that RZF emerges from large systems analysis
- We will optimize the system loading (K/N) and find a phase-transition effect
- The optimal regularization parameter will also be obtained from our analysis
Connections with generalized ZF

For SCP

- It was recognized in SCP paper that with a lot of symmetry in channel, optimal BF turns out to be RZF
- We will show that RZF emerges from large systems analysis
- We will optimize the system loading \((K/N)\) and find a phase-transition effect
- The optimal regularization parameter will also be obtained from our analysis
- A large systems analysis of RZF was performed in Nguyen and Evans, “Multiuser transmit beamforming via regularized channel inversion: a large systems analysis” Globecom 08
Connections with generalized ZF

For SCP

- It was recognized in SCP paper that with alot of symmetry in channel, optimal BF turns out to be RZF
- We will show that RZF emerges from large systems analysis
- We will optimize the system loading (K/N) and find a phase-transition effect
- The optimal regularization parameter will also be obtained from our analysis
- A large systems analysis of RZF was performed in Nguyen and Evans, “Multiuser transmit beamforming via regularized channel inversion: a large systems analysis” Globecom 08 -large systems paper
Connections with generalized ZF

For SCP

- It was recognized in SCP paper that with a lot of symmetry in channel, optimal BF turns out to be RZF
- We will show that RZF emerges from large systems analysis
- We will optimize the system loading \((K/N)\) and find a phase-transition effect
- The optimal regularization parameter will also be obtained from our analysis
- A large systems analysis of RZF was performed in Nguyen and Evans, “Multiuser transmit beamforming via regularized channel inversion: a large systems analysis” Globecom 08 - large systems paper
- The optimal regularization parameter also found in the large systems paper
Connections with generalized ZF

For CBf

- The large systems analysis of CBF, will give rise to a novel beamformer: GRZF (generalized regularized zero forcer)
Connections with generalized ZF

For CBf

- The large systems analysis of CBF, will give rise to a novel beamformer: GRZF (generalized regularized zero forcer)
- GRZF has a similar structure to RZF, but its a regularization of a ZF that forces to zero interference in the other-cell as well as the same-cell
Connections with generalized ZF

For CBf

- The large systems analysis of CBF, will give rise to a novel beamformer: GRZF (generalized regularized zero forcer)
- GRZF has a similar structure to RZF, but its a regularization of a ZF that forces to zero interference in the other-cell as well as the same-cell
- We will optimize the system loading \((K/N)\)
- The optimal regularization parameter will also be obtained from our analysis
Connections with generalized ZF

For CBf

- The large systems analysis of CBF, will give rise to a novel beamformer: GRZF (generalized regularized zero forcer)
- GRZF has a similar structure to RZF, but its a regularization of a ZF that forces to zero interference in the other-cell as well as the same-cell
- We will optimize the system loading (K/N)
- The optimal regularization parameter will also be obtained from our analysis

Both RZF (for SCP) and GRZF (for CBf) are much easier to implement than the optimal solution
Connections with generalized ZF

For CBf

- The large systems analysis of CBF, will give rise to a novel beamformer: GRZF (generalized regularized zero forcer)
- GRZF has a similar structure to RZF, but it's a regularization of a ZF that forces to zero interference in the other-cell as well as the same-cell
- We will optimize the system loading (K/N)
- The optimal regularization parameter will also be obtained from our analysis

Both RZF (for SCP) and GRZF (for CBf) are much easier to implement than the optimal solution
We show that the CBf strategy in the CBf paper “converges” to GRZF beamforming in our model.
Summary of base station cooperation

- **Local CSIT** at each base station and **no data sharing**
Summary of base station cooperation

- Local CSIT at each base station and no data sharing → Single cell processing (SCP)
Summary of base station cooperation

- Local CSIT at each base station and no data sharing → Single cell processing (SCP)
- Shared CSIT and no data sharing
Summary of base station cooperation

- **Local CSIT at each base station and no data sharing** → Single cell processing (SCP)
- **Shared CSIT and no data sharing** → Coordinated beamforming (CBf)
Summary of base station cooperation

- **Local CSIT at each base station and no data sharing** → Single cell processing (SCP)
- **Shared CSIT and no data sharing** → Coordinated beamforming (CBf)
- **Shared CSIT and data sharing**
Summary of base station cooperation

- Local CSIT at each base station and no data sharing → Single cell processing (SCP)
- Shared CSIT and no data sharing → Coordinated beamforming (CBf)
- Shared CSIT and data sharing → Multicell processing (MCP)
Summary of base station cooperation

- **Local CSIT at each base station and no data sharing** → Single cell processing (SCP)
- **Shared CSIT and no data sharing** → Coordinated beamforming (CBf)
- **Shared CSIT and data sharing** → Multicell processing (MCP)

Using large system analysis, we can
Summary of base station cooperation

- **Local CSIT at each base station and no data sharing** → Single cell processing (SCP)
- **Shared CSIT and no data sharing** → Coordinated beamforming (CBf)
- **Shared CSIT and data sharing** → Multicell processing (MCP)

Using large system analysis, we can
- Efficiently compare these architectures
Summary of base station cooperation

- **Local CSIT at each base station and no data sharing** → Single cell processing (SCP)
- **Shared CSIT and no data sharing** → Coordinated beamforming (CBf)
- **Shared CSIT and data sharing** → Multicell processing (MCP)

Using large system analysis, we can

- Efficiently compare these architectures
- Simplify beamforming design for the finite system case
Outline

Motivation

Linear Precoding

Optimization Framework

Large systems analysis

Numerical results

Conclusions
The model

Base station 1

Cell 1 users

Base station 2

Cell 2 users

$H_{1,1}$

$h_{k,1}$

$h_{k,2}$

$H_{1,2}$
The model

- Focus on two cell setup
The model

- Focus on two cell setup
- MS’s in cell j have
The model

- Focus on two cell setup
- MS’s in cell \(j \) have
 - i.i.d. \(\mathcal{CN}(0, 1) \) channels to their ‘serving’ base station, and
The model

- Focus on two cell setup
- MS’s in cell j have
 - i.i.d. $\mathcal{CN}(0, 1)$ channels to their 'serving' base station, and
 - $\mathcal{CN}(0, \epsilon)$ channels to the other base station
Power minimization problem for SCP

Theorem
Assume $N, K \to \infty$ such that $\frac{K}{N} \to \beta < \infty$. Then the target SINR of γ is achievable if and only if $\beta \left(\frac{\gamma}{1+\gamma} + \epsilon \gamma \right) < 1$.
Power minimization problem for SCP

Theorem
Assume $N, K \to \infty$ such that $\frac{K}{N} \to \beta < \infty$. Then the target SINR of γ is achievable if and only if $\beta \left(\frac{\gamma}{1+\gamma} + \epsilon \gamma \right) < 1$.

- The per BS power converges to $P = \frac{\beta \sigma^2 \gamma}{\left(1 - \beta \frac{\gamma}{1+\gamma} - \beta \epsilon \gamma \right)}$.
Power minimization problem for SCP

Theorem
Assume $N, K \to \infty$ such that $\frac{K}{N} \to \beta < \infty$. Then the target SINR of γ is achievable if and only if $\beta \left(\frac{\gamma}{1+\gamma} + \epsilon \gamma \right) < 1$.

- The per BS power converges to $P = \frac{\beta \sigma^2 \gamma}{\left(1 - \beta \frac{\gamma}{1+\gamma} - \beta \epsilon \gamma \right)}$.
- Up to a constant, the optimal DL beamformer for user k in cell j is

$$w_{kj}^{SCP} = \left(I_N + \frac{\lambda}{N} \sum_{\bar{k} \neq k} h_{k,j,j}^H h_{\bar{k},j,j} \right)^{-1} h_{k,j,j}^H. \quad (1)$$

where $\lambda = \frac{\gamma}{1 - \beta \frac{\gamma}{1+\gamma} - \beta \epsilon \gamma}$.
Power minimization problem for CBf

Theorem
Assume $N, K \to \infty$ such that $\frac{K}{N} \to \beta < \infty$. Then the target SINR of γ is achievable if and only if
\[\beta \left(\frac{\gamma}{1+\gamma} + \frac{\epsilon \gamma}{1+\epsilon \gamma} \right) < 1. \]
Power minimization problem for CBf

Theorem

Assume $N, K \to \infty$ such that $\frac{K}{N} \to \beta < \infty$. Then the target SINR of γ is achievable if and only if $
abla < 1$.

- The per BS power converges to $P = \frac{\beta \sigma^2 \gamma}{1 - \beta \left(\frac{\gamma}{1+\gamma} + \frac{\epsilon \gamma}{1+\epsilon \gamma} \right)}$.
Power minimization problem for CBf

Theorem
Assume $N, K \to \infty$ such that $\frac{K}{N} \to \beta < \infty$. Then the target SINR of γ is achievable if and only if $\beta \left(\frac{\gamma}{1+\gamma} + \frac{\epsilon \gamma}{1+\epsilon \gamma} \right) < 1$.

- The per BS power converges to $P = \frac{\beta \sigma^2 \gamma}{1 - \beta \left(\frac{\gamma}{1+\gamma} + \frac{\epsilon \gamma}{1+\epsilon \gamma} \right)}$.
- Up to a constant, the optimal DL beamformer for user k in cell j is

$$w_{kj}^{\text{Coord}} = \left(I_N + \frac{\bar{\lambda}}{N} \sum_{(\bar{k},\bar{j}) \neq (k,j)} h_{\bar{k},\bar{j}}^H h_{k,j,j}^{}\right)^{-1} h_{k,j,j}^{}.$$ \hspace{1cm} (2)

where $\bar{\lambda} = \frac{\gamma}{1 - \beta \left(\frac{\gamma}{1+\gamma} + \frac{\epsilon \gamma}{1+\epsilon \gamma} \right)}$.
Power minimization problem for MCP

Theorem

Assume $N, K \to \infty$ such that $\frac{K}{N} \to \beta < \infty$. Then the target SINR of γ is achievable if and only if $\beta \frac{\gamma}{1+\gamma} < 1$.
Power minimization problem for MCP

Theorem
Assume $N, K \to \infty$ such that $\frac{K}{N} \to \beta < \infty$. Then the target SINR of γ is achievable if and only if $\beta \frac{\gamma}{1+\gamma} < 1$.

- The per BS power converges to $P = \frac{1}{1+\epsilon} \frac{\beta \sigma^2 \gamma}{(1 - \beta \frac{\gamma}{1+\gamma})}$.
Power minimization problem for MCP

Theorem
Assume $N, K \to \infty$ such that $\frac{K}{N} \to \beta < \infty$. Then the target SINR of γ is achievable if and only if $\beta \frac{\gamma}{1+\gamma} < 1$.

- The per BS power converges to $P = \frac{1}{1 + \epsilon} \frac{\beta \sigma^2 \gamma}{(1 - \beta \frac{\gamma}{1+\gamma})}$.

- Up to a constant, the optimal DL beamformer for user k in cell j is

$$w^{MCP}_{kj} = \left(I_{2N} + \frac{\bar{\lambda}}{N} \sum_{(\bar{k}, \bar{j}) \neq (k,j)} h^H_{\bar{k}, \bar{j}} h_{\bar{k}, \bar{j}} \right)^{-1} h^H_{k,j}. \quad (3)$$

where $\bar{\lambda} = \frac{1}{1 + \epsilon} \frac{\gamma}{(1 - \beta \frac{\gamma}{1+\gamma})}$.
Theorem

In each scenario, the rates either increase indefinitely with β, or are maximized at a finite β.
Theorem

In each scenario, the rates either increase indefinitely with β, or are maximized at a finite β.

The rates are increasing with β when
Theorem

In each scenario, the rates either increase indefinitely with β, or are maximized at a finite β.

The rates are increasing with β when

- **SCP**: $\frac{\sigma^2}{P} + \epsilon > 1$.
Theorem

In each scenario, the rates either increase indefinitely with β, or are maximized at a finite β.

The rates are increasing with β when

- SCP: $\frac{\sigma^2}{P} + \epsilon > 1$.
- CBf: $\frac{\sigma^2}{P} + \epsilon - 2\epsilon^2 > 1$.
Maximum rates

Theorem

In each scenario, the rates either increase indefinitely with β, or are maximized at a finite β.

The rates are increasing with β when

- **SCP**: $\frac{\sigma^2}{P} + \epsilon > 1$.
- **CBf**: $\frac{\sigma^2}{P} + \epsilon - 2\epsilon^2 > 1$.
- **MCP**: $\frac{\sigma^2}{P} > 1 + \epsilon$.
Maximum rates

Theorem

Subject to per base station power constraint P, as $N, K \to \infty$ such that $\frac{K}{N} \to \beta < \infty$, the maximum asymptotic network-wide achievable SINR is the unique solution to the following fixed point equation:
Maximum rates

Theorem

Subject to per base station power constraint P, as $N, K \to \infty$ such that $\frac{K}{N} \to \beta < \infty$, the maximum asymptotic network-wide achievable SINR is the unique solution to the following fixed point equation:

- SCP: $\gamma_{SCP}^* = \frac{1}{\beta} \frac{1}{\frac{\sigma^2}{P} + \epsilon + \frac{1}{1 + \gamma_{SCP}^*}}$.
Maximum rates

Theorem

Subject to per base station power constraint P, as $N, K \to \infty$ such that $\frac{K}{N} \to \beta < \infty$, the maximum asymptotic network-wide achievable SINR is the unique solution to the following fixed point equation:

- **SCP**: $\gamma^{*}_{SCP} = \frac{1}{\beta} \frac{1}{\frac{\sigma^2}{P} + \epsilon + \frac{1}{1+\gamma^{*}_{SCP}}}.$

- **CBf**: $\gamma^{*}_{Coord} = \frac{1}{\beta} \frac{1}{\frac{\sigma^2}{P} \frac{1}{1+\gamma^{*}_{Coord}} + \frac{1}{1+\epsilon \gamma^{*}_{Coord}}}.$
Maximum rates

Theorem
Subject to per base station power constraint P, as $N, K \to \infty$ such that $\frac{K}{N} \to \beta < \infty$, the maximum asymptotic network-wide achievable SINR is the unique solution to the following fixed point equation:

- **SCP:**
 \[\gamma^*_{SCP} = \frac{1}{\beta} \frac{\sigma^2}{P} + \epsilon + \frac{1}{1 + \gamma^*_{SCP}}. \]

- **CBf:**
 \[\gamma^*_{Coord} = \frac{1}{\beta} \frac{\sigma^2}{P} + \frac{1}{1 + \gamma^*_{Coord}} + \frac{\epsilon}{1 + \epsilon \gamma^*_{Coord}}. \]

- **MCP:**
 \[\gamma^*_{MCP} = \frac{1}{\beta} \frac{\sigma^2}{(1 + \epsilon)P} + \frac{1}{1 + \gamma^*_{MCP}}. \]
Outline

Motivation

Linear Precoding

Optimization Framework

Large systems analysis

Numerical results

Conclusions
Numerical Results

Applicability to finite systems

Figure: Large system analysis results vs. finite system optimization for $K = 3$, $N_t = 4$ and SNR = 10 dB.
Numerical Results

Applicability to finite systems

![Graph showing cell rate vs. SNR for different beamforming techniques](image)

Figure: Large system analysis results vs. application of asymptotically optimal beamforming in the finite case for $K = 3$, $N_t = 4$ and $\epsilon = 0.5$.

Graph Details:
- **SNR (dB)** range from -5 to 20.
- **Cell rate (bits/channel use/N_t)** range from 0.5 to 4.5.
- Different lines represent:
 - SCP
 - SCP-LSA
 - CBf
 - CBf-LSA
 - MCP
 - MCP-LSA
The above derivations allow us to compare the different setups for different schemes without Monte Carlo simulations.
Numerical Results

The above derivations allow us to compare the different setups for different schemes without Monte Carlo simulations.

Figure: Effect of cell loading β on rate achieved for SNR = 10dB, $\epsilon = .1$
Numerical Results

The above derivations allow us to compare the different setups for different schemes without Monte Carlo simulations.

Figure: Effect of cell loading β on rate achieved for SNR = 10dB, $\epsilon = .8$
Conclusions

Outline

Motivation

Linear Precoding

Optimization Framework

Large systems analysis

Numerical results

Conclusions
Contributions

• Large system analysis from UP-DL duality
Contributions

• Large system analysis from UP-DL duality
• Obtain transmit beamforming based on regularized zero forcing (RZF)
Conclusions

Contributions

• Large system analysis from UP-DL duality
• Obtain transmit beamforming based on regularized zero forcing (RZF)
• In CBF case, obtain a novel form of RZF which we call generalized regularized zero forcing (GRZF)
Contributions

- Large system analysis from UP-DL duality
- Obtain transmit beamforming based on regularized zero forcing (RZF)
- In CBF case, obtain a novel form of RZF which we call generalized regularized zero forcing (GRZF)
- We find the optimal regularization parameter, building on Large systems paper Nguyen and Evans Globecom 08
Conclusions

Contributions

• Large system analysis from UP-DL duality
• Obtain transmit beamforming based on regularized zero forcing (RZF)
• In CBF case, obtain a novel form of RZF which we call generalized regularized zero forcing (GRZF)
• We find the optimal regularization parameter, building on Large systems paper Nguyen and Evans Globecom 08
• We provide a framework for optimization of parameters like cell loading
Conclusions

Contributions

- Large system analysis from UP-DL duality
- Obtain transmit beamforming based on regularized zero forcing (RZF)
- In CBF case, obtain a novel form of RZF which we call generalized regularized zero forcing (GRZF)
- We find the optimal regularization parameter, building on Large systems paper Nguyen and Evans Globecom 08
- We provide a framework for optimization of parameters like cell loading
- We provide notions of effective bandwidth and effective interference
Conclusions

Contributions

- Large system analysis from UP-DL duality
- Obtain transmit beamforming based on regularized zero forcing (RZF)
- In CBF case, obtain a novel form of RZF which we call generalized regularized zero forcing (GRZF)
- We find the optimal regularization parameter, building on Large systems paper Nguyen and Evans Globecom 08
- We provide a framework for optimization of parameters like cell loading
- We provide notions of effective bandwidth and effective interference
- We compare SCP, CBF, MCP, with a time division SCP scheme, and with some ZF schemes