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Réesune en francais

Cette tlese concerne I'application de I'annulation d’'inexdhce pour une liai-
son montante DS-CDMA et en particeite, le traitement par trajet. Il y a essentiellement
deux manreéres de traiter I'annulation d’intefénce, soit ags ou avant que les divers com-
posants du signal (trajets multiple, antenne multiples)atrécombiees. Ces i th-
odes sont connues commaéaht respectivement “precombining interference cancellation”
et “postcombining interference cancellation”. On montrera que le sigoalpeytetre fac-
torisé en deux composantes, une composante se basant sur lestpesarariant lentement
et l'autre sur les paraetres variant rapidement. Cette observation a redtarinulation
d’interference par trajet quietessite uniqguement la connaissance des pramvariant
lentement. Lavantagevident d’une telle approche sont les erés adaptatifs moins con-
traignant puisque la éjuence de misa jour du filtre est proportionelle [a fréquence de
changement des paratnés variant lentement. De plus, un tel filtre permet I'estimation
amgliorée des coefficient d’amplitude complexes variant rapidement puisque les composantes
estinées du trajet contiennent le signal dérdt avec un SINR accru par rapport au signal
recu. On montrera plusieursettiodes d’annulation d’interference qui sontepdndantes
des pararetres variant rapidement tout emitant 'annulation du signal qui survient dans
I'approche d’origine par trajet. Des simulations prouverons les performances de cette ap-
proche. Alors que les approchesdaifes d’annulation d’interference par trajet produisent
de bonnes performances, leurs point faible est la complebitriplementation. Nous con-
sidérons donc des solutions de rechange de compléxiérieures tout en conservant une
approche par trajet. En particulier, noeidions I'application desecepteur avec expan-
sion polyromiale dans le contexte du traitement par trajet. L'expansion pohjale est
une technique d’approximation deaépteur LMMSE. La principale complegitésultant
d’une approche LMMSE estuda I'inversion d’'une matrice de caeltation. Le principe de
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I'expansion polyliiale est de rapprocher I'approche LMMSE par une expansion palirn”

ale dans la matrice de cetation. Nous montrerons que l'introduction du matrices diago-
nales pondées peut sensiblement ahorer la performance desetfiodes p&demment
propo€es neéine lors d'un é&quilibre de puissance entre usagers ou trajets. De plus, la
complexi€ introduite est &s raisonnable due au fait que chagtage est de complegitiou-

ble par rapport au RAKE. En outre, laetihode permet d’obtenir une ahidration du SINR

par trajet, ado@éa la I'estimation des amplitudes complexes. Cependant, il est difficile
d’obtenir une expression analytique de performance pour I'expansionguigte en util-
isant des techniques standard puisque la performance est toujours une fonction de I'ensemble
des €quences d’etalement utiéiges. Par comsgjuent, nous recourons awethbdes ecem-
ment pesenges dans la recherche exléommunications qui aborde le prebie en lais-
sant les dimensions du sgste tendre vers l'infini. L'analyse des grands syss permet
d’obtenir une expression asymptotique du SINReltepteur liraire dies aux propstés de
certaines classes de matricesabires. Secifiquement, la distribution des valeurs propres
de telles matrices est connue pour converger asymptotiquement vers une distribtgren d”
ministe. Il est montre, que les coefficients peréd’introduit dans I'expansion polgmiiale

sont asymptotiquement iegendant de la puissance de I'utilisateur ou trajet et il 'y a donc
aucun avantage Utiliser des coefficients poats par trajet dans les grands gyses pour
I'estimation des dorees. Cependant, pour les besoins d’estimation d’amplitude complexe,
une approche par trajeedieure rcessaire.



Abstract

This thesis is concerned with the application of interference cancellation for a
DS-CDMA uplink and particularly, pathwise processing. There are essentially two ways of
handling the interference cancellation, either before or after the various signal components
(multipath, multiple antennas) are recombined. These methods are know as precombining
interference cancellation and postcombining interference cancellation, respectively. It will
be shown that the received signal can be factored into two components, one of them relying
only on slow parameters whereas the other depends on fast parameters also. This obser-
vation has motivated pathwise interference cancellation which only requires knowledge of
the slow parameters. The obvious advantage of such an approach are the relaxed adaptive
requirements since the rate of change in the filter is proportional to the rate of change of the
slow parameters only. Furthermore, such a filter allows improved estimation of the fastly
varying complex amplitude coefficients since the estimated path components contain the
signal of interest with an increased SINR compared to the received signal. We will show
several interference cancelling approaches which do not rely on the fastly varying parameter
and avoid the signal cancellation which occurs in the original pathwise approach in the case
of stationary or nearly stationary mobile stations due to the correlation between the complex
amplitude coefficients. Simulations will be used to show the performance of the approaches.

While the pathwise linear interference cancellation approaches produce good per-
formance, their major drawback is a high implementational complexity. We therefore con-
sider lower complexity alternatives while maintaining the pathwise approach. In particu-
lar, we investigate the application of polynomial expansion receivers in a pathwise context.
Polynomial expansion is an approximation technique to the LMMSE receiver. The main
complexity arising from an LMMSE approach is an inverse in a correlation matrix, a fact
that is well known. The principle of polynomial expansion is to approximate this inverse
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by a low order, weighted polynomial in the correlation matrix to be inverted. We will show
that the introduction of carefully chosen diagonal weighting matrices (instead of scalars, as
previously proposed) can substantially improve the performance over previously proposed
methods under power imbalances between users and/or paths. Furthermore, the complexity
introduced is very reasonable due to the fact that every extra stage in the receiver is essen-
tially twice the RAKE receiver. Also, the method allows to obtain SINR enhanced pathwise
outputs, suitable for the estimation of the complex amplitudes.

However, it is difficult to get analytical performance expressions for polynomial
expansion using standard techniques since the performance is always a function of the cor-
relation properties of the set of spreading codes used. Hence, we resort to methods only
recently introduced in the communications community which tackle this issudtmgléhe
system dimensions grow to infinity. Such a large system analysis allows to get quantitative
expressions for the asymptotic output SINR of linear receivers based on the properties of
certain classes of large random matrices. Specifically, the empirical eigenvalue distributions
of such matrices are known to converge to a deterministic distribution in the limit. It is
shown, that the weighting coefficients introduced for polynomial expansion are asymptoti-
cally independent from the power of the user or even the paths and that there is therefore no
benefit in using a weighting coefficient per path in large systems to obtain a data estimate.
However, for the purpose of complex amplitude estimation, a pathwise approach remains
necessary.
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Chapter 1

Introduction

This chapter will essentially provide background information and in general in-
troduce concepts important to the whole of this work. We will begin by providing some
general background information on mobile communication systems and the development of
multiuser detection. This is followed by a thesis outline and contributions made. Finally,
in the last part of this chapter, a system model and the motivations on which it is based are
developed.

1.1 Background

In this section we will give some general background information to mobile com-
munication as it presents itself today. We will begin with an overview of recent mobile
communication systems and in particular the move from second generation systems to third
generation systems. This is followed by a brief introduction to multiuser detection in CDMA
systems by considering the motivations for multiuser detection and the shift in attention of
the research community towards suboptimal detector algorithms due to the complexity in-
volved with the optimum receiver.

1.1.1 Mobile Communication Systems - from 2nd to 3rd Generation

In recent years, the number of users of mobile communications and mobile data
services has grown at phenomenal rates across the world to such an extent that in many
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14 1 — Introduction

countries, mobile service subscribers now outnumber the fixed line installations. While in
some countries, especially in Europe, a certain trend towards a market saturation in terms
of mobile equipment can be stated, the current wireless communications technologies such
as GSM (Global System for Mobile Communications) are nearing their capacity bound-
aries. The limited variety of services presently offered, essentially voice and transmission
of data at limiting rates, in conjunction with the expected shift from voice to multimedia
communications and the steadily growing number of users has led to the development of
third generation standards such as UMTS (Universal Mobile Telecommunication Service)
in Europe.

Mobile Communication networks and especially cellular networks are capacity
limited mainly by interference. In second generation systems, muliggess was essen-
tially achieved by maintaining orthogonality between users through the splitting of the time
or frequency band available. In such TDMA (Time Division Multiple@ess) and FDMA
(Frequency Division Multiple &cess) systems, the number of users that can be supported
is determined by the number of slots that can be made available within the limits of the
bandwidth available. In order to permit an area covering network like GSM, each cell in the
network uses a frequency different from its neighbours and cells are grouped into so-called
cell clusters of typically 3 to 7 frequencies, the so-called frequency reuse factor. The whole
network area is then covered by such clusters and the interference arising is partly due to
interference between cells using the same frequency but belonging to different clusters and
partly due to co-channel interference between different users of the same cell. Second gener-
ation systems were not planned from the outset with a particular handle on interference and
interference limitation is basically achieved by careful planning of the cell locations, that is,
frequency planning [1-5].

Along with the increasing number of mobile users, the density of users per unit
area also increases. Due to the limited number of slots and therefore users that a single
basestation can cover, the area which a basestation can cover decreases, which in turn means
that more basestations have to be employed. However, by placing the cells increasingly close
to each other, the interference among cells increases and effective frequency planning can
become very difficult.

When, as in the imminent third generation systems, a wide range of data rates
will have to be covered, capacity shortages will be accentuated andlfitgplboblems will
arise. Further, with the expected shift from voice to data transmission, it becomes desirable
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to operate at a lower probability of transmission errors.

In the third generation mobile system UMTS, the multigéeess scheme of choice
is DS-CDMA (Direct Sequence Code Division Multipleegess) which no longer provides
an orthogonalisation between users in frequency or time but separates users by the signal
subspace they occupy through their assigned user waveform. In other words, users transmit
at the same time and on the same frequency [1,6-9] . In CDMA, since no separation in time
nor in frequency is required, all cells are transmitting on the same frequency, leading to a
unity frequency reuse factor. Clearly, with the notions of cluster and frequency reuse absent,
the planning of basestations is facilitated.

The main advantage of CDMA, however, is the bandwidth expansion, which al-
lows a better resolution of the multiple paths and hence a better robustness against severe
fading effects. Another advantage is its robustness against narrowband interference.

In DS-CDMA, the symbol sequence is up-sampled to the chip period and modu-
lated by a much faster evolving spreading sequence. The ratio of the symbol period to the
chip period is the spreading factor (or processing gain), which is also the factor by which
the original bandwidth gets spread. Indeed, DS-CDMA is a special case of Spread Spec-
trum Multiple Access (SSMA) which was iitially introduced by the military to make the
transmitted signal look noise-like and hence not easily detectable and identifiable, as well as
difficult to jam [10-12]. In fact, this view of the noise-like signal and therefore noise-like
interference, is predominant in the case of Random sequence CDMA (RCDMA) in which
an aperiodic (random) spreading sequence is used. The US DS-CDMA Mobile System
IS-95 (Interim Standard-95) is of this type. In RCDMA, the interfering signals appear as
stationary noise with colour depending on their propagation channel. If all the interferers
are arbitrarily separated geographically so that their channels become independent, and if
the (sufficiently large number of) interfering signals are received with about equal power,
then the law of large numbers can be invoked which leads to the result that the correlation
sequence of the sum of all the interfering signals corresponds to that of a white noise. In that
case, and if the multipath propagation delay spread does weedxa symbol period, then
the optimal receiver (in the maximum-likelihood sequence estimation sense) is the so-called
RAKE receiver, which is essentially a matched filter, matched to the cascade of spreading
sequence and channel of which the non-zero impulse response coefficients are called 'fin-
gers’, whence the term RAKE. Therefore, the IS-95 system employs strict power control to
keep the interference down. This requires fast adaptive power equalisation at the receiver.
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1.1.2 Multiuser Detection for DS-CDMA

Up to the 1980s, it was believed that the multiptcess interference arising in
DS-CDMA systems was accurately modelled by a white Gaussian random process and thus
the RAKE is essentially optimal. In the 1980 though, it was realised that this assumption
is inaccurate in many situations (for example in near-far situations) but more to the point, it
was realised that the performance can be much improved over the RAKE by exploiting the
specific and rich structure of the multiuser signal and unravelling the multiple user contri-
butions [13]. This unravelling task is much simplified in the case of deterministic CDMA,
in which case a periodic spreading sequence is used with period equal to the symbol period.
Another problem with the RAKE receiver is that it only performs optimal MLSE (Maximum
Likelihood Sequence Estimation) if the channel delay spread remains smaller than the sym-
bol period. If higher data rates, and therefore symbol rates, are to be used as in UMTS, then
this condition will no longer always hold. In fact, in that case tbesiver will also have to
perform equalisation.

In the wideband CDMA mode of UMTS, the standard proposes a combination
of periodic and (pseudo-)random spreading codes. The signal is spread using a mobile-
dependent periodic code. This code can be optionally scrambled by a random code. This
option will be enabled if simple RAKE receivers will be used. However, this option will be
disabled if more sophisticated receivers will be used. In that case, the spreading sequence
is periodic and the multiuser signal is cyclostationary with period equal to the symbol pe-
riod. Due to the spreading however, these cyclostationary signals exhibit significant excess
bandwidth with respect to the symbol rate and hence frequency domain diversity. After
oversampling with respect to the symbol rate, the stationary, vectorised received signal lives
in a spreading sequence dependent subspace. This subspace allows for linear interference
cancelling. A further dimensionality increase in signal vector space dimension and hence in
diversity can be obtained by considering multi sensor processing.

1.1.3 From the Optimum MUD to suboptimal MUD approaches

As mentioned above, the effective application of the RAKE receiver requires strict
and computationally expensive power control. The so-called near-far problem, essentially a
power imbalance problem between users so that the signal of users geographically far from
the basestations get swamped by much stronger users closer to the basestation, together
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with the computational complexity of precise power control, prompted the search for near-
far resistant multiuser detectors [11, 14, 15]. About 1983, the optimum MLSE MUD was
discovered [16—18] and presented for asynchronous muliiless Gaussian channels. The
MLSE solution can be implemented as a Viterbi algorithm.

Unfortunately, the Viterbi algorithm for multiuser MLSE as applied to MUD suf-
fers from a complexity which is exponential in the number of users. This prohibitive com-
putational cost has therefore prompted much research into suboptimal detector methods to
try and strike a balance between performance increase and complexity.

In multiuser detection there are essentially two categories of approaches: Linear
and non-linear. The linear approaches, e.g. [19, 20], consist of replacing the RAKE receiver
by another linear receiver which is derived using an interference zero-forcing constraint or
a minimum mean square error criterion, see for example [21-23]. Zero-forcing approaches
are often hybrids with MMSE techniques (ZF-MMSE) since the zero-forcing constraints
typically do not result in a unique solution and hence MMSE techniques are applied on
the remaining degrees of freedom to reduce mean square error (MSE). The non-linear ap-
proaches [24-26] are iterative, subtractive processes. By ordering the users according to
their relative powers, a type of causality is introduced which can be mixed with the temporal
aspect in the case of multipath propagation. There are three basic variants among non-linear
interference cancelling schemes, namely, Serial Interference Cancellation (SIC) where only
the causal interference can be cancelled, Parallel Interference Cancellation (PIC) which al-
lows cancellation of all interference and, finally, Decision Feedback Interference cancel-
lation (DF) where the non-causal interference is cancelled in a linear fashion whereas the
causal interference is cancelled by subtraction. Often, SIC and PIC can be found combined
in multistage Interference cancellers. It appears, that PIC is the most powerful of these ap-
proaches, in particular when used in conjunction with soft decisions. However, due to its
iterative nature, the approach requires a reasonably good initialisation which has to be pro-
vided by another technique, typically linear. Also, because the PIC is a coherent detection
method, precise knowledge of parameters is paramount. In this study, we hence present lin-
ear approaches to MUD detection with a special focus on parameters which could eventually
be used to initialise data for one of several stages of a PIC or, indeed, be developed into a
PIC-like structure. In particular, we focus on pathwise processing which is a particularly
suitable approach for low complexity linear multiuser detection.
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1.2 Thesis Outline

The remainder of this document is organised as follows: In the rest of this chapter,
we will give a brief introduction to the mobile radio environment encountered in a CDMA
system to motivate the resulting channel model which is used throughout the document.
With the channel model defined, a general DS-CDMA system model will be introduced, fol-
lowed by a short introduction to the conventional RAKE receiver. We then start in earnest in
chapter 2 and introduce the ideas and motivations behind pathwise interference cancellation.
We will present approaches which will avoid the signal cancellation trap of the original ap-
proach introduced by Latva-aho which occurs when the multiple paths of a user are strongly
correlated. To finish the chapter off, we will show simulation results confirming the proposed
approach. While the approaches in chapter 2 are performing well, their principle disadvan-
tage is the complexity of a practical implementation and we therefore continue in chapter 3
by focusing on low complexity implementations of pathwise interference cancelling filters.
Specifically, we will consider the application of polynomial expansion. Initially, we will
introduce the principles of polynomial expansion and explain some previously proposed
approaches that either work on the received signal directly, or on the RAKE outputs. We
then carry on to propose the application of polynomial expansion receivers to the pathwise
RAKE outputs and the implementation thereof, using diagonal weighting matrices with a
scalar per signal component in contrast to previous approaches, which employ simply a
scalar weighting coefficient. While the approaches in chapter 2 were focused on the possi-
bility of obtaining filters independent from the fastly varying channel amplitudes, the focus
in chapter 3 shifts towards the estimation of the channel amplitudes and the ability to obtain
pathwise, SINR enhanced signals to be used for the estimation of the complex amplitudes.
Using numerical simulation results, we then show that significant performance gains can
be attained over the scalar approaches under power imbalances between users and multipath
components. The nature of the polynomial expansion receivers introduced, makes it difficult
to gain much analytical insightinto their characteristics. In chapter 4, we are therefore intro-
ducing results from large system theory which allow to characterise polynomial expansion
performance asymptotically. This is done by letting the system dimensions grow to infin-
ity and making use of the fact that the empirical eigenvalue distributions of certain random
matrices asymptotically converge to a deterministic limit. It is found that the introduction
of a weighting coefficient per path is asymptotically not necessary, even under power imbal-
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ances between users and paths. The document is finished with a section of conclusions and
remarks.

1.3 Preliminaries

In the next few pages, we will outline some conceptsessary to the work that
follows in the next chapters. Notably, a short discussion of mobile channels and their effects
is included to motivate the choice of channel model that is used throughout this work. With
the channel model defined, we then establish a baseband signal model for a DS-CDMA
system which provides us with the notation that is used in subsequent chapters.

1.3.1 Mobile Radio Channels

1.3.1.1 Propagation Environment

The type of propagation environment that is encountered in the transmission of
information is clearly very important. In the context of mobile radio communications for the
uplink, we are interested in the characterisation of the channel from the various mobile users
to the basestation of interest.

The usual starting point to characterise any communication system is the additive
white Gaussian noise (AWGN) channel with statistically independent Gaussian noise sam-
ples corrupting the data samples. The primary source of degradation in this case, is thermal
noise generated in the receiver. In a practical system, it is always necessary to operate un-
der certain bandwidth constraints which require the introduction of band-limiting filters. At
the transmitter end, the band-limiting filter typically serves to constrain the signal to some
bandwidth dictated by regulatory constraints whereas at the receiver end, the filter is typi-
cally matched to the signal bandwidth. Due to these band-limiting operations and the filter
induced distortions, the channel introduces intersymbol interference (ISI). To reduce these
effects and to allow reliable reception, it may be necessary to employ equalisation and/or
special signal design techniques.

For a radio channel, in the absence of further specification on the propagation
characteristics, one normally assumeBeg spacepropagation model. In this idealised
model, the region between the transmitter and éeeiver is assumed to be free of obstacles
that might absorb or reflect the transmitted signal. In this region, it is hence also assumed
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that the atmosphere is behaving like a perfectly uniform and non-absorbing medium and
the attenuation of the radio frequency signal essentially follows the inverse-square law. The
received power in terms of the power of the traitsad signal is therefore attenuated by

a factor which is known apath lossor free space los§7, 8]. However, for propagation
encountered in mobile communications and most other practical radio applications, the free
space propagation model is inadequate to describe a channel where propagation takes place
close to the ground, in a non-ideal atmosphere. Furthermore, the transmitted signal will be
reflected off obstacles and arrive over multiple reflective paths atetteivier. This effect,
calledmultipath propagationcan give rise to changes in the signal’'s amplitude, phase, delay
and angle of arrival. This is known asultipath fadingwhere fading is the term employed

to describe a signal’s random fluctuations due to propagation over multiple paths.

1.3.1.2 Multipath Fading

To qualify multipath fading further, we have to distinguish between two types
of fading that occur in mobile communicatioriarge scale fadingandsmall scale fading
respectively.

Large scale fading is the term employed to speak of fading due to motion over large
areas and is affected by landmark sized objects such as hills, forests, built-up areas and the
like. Sometimes, the tershadowings also used which can be understood by considering
the receiver as being in the 'shadow’ of a prominent land feature. In essence, large scale
fading estimates an average path loss as a function of the distance between transmitter and
receiver. In mobile communications, the mean loss as a function of distance is proportional
to then-th power of the distance relative to some reference distance. The reference distance
andn are factors that depend on the transmission frequency, antenna height, the type of
channel (indoor, outdoor) etc. [1,4,27]. These results are based on comprehensive path loss
measurements and their transformation in parametric formulas [28—31].

The significant effects that small changes (as small as half a wavelength) in spatial
separation between the transmitter and dueiver can have are known as small scale fading.
There are two effects of small scale fading, namely time-spreading (or signal dispersion) and
time-variant behaviour of the channel. In a mobile setting, the channel will be time-variant
due the the motion of the mobile user or also of motion in the propagation environment, for
example nearby vehicles. Hence, the rate at which the propagation characteristics change
characterises the rapidity of the fading. If there is a dominant propagation path, for example
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line-of-sight, the small scale fading envelope statistics are described by a Rician probabil-
ity density function, terme®ician fading In the absence of such a prominent propagation
path, the Rayleigh probability density function approximates the small scale fading enve-
lope, whence the naniRayleigh fadingl, 7, 8]. Typically, Rayleigh fading models are used
more often as it is the pdf associated with a worst case of fading per mean received signal
power due to the lack of a prominent (or specular) component in the signal. The composite
fading experienced in the mobile system is a combination of small scale fading superim-
posed on large scale fading.

In 1963, Bello [32] introduced the notion of wide-sense stationary uncorrelated
scattering (WSSUS) models which treat the signal variations arriving with different delays
as uncorrelated. The model consists essentially of four functions which allow the character-
isation of the channel. Thaultipath-intensity profileS(7) wherer is time delay, describes
the average received power as a function of time delay. For wireless channels, the received
signal normally consists of a discrete number of multipath components, also referred to as
fingers The delay difference between the first and the last path recelygds called the
delay spread The relation of the delay spread to the symbol tilgeallows to define two
categories of degradatiofrequency-selective fading’,, > 7) andflat fading(7’,, < 7).

In other words, in frequency-selective fading, the multipath components of a symbol extend
beyond the duration of the symbol and therefore cause the same kind of ISI as a band-
limiting filter. Equivalently, and hence the name, it means that not all spectral components
of the signal are affected equally by the channel. Often though, ISI arising this way can be
combated effectively since many paths can be resolved at the receiver and udgpEtmu
diversity can be made. In the case of flat fading, all the paths are received during a symbol
period and can therefore not be resolved in general. Indeed, a major benefit of DS-CDMA
systems is the fact that the bandwidth expansion introduced with the spreading and the cor-
responding oversampling at the receiver (at chip rate or higher) with respect to the symbol
period allows much better path resolution. That is to say, the path resolvability is determined
by the sampling rate and not the symbol rate, in a DS-CDMA system.

An analogous description to signal dispersion can also be given in the frequency
domain through thepaced-frequency correlatidanction,| R(A f)|. Itis simply the Fourier
transform ofS (7). R(A f) provides a description of how correlated two signals, spacéd
in frequency, are at the receiver. From the spaced-frequency correlation function, we obtain
the coherence bandwidtly,, which gives the range oA f for which two signals have a
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roughly equal gain and phase, i.e. a strong potential for amplitude correlation. Note that

o 1
fONT_.

: So far, the description in the last paragraphs has only described the behaviour
of the signal from a signal-dispersion point of view but does not allow us to say anything
about the time-varying nature of the channel due to movement of the mobile or movement
of objects in the channel, i.e. about the rapidity of the fading. This is where the last two
of the functions due to Bello come in. The functi&tAt¢), calledspaced-time correlation
function, measures the correlation of two sinusoids sent over the channel, spaodine.
Similarly to the coherence bandwidth, we getaherence timel,, which tells us for how
long the channel remains approximately stationary. In other words, it tells us whether the
channel islowly fading(7, > T%) or fastly fading(7; < 7). Assuming a mobile travelling
at a constant velocity, it is clear that the coherence time can be measured both in time and
distance.

Equivalently, the time-variation of the channel can be described, usirigpppler
power spectral densitys (v), wherewv is the Doppler frequency-shift. The Doppler power
spectral density is just the Fourier transform of the spaced-time correlation fungtian).
Knowledge ofS(v) provides us with théoppler spread f;, which is the width of the
Doppler power spectrum. The Doppler spread give us information on the fading rate of the
channel. More precisely, it is a measure of the spectral spreading a signal undergoes when it
passes through the channel as a function of the time variation of the channel. The Doppler
spread is hence a function of the wavelength and relative velocity between transmitter and
receiver. This point is maybe more easily understood thinking of the coherence time rather
than the Doppler power spectral density.

1.3.1.3 Diversity in multipath fading channels

As mentioned earlier, an advantage of a wideband DS-CDMA system is the fact
that it provides diversity at the receiver. Signals with a bandwidth,much greater than
the coherence bandwidth, will be able to resolve paths up to a time resolution of about
1/W. Therefore, there will be approximately, W resolvable signal components. Using
the approximate relation between the delay spread and the coherence bandwidghsi.e.
ﬁ, we can see that the the number of resolvable paths can be written approximately as
W/ fo and can therefore be viewed as a means of obtaining frequency diversity. Frequency
diversity could of course also be provided by transmitting a signal over a number of different



1.3— Preliminaries 23

carriers, e.g. for a narrowband signal. Other types of diversity could be time diversity,
space diversity through multiple antennas or also angle-of-arrival diversity and polarisation
diversity.

1.3.1.4 Channel model

In DS-CDMA systems such as 1S-95 or the CDMA standard as defined for UMTS,
the signalling rate is sufficiently high to ensure that the symbol duration remains well below
the coherence time and we can therefore consider the fading process slow. Hence, for our
purpose, the channel can be considered constant over at least one symbol period. We will
therefore consider a slowly fading, frequency-selective channel. Returning to the channel
model, it is known that the wideband, frequency-selective CDMA channel can be modelled
as a tapped delay line (e.g. [1,7,33]). The channel is modelleti/lyiscrete multipath
components having random, complex gains and different delays, so that the channel transfer
function for users: € [1... K] at the basestation receiver is

M
hi(t) = > Apmhimd(t — mm) (1.3.1)
m=1

wherehy, andhy, ,, = h(6y,,) are column vectors of dimensi@gp, the number of sensors
employed at the basestation receiler,,, defines the response of the antenna array and is a
function of the Direction of Arrival (DoA)d;, ..., of the signal. For typical wireless channels,

the different paths not only arrive at different delays, but also from different angles. In clas-
sical wireless channels, it is often assumed that the antennas are omni-directional and that
the DoA of multipath signals is uniformly distributed at tleeeiver, in which case the mul-
tipath intensity profile is independent from the DoA. In the case of antennas with directivity
and especially for applications in space-time processing it is generally necessary to establish
a more exact relationship between the channel and the DoA. We will not pursue this any
further here and refer the interested reader to [34]. For identifiability reasons, we chose the
antenna response vector to have unity poﬂuﬂ;h h; . = 1. Further, the specular channel

is characterised by, ,,, andr ;, the complex amplitude and the path delays, respectively.
These channel parameters can be divided into two classes: fast and slowly varying parame-
ters. The slowly varying parameters are the delays,, the DoA,0;, ,,,, and the short-term

path power, E4; ,.,|>. Hence, the fast varying parameters are the complex phases and am-
plitudes, Ay ,,,. The direction of arrivalf;. ,,, can be considered constant over an interval
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of several tens of wavelengths [35]. Since scatterers are usually assumed to be relatively far
from the BS receiver with respect to the beamwidth(spatial distance over which a given path
may be observed), the DoA does not appreciably change over this interval. This allows the
assumption of plane wave transmission [36]. Along the same lines, we can argue that the
delays as well as the path powers attributed to a given path will change slowly, being depen-
dent on large scale effects. For various statistical and other models to model the parameters
of the channel please refer to [1, 7,27, 30, 33-35, 37-39].

1.3.2 Baseband system and signal model

1.3.2.1 Asynchronous received signal model

In a DS-CDMA system, the transmitted data bits from a particular user are mul-
tiplied by a spreading code which is of much larger bandwidth than the data signal. The
chip-rate signal is then passed through a pulse-shaping filter to render it continuous-time
before is is transmitted through the mobile channel. This is shown in Figure 1.1. In what
follows, we are assuming the use of symbol-periodic spreading codes.

Denoting a given user by indéx € {1,..., K}, the transmitted data bity[7]
at time instant. with symbol period!’ is first upsampled to chip-rate (peridd = 7'/L),
with a slight misuse of the definition of upsampling in the sense that the symbol is repeated
I times during the symbol periafl, wherel. is the spreading factoior processing gain
The upsampled data signal is then multiplied with a periodic spreading code (periodic w.r.t.
the symbol period)s.[{], and passed through a chip-pulse-shape filter to render the signal
continuous in time.

The signal is then transmitted through the mobile channel, as defined in section
1.3.1.4. Atthe receiver, we receive the sum offallsers in the system througliaelement
antenna array. The received signals are then low-pass filtered (anti-aliasing) and sampled at
ratel/Ts = LJ/T, whereJ is the oversampling factor with respect to the chip rate. The
continuous-time baseband signal for ukext the output of the transmitter in figure 1.1 can
be written as

o0

ve(t) = > ax[n]er(t = nT)

n=—0o0

whereyy(t) is sometimes called the signature waveform and defined by the convolution of
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Figure 1.1: Received signal model from the transmitted data to the bandlimited and
sampled signal at the receiver

the pulse-shape and the spreading code.

L—1
Vp(t) = ) splllp(t = 1T) (1.3.2)

=0

—

p(t) is the pulse-shaping filter and assumed to be a perfect, normalised sinc and hence has
strictly limited bandwidth. The received continuous-time signal before sampling can now
be written as the convolution af (¢) with hy(t) and summing over all users gives the
received signal:

Z{ Z Z (Apmar[n Z [hy o p(t —lTC—nT)—I—n(t)}

n=—ooc m=1 (=0 (133)

y(t) and the Additive White Gaussian Noise (AWGM)t), are vector signals due to the
use of multiple sensors and are of dimensiQns 1. ax[n], p(t) are the transmitted symbols

for userk and the pulse-shaping filter, respectively. At the receiver front-end, the received
signal given in equation (1.3.3) is lowpass-filtered and sampleédiat After sampling, we
obtain the discrete-time vector signal model

ylnl= > Pln—iSHAa[i] + v[n] (1.3.4)
wherey[n] = [y[n40-T./J]...y[n+(LJ—1)-T./J]",i.e. we stacked all samples of the re-
ceived signal for the duration of a symbol peribdntoy[n] (L.JQ x 1). v[n]is the sampled
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and low-pass filtered contribution of the noisét). a[n] = [a;(n)az(n) . ..ax ()]’ con-
tains the data symbols of all users for a given time instant  indicating the matrix trans-
pose,A = diag{Ay, ..., Ax} is the block diagonal matrix containing the complex ampli-
tude coefficients for each user such that = [Ay ; .. .AkM]T, H = diag{H,, ..., Hx}
contains the antenna array responses wikBre= diag{hy, ..., hi rr} where bothH;,
and H are block diagonal matrices aid. ,, = [hg 1 -- .hk7m7Q]T is a column vector
containing the antenna array response of every anteBna diag{S;,...,Sx} where
Sk = Iy @ (s @1g)]; sk = [s£[0] . .. si[L — 1]]T represents the spreading code vedgr,
andIy denote identity matrices of dimensiofs x M and() x @, respectively® signifies
the Kronecker product. Finally, we have the contribution of the pulse-shaping filter and the
delaysinP[n] = [pn,1 .- -PnKk];Prk = [Prk1 - Pnkn] and

Pn,k,m,0,0 s Pn.km,0,L-1
Pn,km =

Pn.km,LJ-1,0 --- Pnkm,LJ-1,L-1

wherep,, k.m0 = [p (0T + (r/J = )T, — 7.m) @ Ig]. The matrices for the model intro-
duced above are therefore of the following dimensids:](J LQ x K LM Q), S(IK M LQ x
KMQ), HIKMQ x KM), A(KM x K), y[n](JLQ x 1).

1.3.2.2 Conventional DS-CDMA Receiver/RAKE receiver

Theconventionabr single-usereceiver for DS-CDMA is the matched filter. It de-
rives from analysing communication in an AWGN channel where the users are synchronous
(i.e. no multipath and;, = 0) and is a correlation demodulator. We consider the case of
a single receiver antenna and sampling at the chip(@te= 1, J = 1). We can write
equation (1.3.4)

o0

y[ln] = Y Eln—daln]+vin]

1=—00

E[n] = P[n]SHA
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In this case, the matched filter is simply givenB}/ [—n»]. Note that since
Efn]) = AHHHSHPH[]
AHHHsHpn1
= : (1.3.5)
_AHHHSHpnB
and also

h£{1 (Sg ® IQ)PnH,kJ
AfHISIp = [Af, .. AL ] : (1.3.6)
hE,M(SE @ IQ)PnH,k,M

the matched filter operation is in fact equivalent to a bank of filters matched to each user
(from equation (1.3.5)) or also to every path of every user (from equation (1.3.6)). Indeed, in
the case of multipleaceive antennas, the matched filter could also ligemras a filter bank
operating on every path of every user at every antenna. Further note that the matched filtering
consists of pulse-shape and spreading matched filtering, followed by antenna recombination
which is followed by amplitude recombination. The fact that the operation can easily be
viewed as matched-filtering of each of the 'fingers’ and then collecting all the energy through
recombining, the filter's action is vaguely analogous to an ordinary garden rake, hence also
the name of RAKE receiver. Returning to ’joint’ matched filtering (with= 1, J = 1), we
can now write

Ef[—n]xy[n] = APHASH E: }::PH P[l + (n — m)]SHAa[m] + E¥ [—n] % v[n]
Mm=—00 [=—00
®[n—m]
= ATHTST N ®[n - m]SHAa[m] + E[—n] + v[n] (1.3.7)

wherex denotes the convolution and we have substitited —i. ®[n — m] can be seen
to be the autocorrelation for the pulse-shaping matrix at ghiftm, this is were the name
of correlation receiver comes from. From the expressiondfo}, it can be seen that the
Nyquist condition for zero IS is

171 n—m=0

Sn—m] = (1.3.8)
0 otherwise
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where in the case of a single receiver antehna [I, .y, . . . I«L], i.€. @ block row vector

of identity matrices. This condition is satisfiedyift) is a sinc Nyquist pulse and the users

are at least chip-synchronous, sampled at chip-rate where the sampling is synchronousto the
users. Assuming the Nyquist condition to be met, we obtain

Ef[-n]xy[n] = AFHTISH1T1SHAA[] + EH[—n] * v[n] (1.3.9)

Note thatlS = [s; . ..sx] (no multipath and onesceiver antenna) and therefogg! 1718
is simply the spreading code correlation matrix. In the case where the users are synchronous
and orthogonal spreading codes, are used, we obta®’171S = I and

Ef[-n]xy[n] = APHIHAWR]+ E[—n]* v[n]
| A1[*ha]?as[n]
= : + Ef[—n] x v[n] (1.3.10)

| Ar|?lhic|?ak[n]

Under the assumption of synchronous users with orthogonal codes in AWGN, this result is
the classical matched filter which maximises the output SINR (e.g. [7]). Therefore, the con-
ventional receiver manages under these ideal itiomd to cancel any interference between
users due to the orthogonality of the spreading codes. However, any deviation from such
an idealised scenario such as non-ideal Nyquist pulse-shapes, timing offsets at the receiver,
asynchronism between users or multipath propagation will destroy the orthogonality of the
users and therefore interference can no longer be nulled out and the receiver will suffer from
a non-reducible error floor even under zero noise conditions. In other wordgctiear is
interference limited.



Chapter 2

Pathwise Interference Cancellation

2.1 Introduction

In linear multiuser detection approaches, there are two different ways of handling
multipath channels. The Interference Cancellation (IC) can either take place prior or af-
ter the various multipath components are recombined. These two methods are known as
precombining interference cancellati@amd the more commopostcombining interference
cancellation respectively, as defined in [40—44]. The received signal can be factored into
two components, one of them relying only on slow parameters as defined in section 1.3.1.4,
the other component relying on fast parameters, namely, the product of the data symbols with
the complex path amplituded,, ,,a;[n]. This observation motivatgsathwise interference
cancellationPWIC) which only requires the knowledge of the slowly varying parameters as
opposed to the more comme@ostcombiningpproach which requires complete knowledge
of the channel. Hence, in a pathwise scenario, the interference cancellation typically takes
place between individual multipath components before they are spatio-temporally recom-
bined. The obvious advantage of an interference cancelling filter that relies only on slow
parametersry ,, andhy ,, as a function of the DoAg;, ,,,, is that the adaptation require-
ments of the filter will be based on the rate of change of the slow parameters also, which are
easier to estimate as well as to relax the update rate of the adaptive interference cancelling
filter, thereby reducing the complexity of the filter. Furthermore, a pathwise filtering ap-
proach allows improved channel parameter estimation since the estimated path components
contain the signal of interest with an increased SINR compared to the received signal.

29
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2.1.1 Extension to the signal model

From equation (1.3.4) we know that the received discrete time signal at the receiver
is given by

ylnl= > Pln—iSHAa[i] + v[n] (2.1.1)

1=—00

Due to the delay spread of the multipath chanhglf), the transmitted symbols are spread
out in time over the duration of possibly several symbol periods. Assuming that the maxi-
mum delay spreads,...., experienced in the channdl,(t), is known and given the asyn-
chronism between transmitter aneceiver, a processing window of lendth= [ (7,4 +

2uT) /T + 1 symbol periods for the receiving filter will guarantee to capture the entire con-
tribution of a certain data symbal[n]. It is therefore often advantageous to use samples
from the received signal over the duration of several symbol periods rather than just one,
thereby also increasing the available data for interference cancellation. Hence, in what fol-
lows, we consider anulti-shotdetector. For notational ease, let us rewrite equation (2.1.1)
as follows:

ylnl= > Pli|SHAa[n - i] + v[n] (2.1.2)

1=—00

where simply we leP[n] — P[n], S — S etc. In order to consider the multi-shot detector,
let us stackV vectorsy[n] into a vectorY[n] which represents the received signal samples
over a duration ofVT’, such that

y[n]
Y] = s
yln =N +1]
Y[n] = PSHAa, + VIn] (2.1.3)

wherea,, = [a[n]T .. .a[n - N-b+ Q]T]T, A=1Inp-1® A, H=1Iy4-1® I:L S =
In45-1 @S andP is a banded block Toeplitz matrix of dimensiaNd, PQ x K MQL(N +
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b — 1), as shownin (2.1.4)V[n] are the stacked noise samples.

P[-u] 0O 0
Pl—u + 1] 0
: P[]
P=| Plu-1] Pl—u + 1]
Plu— 1]
0 0 Plu |

(2.1.4)

In addition, to allow the structure of the received signal to be more lucid, we can rewrite
equation (2.1.3) in terms of usk’s desired symbol’s contribution and interference terms, in
particular, ISI and MAI. This is given in equation (2.1.5),

PSHA a,, + V|[n]
E
Ea, + V[n]

[El,n e EI(,nEl,n—l e EI(,n—N—b—I—Q] an + V[n]
K
Epar[n — d] + Exay, + Z E;a;,, + V[n]
=1tk
K
E HyApap[n — d] + Exay, + Z E;a; , +V[n]
S~ Sk

N—— —
MAI

151

v[n]

(2.1.5)
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where
ap, = lag[n]---ap[r]---ap[n—N—-042]],r#n—d
a, = [afn]---a;[n—N—b+ 2]
Ernq 2 E.for user of interest at delay of interest only
E = (Ein- - E;n_N_pt2]
E, = [Ep,-Ep, - Epp_nopg2],r£n—d
M M
E HAp = Z Ej o hem Agm = Z EpmAgm = ELA = Ey
m=1 m=1
E.,. = PimSk Phm =104 Powkm  Pukm ON—d—2u—1]"
s, = se®Ig; 0. =00510x10) (2.1.6)

In this notation, the individual columns of the matrix prodi@8H A are denoted
by E; . and hence represent the contribution of a data symaje] in the received signal
vector, Y[n]. Therefore, the ISI term consists of the columns and data biBIH A
corresponding to the user of interest’s data symbols in the past and in the future w.r.t. the
time instant: — d which defines the data symbol of interest at a given moment. Similarly, the
MAI term is given by the sum of the contributions of all users other than the one of interest
inY[n].

From equation (2.1.3), it can now clearly be seen that the signal can be divided into
a fastly varying component and a slowly varying component.Explicitly, the proBlG&l
containing the pulse-shaping as a function of the delgys, the spreading codes matrig,
and the antenna array response matkik are dependent only on slow channel parameters,
whereas the amplitude data product matfs,,, is fastly varying due to its dependence on
the complex amplitudes. This observation has led to the idpaeabmbining interference
cancellation

2.2 Precombining LMMSE PWIC

The originalprecombining interference cancellati@pproach was proposed by
Latva-aho [40], the motivation being an adaptive filter implementation of an interference
cancelling scheme that relies only on slowly varying parameters of the channel as well as
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the estimation of the channel coefficients. Namely, the fast varying parameigers,can

be estimated using scarce training data and are not required for the IC-filter design. The
slow parameters can be estimated over a longer duration. This allows to find filters for each
pathm of a userk by employing filtersF; ., to each path and to cancel both Inter user
Interference (1Ul) as well as Inter symbol Interference (ISI), caused by the multipath propa-
gation channels. The filter coefficients can typically be derived using a Linearly Constrained
Minimum Variance (LCMV) or Minimum Output Energy (MOE) approach. Using carefully
chosen constraints ,which guarantee the contribution of the target path to be present in the
filter output, such an approach is in principle equivalent to maximising the Signal to Inter-
ference plus Noise ratio (SINR) at the filter output. Since in a RAKE receiver the treatment
of the received signal is naturally pathwise in the sense that there exists a 'finger’ or pulse-
shaped matched filter in cascade with a correlator matched to the spreading code of the user
of interest, the precombining approach lends itself as an extension to the classical receiver
in DS-CDMA, the RAKE receiver. It is hence possible to envisage two ways of proceed-
ing with the pathwise interference cancellation, namely by using the correlator outputs of
the RAKE(i) as suggested above, or to use the received signal directly(ii). It may be noted
here, that it is in fact not important that the interference cancellation be necessarily before
spatio-temporal recombining of the multipath components but that there is a pathwise treat-
ment. Approach (i) is inherently attractive since the entry vector size to the filter in this case
is proportional toK M whereas in approach (ii), the entry vector is proportiondl foM .

This is particularly true in the case where the number of ugérss small compared to the
processing gair,, and hence promises reduced complexity. However, approach (i) is more
difficult to formulate in a discrete-time processing context, as well as to present the incon-
venience of signal structural change with a varying no. of users and/or number of paths.
Approach (i) is a true multi-user approach and is used by Latva-aho [42] to present the filter
theory, but approach (ii) is used in the context of adaptive filtering, since it allows to follow

a single-user approach, in the sense that only the information relative to the user of interest,
k, is required. Approach (ii) can hence be formulated such that the IC-Hligy, for path

m of userk, works directly on the received signal given in (2.1.3), such that the filter output
can be written a¥'; ,, Y[n]. Figure 2.1 clearly shows the matched-filter structure of the
path-wise approach. Indeed, it can be seen that the 2D RAKE receiver is but a special case
of the proposed filter structure where the filt&tg,, = Efm are matched td&y ,,,. From
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Figure 2.1: Receiver showing the matched-filter structure of the proposed approach

figure 2.1 we see that the data symbol estimate is described by

ar[n — d] = A [n] H{'F, Y[n] (2.2.1)
N——
F,
N———
F
where
Ek = [E;ﬂ - 'Ek,M] K= [Fk,l o ‘Fk,M] ; (2.2.2)

are the stacked contributions of the path-wise filters to give a filter per user. We can see here
that the path-wise processing can be further broken down from purely path-wise processing
(estimatingF;) to path-wise and antenna-wise processing (estimatirg

The LCMV optimisation criterion to solve for a purely path-wise filt&yr ,, is
hence given by

Fj,=arg min Fp, RyyF{ (2.2.3)

o Fk,mEk,mzl

whereEy, ,, is the constraint vector, chosen such that it represents the contribution of the path
of interest, Ay, ,,ar[n — d],in Y[n], i.e the column iPSH corresponding toly, ,,ax[n — d]

in Aa,. d denotes some delay with respect to the input signal time inggypically chosen

such that the symbols contribution corresponds roughly to the middle portion of the received
vectorY,. This leads to the solution of

P = (Bf Ry Epn) 'Ef Ry (2.2.4)

Hence, it can be seen that tRg ,,, and thereford’;, ,,, only depends on the slowly varying
parameters as defined earlier in section 1.3.1.4.
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2.3 User-wise Distortionless Pathwise Interference Cancellation

In the approach described in section 2.2 it is supposed that the estimation time for
Ryv is such thatthe complex amplitudés ,,, of the paths vary strongly over the estimation
time of Ryy so that the coefficients,, ,, can be considered mutually independentand hence
decorrelated between different paths for a given ésdf this decorrelation is perfect, the
approach of section 2.2 is optimal in the sense that it corresponds to a maximisation of
the SINR of each path. However, if it cannot be assumed that the mobile terminal moves
sufficiently, the performance of the approach given in [42] will be limited severely as the
signal Ay, ., ar[n — d] for the pathm of the usert can be strongly correlated with the other
paths: # m since they belong to the same data symbol(see also appendix 2.A). In the
following, we present alternative approaches which avoid the problem of signal cancellation
due to amplitude correlations.

2.3.1 User-wise Distortionless PWIC (1)

It is now possible to resolve the problem of signal cancellation by requiring that
the filter F;, ,,, for pathm blocks the contribution of the other pathst m according to the
following LCMV criteria:

Frm=arg_ min _ Fy, RyyFY, (2.3.1)

Fk,mEk,]:(gm,]
where the number of vector constraints has become equal to the number ofipatisiser

k. Stacking the filter&y ,, : m € {1...M} into a matrixF, = [F{/,...F{, /] and
Eipm:me{l...M}intoE, = [Ey;...Eg »], the LCMV criteria can be rewritten as

F,=arg_min F,RyyF/ (2.3.2)
EkEk: M
with solution
F; = (E/Ry}E)'E/ Ry (2.3.3)

In this approach, the filter will et pass all the pathsof userk without distortion and allows

for zero-forcing. The estimate of the signal will be obtained by maximum ratio combining,
ar[n —d] = Z%Zl A; . Fim Y[n]. This PWIC approach is also suitable to the estimation
of the complex amplitude coefficientd,, ,,, since they are contained in the filter outputs
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at improved SINR as compared to the unprocessed sighal. The complex coefficient
estimation hence can be achieved through the use of a training sequence according to the
following Least-Square (LS) criterion

Agm = arg min | Ak mar[n — d) — F¢, Y [n]|? (2.3.4)
Ak,m n ’

The disadvantage of this method lies therein that it does require the knowledge of the antenna
response vectdiy ,,, but does not permit the estimation thereof since the spatial recombi-
nation is implicit in the interference cancelling filter. Hence, the estimatid,@f would

have to be obtained independently from a different source. In the next section, we show an
alternative which allows spatial recombination after interference cancellation.

2.3.2 User-wise Distortionless PWIC (2)

In order to allow also the estimation of the channel response vedtgrs, the
approach in section (2.3.1) can be extended directly, so as to achieve explicit spatial recom-
bination after IC-filtering. This requires the filter to become a matrix filkgr, ,, instead
of a vector filter unlike (2.3.1), further increasing the degrees of freedom available. Let us
define

Ek,m = Ek7mhk7m (235)

WhereEkm is a matrix, containing the contribution &f; ,,, Ay ,,ax(2) in PS of equation
(2.1.3), the spreading and the pulse-shaping matrix, as detailed in section 2.1.1. We can then
write the LCMV criteria as

: H
Ek,m = arg min Ekanyk’m (2.3.6)
Ek,mEk,] :IQémJ

if we now stack the filterd, ,, and the constraint matricds, ,,, as in section 2.3.1, we
obtainF, andE, and the LCMV criterion can be written as

_ : H
F =arg EkETS%QM F RyyE] (2.3.7)

leading to

F, = (E/Ry}E,)'E/Ryy (2.3.8)
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The symbol estimate is therefore given byin — d] = Y0 Ay hif ¥, Y[n]. This

method clearly allows for the estimation of a path’s channels response, requiring only the

knowledge of the delays; ,,,, and the spreading cods,, for the user of interest;, to adapt

the interference cancelling filte]:?k. The antenna array responsg,,,, can be estimated

over the duration of several bursts where as the complex channel coeffielgntscan be

obtained by estimation over a much shorter time interval. The estimates can be found by
min > g Ag mak[n — d] - EZY[n]|]” (2.3.9)

Ak,mvhk,m:hgmhk,mzl n
with solutions given in (2.3.10), using Training Sequences (TS).

flk,m - Vmax(_%mRYYEZ’]?n) ~ hk,mej(b (2310)
ZnETS a};[n - d]hgm—z,mY[n]

A]“ = ! ~~ A;€7 eI?
" Y ners laxln — d]? "

In the case where a pilot in quadrature is used rather than a TS, we can find the complex

amplitudes through

Y, {Im{adn - ) by B, Y

kym —

~ Ahme—j(b
>, (Im {ag[n — d]})” (2.3.11)

Due to the extra degrees of freedom compared to the approach of section 2.3.1 this approach
allows even more powerful interference cancellation. On the other hand, with the extension
of the degrees of freedom, this also means that the complexity is higher.

2.3.3 User-wise Distortionless PWIC(3)

From the filter expression for UDPWIC(2), equation (2.3.8) it can be seen that the
solution is identical to (2.3.3) in the case where we Hgéfor the spatial recombination in
(2.3.8). That s to say that

F, = H/'F,

Usingq as a generic spatio-temporal recombination vector, we can express the SINR at the
symbol estimator output from

ar[n —d) = q"E, Y[n] (2.3.12)
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and
Y[n] = E HyArap[n — d] + v[n]

whereE H; A, is the signal term and|[r] represents the noise and interference term as

olq"H A ATHI g

SINR =
q'(E,RyyEl — o2H AL ATH )q

In order to maximise the above SINR w.r.t, the problem can be reformulated into a
generalised eigenvalue problem of the following form:

q = argmax qHHkAkAEHEq
o @ a"E,RyyE)q

with solution
Amaz = AYHI (B, Ryy E]1)™!

Upon backsubstitution into equation (2.3.12) we find
ap[n — d) = ATHI 7, Y [n]
where

i = EVRy} = RayRyy (2.3.13)

is a matrix filter, equivalent to an unconstrained LMMSE/max. SINR receiver. This shows
that pathwise processing does not necessarily imply sub-optimality w.rt an LMMSE re-
ceiver. Note, however, that the filter only simplifies in the case where the estimation interval

of Ryy used in the construction d:?k is equal to the estimation interval &f; and hence
¢. In the case where the filter is constructed withRapy that is averaged over several
realisations ofA ;, the Ryy used ing, will have to be computed separately and we will

use equation (2.3.12). This filter is substantially less complex to compute than the filter in

(2.3.8) while also maximising the output SINR. It is worth noting that this is neither the

case for UDPWIC(2) nor UDPWIC(1) unless the interference plus noise covariance matrix
is identity. Furthermore, this approach allows the filter to be constructed with a minimum of

a priori knowledge, in particular the path delays and the spreading code df,wgkile still
allowing the estimation of the channel coefficients.
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2.3.4 Structural Filter Constraints

So far, the filters shown in the preceding sections had no structural constraints
imposed on them, other than being FIR. It is however possible, to define an a priori structural
constraint on the filteF, ,,, with the aim of further reducing the complexity and/or improve
the performances. Possible constraints are to define theHitgr to be the cascade of a
free, shorter filter and a pulse-shaped matched fjitér-¢) or even a cascade of the pulse-
shaped matched filter as well as the spreading code correlator and a free filter part. We will,
however, not pursue this any further at this point but introduce a lower complexity method
in the next chapter.

2.4 Numerical Simulation Results

We consider a scenario with = 8, K = 2, M = 2 and SIR=-10dB. Three
cases are shown, in whidRy-y is averaged over 1 (figure 2.2), 2 (figure 2.3) and 10 (figure
2.4) slots, respectively. By this, we simulate a situation with varying vehicle speed since
the correlation between the complex amplitudes is a function of vehicle speed. The fast
parameters are drawn randomly in each slot, while the slow parameters are constant. The
simulations show that the original approach by Matti Latva-Aho (PLMMSE curves) suffers
from signal cancellation when the fast parameters do not vary fast enough, whereas the new
approaches are fairly insensitive to the speed of variation of the fast parameters.

2.5 Conclusions

We have established the concept of user-wise distortionless pathwise interference
cancellation and introduced novel interference cancelling filters on a pathwise basis which
do not rely on the fastly varying complex amplitude coefficients. This is achieved using
the fact that the signal can be split into parts which depend on slowly varying channel pa-
rameters and fastly varying parameters, respectively. Furthermore, we have shown how to
alleviate the problem of signal cancellation in the original pathwise approach [40-42, 45]
by introducing the extra constraint to null out other paths of the user of interest belonging
to the data to be received. The obvious advantage of such an approach is its independence
from the fastly varying complex amplitude coefficients. This allows to relax the update rate
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Figure 2.2: UDPWIC compared to RAKE and PLMMSE when averaged over 1 slot
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Figure 2.3: UDPWIC compared to RAKE and PLMMSE when averaged over 2 slots
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Output SINR vs. Input SNR(10)
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Figure 2.4: UDPWIC compared to RAKE and PLMMSE when averaged over 10 slots

of the IC filter. Pathwise Interference Cancellation (PWIC) is an approach that allows to
separate the parameters into fastly varying and slowly varying parameters, thereby allowing
the scarce training data to be used in the estimation of the fastly varying parameters while
the whole of the received signal can be used to estimate the slowly varying parameters over
a much larger time interval. Since the interference cancellation takes place between individ-
ual multipath components before spatial-temporal recombination, the signal thus obtained
contains the desired parameters at an improved SINR compared to the received signal and
hence allows improved channel estimation. These results have been published in [46].

However, the optimal FIR approaches of the previous pages are still computation-
ally very costly and therefore difficult to implement in practice. In the next chapter, we
will introduce an alternative sub-optimal pathwise method that allows considerable gains
compared to the RAKE receiver while being substantially less costly to implement than the
above approaches.
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2.A  Appendix: Signal cancellation in the case of correlated am-
plitudes

Consider the simple case of one user with two paths and a single transmitted data
symbol,a. The received signal can beitten as

y = s1Aja+s24sa+n
Ay

2

a+n=SAa-+n

= [s189]

wheres; is thel, x 1 spreading code of user one which we assume to be (without loss of
generality) at zero delay,, is a delayed copy af;, which for the sake of simplicity, we just
model as a different spreading code, synchronous syitm denotes the noise vector. The
filter in the original pathwise LMMSE approach of equation (2.2.3) to estimate the first path
amplitude data product; « is given by

F{ = arg min F;R,,FY

F151 =1

Recall that the constraint was imposed to ensure the contribution of the first path in the filter
output. The minimum output variance achieved is given by

-1

F{R,,F{ = (s{R; ) s1) (2.A.1)

The received signal covariance matrix is

R,, = 02SR44S" +o21
= 028D ADYSH 4 521
~—~
=B
= o’BABY + 521

where we defined the amplitude correlation matRx 4,

o 0 1 »p o 0
0 o3 pr o1 0 o3

Ay

2

I

[AfAz]zl 7 ”"1"2]:

* 2
p 0102 25}
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wherep denotes the correlation coefficient between the amplitudes. Using the matrix inver-
sion lemma orR,,, we can write:
siR-1ls; = ! [1 - s'B [BHB +A—1ﬁ] - B7s
Yy 1 o2 1

o2
Un a

1 H 1y —1y—17n Tt
oz o o
where we have usesf’B = s/SD = [1 a]D and takenD inside the inverse.a can
therefore be seen to be the correlation between the codes kg = «, si’s; = 1, and the
codes are normalised, as usual. Consider now the inverse term, i.e.
o277 -1 ol 4]
SHS+D—1A—1D—1—3] = (s¥s) [I+D—1A—1D—1—g (s¥s) ]
[ g
o,
i

Q

(s7s)™ [I ~-D'A"'D! (SHS)_I] (2.A.3)

where we have used a first order approximation for the inverse term, i.e. we approximate the
higher order terms in the noise powef,, with zero under the assumption that the SNR is
high. This is reasonable since the signal cancellation occurs at high SNR. Further note that
we can write

-1 1 1 -
(sfs)™ = T Tal? [ e ] (2.A.4)
and therefore
[1a] (878)™ =10 (2.A.5)

Resubstituting equation (2.A.3) into (2.A.2), we can now write

- 1
(sTRys) " =~ 0_2{1_

2

1 - o[ gJD~IA-ID"! [ ; ”} (2.A6)

04

1
= 2.A.7
AT 1) EAD
Therefore, with a high input SNR, we can see that the SINR at the filter output is approxi-

mately given by

SINR = clo} (1 - |p|?) (2.A.8)
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Hence, in the case where the amplitudes are perfectly correlatee; 1, and the noise
power is low, we see that the signal of interest is cancelled. This can occur when the mobile
is stationary and therefore the amplitudes will be strongly correlated. Whence, we introduce
further constraints on the filter, in particular tit,s; = 4,, ; which is equivalent to zero-
forcing the other paths of the same user that might be correlated to the path of interest.



Chapter 3

Polynomial Expansion Interference
Cancellation

3.1 Introduction

The last chapter has clearly shown the benefits of using pathwise processing that
allows the separation between fastly and slowly varying parameters. Despite the good per-
formances of the approach presented in the last chapter, the approach is hampered by its
high complexity due to the use of the received signal directly, hence dimensions involved
are large. Not least the estimation®{-y-, the received signal correlation matrix, would re-
quire a lot of data. In this chapter, we will introduce an alternative, low-complexity pathwise
approach, based on Polynomial Expansion (PE).

Polynomial expansion is an approximation technique for LMMSE receivers and
is particularly well suited for CDMA due to the presence of a large number of small corre-
lations. The fundamental principle of PE is to avoid the relatively costly correlation matrix
inverse required by an LMMSE/Decorrelator receiver by considering the correlation matrix
to be a small perturbation of an identity matrix and approximating the inverse of the corre-
lation matrix by a polynomial expansion in the perturbation matrix or, equivalently, in the
correlation matrix itself. However, for PE to work, adapted weighting factors have to be
introduced. By appropriately choosing the weighting coefficients, every additional term in
the PE can be guaranteed to improve performance and hence divergence concerns are largely
eliminated.

45
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PE has, in various forms, received a fair amount of attention recently ilit¢ne
ature [47-50] etc. Some works on PE have analysed the choice of scalar weighting factors
on the basis of asymptotic system analysis, leading to weight values that can be determined
a priori. In this chapter, we propose to introduce diagonal weighting matrices, which corre-
sponds to one weighting factor per signal component. We shall see that such multiple co-
efficients not only improve performance substantially in the presence of power imbalances
between users and paths, but also further improvement due to the fast adaptation of these
weights is possible since the instantaneous channel states will reflect the power imbalances
very strongly.

Moshavi, who first introduced PE [51], applied polynomial expansion to the joint
set of RAKE outputs for the various users. In this way, the polynomial expansion receiver
involves only (de)spreading and channel (matched) filtering operations and hence is mostly
parameterised in terms of the channel parameters (as opposed to the general coefficients of a
general linear receiver). Honig and coworkers apply the PE principle to the received signal
directly and were able to show [52] that PE is equivalent taMilnétistage Wiener Filtef53]
in this case. We propose to introduce polynomial expansion at the level of the pathwise
RAKE outputs. As compared to Moshavi's approach, the PE is situated before maximum
ratio combining of the path contributions and leads to pathwise interference cancellation
which will allow to estimate the path parameters (amplitudes, or even angles in the spatio-
temporal case) with improved SINR and hence with reduced estimation error. The diagonal
weighting factors we introduce hence provide a weighting per path (or even possibly per
antenna element per path in the spatio-temporal case). Maximum ratio combining after
pathwise PE then corresponds to a version of Gemeralised RAKEthe G-RAKE (the
path amplitudes multiplied by arbitrary weighting factors become arbitrary recombination
coefficients).

3.2 Principle of Polynomial Expansion

To illustrate the principle of pathwise polynomial expansion, it is beneficial to
briefly consider a simplified, synchronous signal model with a single path per user, a single
receiver antenna and chip-rate sampling (ile= 1, M = 1, @ = 1). We can write the
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discrete-time received signaln], for K users as:
y[n] = S.Aa[n] 4 vin] (3.2.1)

where we have used the following definitions:

Se = [s1...sx] (LxXK)
A = diag{A,...,Ax} (K x K)
aln] = [a[n]...ax[n]]’ (K x1) (3.2.2)

wheres; is the spreading code of usgrand A, the corresponding complex amplitude
coefficient.v[n] is considered white Gaussian noise, as usual. In this model, the spreading
matched filter is given bg!’ and we can write

x[n] = SHS.Aa[n]+ SHv[n] (3.2.3)
= RAa[n]+ Sv[n]
R = SUS. (K xK)
it is clear that the matriR is simply the spreading code cross-correlation matrix. Using

normalised spreading codes, is¢’s; = 1, we see thaR has unit elements on the diagonal.
Therefore, let us write

R=I+R (3.2.4)

whereR contains the off-diagonal elements Bf, [R];; < 1v{i,j}. The off-diagonal
elements are small and inversely proportional to the spreading gain. We can therefore view
R as a perturbed identity matrix. From equation (3.2.3) we can see that the Linear Minimum
Mean Square Error (LMMSE) receiver and the decorrelator/zero-forcing receiver to estimate
a[n] from x[n] are given by (for reference see e.g. [21, 54, 55])

édec[n] = Fdecx[n] = A_IR_lx[n]
2 -1
arymseln) = Frumspx[n] = A7 (o7RAAY 4+ 021) 7 x[n]

where we assume uncorrelated data symbols and white noisé{agn]a’’[n] = #21} and
E{v[n]vH[n] = o21}. Equally, for the estimation of the amplitude data product, we have

Aagn] = Fuex[n] =R 'x[n] (3.2.5)

e _1y—1
Aapymseln] = Frumsex[n] = (07R+ o2 (ATA)™) 7 x[n]
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SinceA andAAY = AH A are diagonal matrices, the main complexity in either
the decorrelator or the LMMSE receiver is the matrix inverse involvingithe K matrix
R. The fundamental idea in polynomial expansion is now to avoid the costly inverse by
approximating the inverse as a polynomial. For simplicity, let us look at the amplitude-data
decorrelator from (3.2.5). We can write for a general, invertible m&ris6]:

o0

R'=(1+R)" =) (- (3.2.6)

b=0

provided there is a matrix norff|R||| < 1 to guarantee convergence. Assuming for the
time being that the convergence condition is satisfied, we can therefore approRirmalsy
truncating the infinite series expansionAo+ 1 terms, i.e.

B
R'~R'=) (-R) (3.2.7)

Note that we could equivalently form the expansiomRinnstead ofR since there is a one-
to-one relationship between the two (this will be shown later in section 3.4.1). Typically, in
approximating the decorrelator in this fashion, we would be interested only in a polynomial
of very low order, such a8 = 1, to keep complexity at a reasonable level. In the noiseless
case (where the decorrelator is equivalent to the LMMSE), a first-order expéaisient )

in (3.2.7) leads to an amplitude-data product estimate from (3.2.5) given by

Aaln] = R7'x[n] = (I-R)x[n]
= (21— 8s,)sHS Aa[n]
= (2I-R)RAa[n] (3.2.8)

Note that the complexity introduced by PE is essentially twice the complexity of the RAKE
for every stage. In particular, every stage introduces an additional spreading followed by a
despreading operatio8{’S.). From (3.2.8) we can write the expression for the signal-to-
interference ratio (SIR) for user one, without loss in generality, fr{o?r\a[n]] , Where[.];
denotes the first element of the vector. '

(3.2.9)
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where we have taken the expectation of the numerator and denominator w.r.t. the data, i.e.
F{a[n]a[n]? = 21} andS, = [s1 S.]; A = diag{As,...,Ax}; P = A'A. Assuming

that the spreading codes for all users consist of i.i.d. random varigples ﬁ{—l—l, —1},

taking the expectation of the numerator and denominatd¥ Io®pr;, over the spreading
codes will give

c

SIRpp = — (3.2.10)

where we the numerator and denominator are given by

c = |A1*(1 - %(K — 1)+ (K = 1)(K = 2)(Lmym3 + L(L — 1)m3))

K
w o= Y |AP(1/L = 2((K = 2)Lm3 + L(L — 1)m3 + Lmymy)

k=2
H{Lmy(K — 2)(K = 3) + (K — 1)[m3L(L — 1)(L — 2) + 3mamyL(L — 1) + mamgL]
+3(K — 2)[Lm3mg + L(L — 1)m3]} (3.2.11)

wherem,, is the x-th moment of the random spreading code elemegntsAfter substitution
of the momentsy,, for the spreading code elementg, and some algebraic simplifications,
we obtain

Lm—lp if X even
My = .
0 if x odd
AP = (K = 1)[20* — L(K + 1) + 2]}

SIRpg - — ,
(X [ARPHE (K = 5) + L(K - 2) + 6}

(3.2.12)

If we furthermore take the expectation with respect to the amplitudes (where we adgume
complex, with equally distributed real and imaginary parts and aitoming from the same
distribution with finite second order moment) and thenietl, — oo while keeping the
loading factors = & = %mconstant, we can write an asymptotic large-system
result for the SIR as

(B-1)°
BB+ 1) B#£0

1
7 for small 3 (3.2.13)

SIRPE;I(,L—)OO,ﬁ:const. —

Q
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Figure 3.1: The large-system SIR of the RAKE and the PE (without coefficients) com-
pared as a function of the loading factor,5 = K /L, in the noiseless case.

In comparison, an equivalent analysis of the RAKE receiver is well known to give

1
STRRAKE;K,L—so0,f=const. = — (3.2.14)

B0

In figure 3.1, the above expressions are plotted and it can be seen that a first-order poly-
nomial expansion can only improve with respect to the RAKE for loading fagtors %
approximately. A more in-depth analysis leading to the same conclusion has recently been
presented in [57]. The performance can be much improved by introducing scalar coeffi-
cientsd;, according to some performance criterion in (3.2.7) as has been documented in
various publications e.g. [47,48,51,52,58], i.e.

B
Ri~R'= Zdbﬁ
b=0

(3.2.15)

Note that with the introduction of scalar coefficients, the inverse will be exactly estimated
with a finite number of stage® < I — 1, by the Cayley-Hamilton theorem [56].
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3.3 Polynomial Expansion using scalar coefficients

As mentioned in the introduction of this chapter, there are fundamentally two ways
of applying polynomial expansion to linear interference cancellation: at the received signal
directly or alternatively at the RAKE outputs. Those two variants correspond to the ap-
proaches introduced by Hong al. and Moshavkt al., respectively. We briefly introduce
those two methods now.

3.3.1 Polynomial expansion applied to the RAKE outputs

Moshavi presented the original polynomial expansion receiver in 1996 [22,51] and
applied it to the joint set of RAKE outputs for the various users. In this way, the polynomial
expansion receiver involves only (de)spreading and channel (matched) filtering operations
and hence is mostly parameterised in terms of the channel parameters (as opposed to the
general coefficients of a general linear receiver). From the previous chapter (section 2.1.1,
eqguation (2.1.5) ), we can write the general, asynchronous received signal as

Y[n] = Ea,, + V[n] (3.3.1)
where the RAKE outputs are given by
E"Y[n] = E”Ea, + E”V[n] = Ra[n] + Ef V[n] (3.3.2)
whereR = EE. The LMMSE solution for the data estimate in this case is given by
a, = (2R +o21) " EFY[n] (3.3.3)

The aim is therefore to use a polynomial expansioRito approximate the matrix inverse:
B .
(PR +021) " =) uR (3.3.4)
=0
and therefore the symbol estimate is given by

B
éMoshavi — Z ,UZRZEHY[n] (335)

=0



52 3 — Polynomial Expansion Interference Cancellation

The coefficients can, for example, be obtained by solving

B

[ etin g Pllan =3 pREIY [ 3.3.6
M= etonn By la ;“ [n]]] (3.3.6)

other methods of computing the coefficients are possible [47,48,51,58].

3.3.2 Polynomial Expansion applied to the received signal

Honig and coworkers apply the PE principle to the received signal directly. In this
case, they were able to show [52] that PE is equivalent td/éstage Wiener Filter The
multistage Wiener filter is a decomposition of the Wiener filter into multiple stages, based on
orthogonal projections, allowing a nested implementation thereof. Its most notable feature
is the fact that it does not require an estimate nor an inverse of the correlation matrix since
only cross-correlations between vectors and scalars are required in determining the filters at
each stage. Furthermore, this approach is suitable to reduced-rank Wiener filtering [54] by
simply stopping the nested multistage decomposition aitiestage, whereV is the rank
required. For details, see [53].

Hence, working on the received signal directly, we can write the LMMSE estimate
as

a, = EY Ry} Y[n] (3.3.7)

The polynomial expansion estimate for the data viith- 1 stages is hence given by

B
anrswrln] = BT wRyy Yo (3.3.8)
=0
Note that
EPRyL Y[ = EF(c2EEY +021)7'Y[n]
1 —1
= 1- 2R (o?R+o21) | BT Y[0]
I ok ! T
n i:O n

= (2R+021) ' EPY ) (3.3.9)
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where we have made use of the matrix inversion lemma and an infinite polynomial ex-

pansion. Hence, the LMMSE solution working on the received signal is equivalent to the

LMMSE solution based on the RAKE outputs. Therefore, the two methods try to approx-

imate the exactly same solution if the coefficients are obtained in the same fashion (e.g.
LMMSE) for the same performance criterion.

3.3.3 Equivalence between PE at the RAKE output and PE applied to the
received signal

To show the equivalence of the two approaches with the same, finite number of
stages, we need to show a one-to-one correspondence. Assume that the two approaches are
indeed the same for the same number of stages. Then we can write

B B '
> wREY = BN w; (cZEYE + 021) (3.3.10)
=0 =0
B 7 i
= 57y (1) e (o
=0 7=0 J
B N L ,
= X () ieh ol B e
=0 7=0 J
R/EH
5 B i . o
= 23w ey we (33.11)
im0 M
B .
= D wRE"
7=0

where we have changed the summation order in (3.3.11). Hence, it can be seen that there
is an exact one-to-one relationship between the two approaches for any arbitrary number of
stagespB. For alternative proofs, see also [59, 60].

3.4 Pathwise Polynomial Expansion

In this section, we propose to introduce diagonal weighting matrices which cor-
responds to one weighting factor per signal component, as opposed to the scalar weighting
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introduced in the last sections. We propose to introduce polynomial expansion at the level
of the pathwise RAKE outputs. As compared to Moshavi's approach, the PE is situated
before the maximum ratio recombination of the path contributions and leads to pathwise in-
terference cancellation which will allow to estimate the path parameters (amplitudes, or even
angles in the spatio-temporal case) with improved SINR and hence with reduced estimation
error. The diagonal weighting factors we introduce hence provide a weighting per path (or
even possibly per antenna element per path in the spatio-temporal case).

3.4.1 Time Domain Filtering Notation

We shall now define the more general signal model that is used throughout the rest
of this chapter. Recall from equation (1.3.4) that the general discrete-time received signal is
given by

o0

ylnl= > Pln—iSHAa[i] + v[n] (3.4.1)

In order to avoid the FIR approximations inherent to a burst mode formulation like the one
used in the last chapter (see section 2.1.1) we shall now introduce a time-domain filtering
notation defined by the advance operaipwhereqy[n] = y[n + 1] with respect to the
symbol period. The is equivalent ta: in thez-transforrdomain but we prefer the use of

to emphasise the delay operator aspect and not the frequency domain interpretation. To this
end, let us reformulate the received signal as given in (3.4.1) in the g-domain:

y[n] = P(g)SHAa[n] + v[n]
= E(g)a[n]+v[n ]
= n] + Z n] + vin] (3.4.2)
1=15i#£k
where we have decomposed the signal into user contributions and made use of
=> Plilg™’ (3.4.3)
Furthermore, note that we can also write
E (9HA, = Z E; o (@hgmArm = Z Epm (@) Agm = Ep(q) A = Ei(q)
m=1

(3.4.4)
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where the matrix dimensions al(q) = (JLQx KMQ), E(q) = (JLQxKM), E(q) =
(JLQ x K). Applying pulse-shaped matched filtering, despreading and antenna recombin-
ing, we can define

x[n] = HYE!(q)yln] (3.4.5)
— HYE'(q)E(¢)H Aa[n] + HE(g)v[n]

R(9)=1+K (o)
= E'(¢)E(q)Aa[n] + E(q)v[n]
whereE'(¢) = Ef(1/¢%) is theparaconjugatend

Y B! GE,,[-i=1Yke{l...K},me{l...M}

~—

Thereforex[n] = [z11]n].. .xKM[n]]T are the pathwise RAKE outputs, spatially but not
temporally recombined. Let us further define

R(q) = EYq)E(q) (KM x KM) (3.4.6)
= ZR[i]q_l
diag{R[0]} = IZ (3.4.7)

where the fact that the diagonal element®df] are all unity, derives from the assumption of
normalised spreading codes, is¢’s;, = 1 and using the normalisation of the antenna array
response vectorly, ., : ||hx.|| = 1. From equation (3.4.5), it is clear that decorrelator
to estimate the amplitude data produdta[n], is given byR™!(¢). We can now use the
polynomial expansion introduced in section 3.2 to write the pathwise zero-forcing receiver
by

B

R () =R (g) =D (-R(9))’ (3.4.8)

b=0
where we have truncated the infinite seriedte- 1 terms. We now propose to introduce
diagonal polynomial weighting matrices instead of scalar weighting coefficients, thereby
increasing the degrees of freedom available to us. This corresponds to introducing a scalar
coefficientper path Let us defindd;, = diag{ds 1, ..., dp xn} and write

B
R () =Y DR (g) (3.4.9)
b=0
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or also
~ B
R7'(g) =Y DyR’(q) (3.4.10)
b=0

Note that we can also write the polynomial in termsRfq) since there is a one-to-one
relationship between the expansion®iy) andR(q). Explicitly,

B B

Y DiR'(g) = Y. Dy(R(g) - 1"

whereA ; is another diagonal matrix.

Typically, we would only be interested iB € {1, 2} stages after the RAKE in or-
der to keep complexity at a reasonable level. Note that the additional complexity associated
with every PE stage is about twice the complexity of the RAKE, as mentioned in section 3.2.

3.4.2 Pathwise Filter Design

A first possibility for a pathwise design is to 1€, be an identity matrix, and
definingz[n] = R(¢)x[n]. We can write (3.4.9) foB = 1 as

R7!(q) = I+ (I- DR(q))
which allows us to determinB blindly by minimising the following variance criterion.
D? = argmin F[|(T— DR(q))x[n]|)? (3.4.11)

= diag{R,.} (diag{R..})"!
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whereR,.. = F{x[n]z"[n]} andR.. correspondingly. The resulting performance will be
evaluated by simulation. Note that no matrix inversions are required to computg;thén

the above approach since the required correlation matrices are diagonal. An alternative is to
extend the approach in (3.4.11) to a pilot-assisted scenario. In that case, we can sbive for
using the following LMMSE criterion.

D° = arg m[%n E||Aa[n] — (x[n] — D(R(q) — I)x[n])|]? (3.4.12)
- dlag{A(Ral’ - Raz) - Rxx ‘I’ sz} [dlag{wa - QRxZ ‘|’ Rzz }]_1

In the above examples, we have so far assulgd- I based on the polynomial expansion
of R. This is, however, not optimal in general and we can write the extension to an arbitrary
number of stages as

B
o _ : _ b 2
D¢ = arg p min FE||Aa[n] bz_; DR’ (¢g)x[n]|| (3.4.13)

This can be solved through a set of linear equations, satisfying

B
D, = |Adiag{Ra.,} — Y _Dydiag{R.,.,} | (diag{R.,.,}) " Yu €{0,..., B}
= (3.4.14)

This is, however, not convenient to solve and we can proceed differently. Looking at any
row j (corresponding to some path of some user) in equation (3.4.13), we can equivalently
write

d] = arg rr(liin E|A;a[n] — djo[n]|2
J

= AjE(al[n]WfI[n])(EWj[n]WfI[n])_l (3.4.15)

wherej € {1... KM} is the path index| = [ﬁﬂ the corresponding data symbol and we
have used the following definitions:

dj = [dOJ e dBJ‘]
zi[n] = R°(q)x[n]
= [za[n].. -Zb,KM[n]]T

w;, = [z20;...28,]"
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and hence the problem decouples nicely into a path-by-path solvable problem. It is worth
noting that this is not the case when the polynomial coefficient matflgesre replaced by
scalars as the solution for the coefficients involves the summation over thejattidience
there is no decoupling between paths nor users, i.e.

¢ = argd min EHAa ZdbRb H2 (3.4.16)
€0

= ZEA@; ZEW] (n])” !

A variant of the approach in (3.4.13) is the sequential computation of the stages where each
stage works on the error signal from the previous stage, i.e.

D} = argmyin ||Aaln] ~ (Aaui[n] + DiR' (g)x[n]) ||

= arg rrrl)in lles—1 — DR (q)x[n]||*
b

-1

= diag (E ey—1[n]z}[n]) (diag(E zs[n]z}![n]))
ey[n] = Aaln] — Aay[n] (3.4.17)

This approach is evidently suboptimal with respect to the more general approach given in
(3.4.13) and in practise may be difficult to implement due to the necessity of obtaining an
estimate of the error signal. We shall therefore concentrate on the approach in (3.4.13).

Given the amplitude data product after PE interference cancellation, we now need
to recombine the path contributions to obtain the symbol estimate:

a[n] = K"F(q) |R(g)Aaln] + E'(¢)v[n]

whereK (K M x K) is a general recombination matrix of the same block diagonal structure
asA, namelyK = diag{K;,...,Kx}. Maximum ratio combining id{ = A. F(g)
defines the linear filter corresponding to the PE approach above in (3.4.13). For the symbol
estimate of user one, we have
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where

K = diag{K;, K}

IOl F(9)R(q) = [Z1(9)Z1(q)]
X(q) = [IuO]F(q)E'(g)
aln] = [ai[n]a][n]"

A = diag{Ai, A}

and(.); is a signal model component acting on the useful signal contribution of user one

whereas(.), defines the interfering terms. Hence, the output SINR of user one can be
written as

a2 | K{'Z[0]A, 7
. . = 1 —HzH
K{I (‘72 Zi;ﬁo ZIMAIA{IZ{IM + 023 Ia[iJAA 2

a

i+ 07 3 XX ) Ky

Maximum ratio combining is, however, not optimal since the pathwise estimate is not de-
termined with respect to a symbol optimality criterion (but the Amplitude-data product)
whereas the SINR is computed for the symbol estimate. Hence, performance can be further
improved by maximising the output SINR for the symbol estimate with respect to the re-
combining vectorK;. We can hence optimise the SINR with respect to the recombination
vector, KKy, by solving

2| K1 Z,[0]A,?
Ki)::au’g1(1;1{&){57]\71%:ar}:{maxgo‘| 1 Za[0)A|
1

3.4.18
K, KIR/K; ( )

where we have defined

Ri =02 Zi[AATZIi) + 02 Zu[iJA AL 24 [+ 02 Y X[X i)
i#0 i i (3.4.19)

The solution is of the generalised eigenvalue type and given by
K{ = R 'Z,[0]A, (3.4.20)
and the resulting, maximised SINR, is given by

SINR,q = o2 AHZI[0]R, Z1[0] A
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One of the main advantages of applying pathwise polynomial expansion is the
availability of the pathwise outputdter interference cancellation. Often, the complex am-
plitudes are estimated by correlating the pathwise RAKE outputs with a pilot signal to esti-
mate the complex amplitudes. Compared to this approach, our method will provide us with
an amplitude data product estimate at a higher SINR and therefore allow better estimation
of fastly varying complex amplitude coefficients;, ,,,. Indeed, there are a number of ways
on how we can interpret this fact: If the amount of data available for the estimation of the
complex amplitudes is fixed, we will achieve a better SINR in our estimates which will al-
low faster adaptation of the receiver filters. Alternatively, we can take the point of view that
our approach will require less data to obtain the same estimation quality, hence a shorter
pilot. Yet another view is that we would require less power in the pilot to achieve the same
estimation quality.

3.4.3 Joint filter and recombination design

Using maximum ratio recombining witlA, we can write the symbol estimate
resulting from the filtering and combining from (3.4.13) as

B B
aln] = A" DR (g)x[n] = > W,R(q)x[n] (3.4.21)

b=0 b=0
whereW;, = A”"D, = diag{wp1,...,wp i}, Wy IS Of dimensionM x 1. Therefore,

W, is another block diagonal matrix of the same structure and dimensioAg’asNote

that stagé = 0 hence corresponds to a Generalised RAKE (G-RAKE). The G-RAKE is a
RAKE where the path recombination vectors are optimised to maximise the symbol estimate
SINR and was introduced in [61, 62]. Note however, that the direct application of the above
approach would no longer provide the pathwise, SINR enhanced, outputs but the number
of coefficients at our disposal remains at one scalar per path. Further, the performance of
(3.4.21) in terms of output SINR at the symbol estimate is by construction equal or better
than that of the approach in (3.4.13) since direct optimisation for the symbol estimate can
only be better than the sequential optimisation of the amplitude data product, followed by
max. SINR recombining. We can solve (3.4.21) per user:

wi = argmin|laxln] - wigir]

= E(anlgl [n)) (Eealnlgl [n]) (3.4.22)

I
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wherew, = [wo ... Wg k], W, has dimensions? x 1 andgy[n] = [zo x[n] .. .z k[n]]T.

zpi[n] =[0...0In 0...0]zp[n] where0 is M x M andz, x[n] is simply the contribution

in z;[n] for the paths of usek. Alternatively, (3.4.22) can be solved using the Linearly
Constrained Minimum Variance (LCMV) approach, shown for user 1 to simplify notation
and without loss of generality, as follows

w{ = arg rrvbiln wi Ry, o, Wil subject tow T4 [0]A; = 1
wi = ATT{0IR;), (3.4.23)
where
0] = (Ip @ Dy O)[RIO). .. REH[O] Ly 0]
Rgg = Blgilnlgi[n]) (3.4.24)

The constraint ensures that the contribution of the ddtd in g, [#] remains constant under
the application of the filter while minimising the estimate output variance.

While the two solutions (by LMMSE and LCMV) are equivalent when all the
parameters are known, note that the computation of the LMMSE filter from (3.4.22) requires
the desired data signal;[»] or an estimate thereof, whereas no information on the fastly
varying amplitudes\ ;. is required. For the LCMV approach, the situation is the inverse and
for both cases, the estimates of eithgfn] or A; need to be provided. Hence, in practice,
we would use an approach such as (3.4.13) to obtain the required estimates in conjunction
with (3.4.21).

In an adaptive filtering setting, the LCMV approach would be expected to be more
sensitive to estimation errors, partly because of the error introduced in the minimisation
constraint, partly because the estimation of the data can be assumed to be more robust than
the estimation of the amplitudes since the data originates from a strictly finite alphabet.

A natural extension to our proposal to introduce diagonal weighting coefficient
matrices instead of scalars, as well as providing an interesting basis for comparison, is to in-
troduce a symbolwise (joint) approach where we apply a single scalar coefficient per symbol
per stage instead of per path, i.e.

B
Dj = argmin [|a[n] - > Dy(A"R(q)A)" A x[n]||” (3.4.25)
Ds b=0
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whereD;, = diag{dsy,...,dy x} andd, ; are scalars. This can be solved in a user-by-
user fashion, analogue to the procedure used in the LMMSE approach above. Note that this
approach is a simple extension of the work in [51] which used a scalar coefficient per stage
instead of a scalar per user.

3.4.4 Extension to spatio-temporal processing

The extension to spatio-temporal processing is straightforward. Considering equa-
tion (3.4.5)

x[n] = HYE'(¢)E(¢)H Aaln]+ H"E'(¢)v[n] (3.4.26)

R(4)=I+K (9)

whereR (q) is defined so as to be situated before pathwise recombination takes place, i.e. to
get pathwise polynomial expansion. Let us define

X = ElqE(q) HAal]+E (g)v[n] (34.27)

N’
R/(q)=I+R(9)

To extend to the spatio-temporal case, we have defRRéd) = ET((])E((]) (KM@ x

KMQ@) in which case we would be situated before antenna recombination and the poly-
nomial expansion would be path-antenna-wise. The techniques introduced above would
directly apply and notably equation (3.4.13) would now read:

B
o _ . . / b/ 2 4.
Df =arg  min E|HAa[n] ; Dy (R'(q))"x'[n]]| (3.4.28)

Further, consider the approach given in (3.4.21). Using the definitions above, the symbol
estimate would be given by

B B

aln) = ATHY S "Dy (R'(¢)" x'[n] = Y W} (R'(g))" x'[1]

b=0 b=0 (3.4.29)
where W/ would be of the same structure as” H¥ which represents maximum ratio
spatio-temporal recombining. Hence, the approaches proposed and their corresponding so-
lutions remain fundamentally unchanged and can be modified easily to the spatio-temporal
case. We will not pursue this any further at this point.
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3.5 Numerical Simulation Results

In the following section, we will discuss the numerical results obtained from sim-
ulations. The spreading codes consist of i.i.d binary random variables suck that
%{—l—l, —1} and therefore the spreading coded are normalisgd, = 1. We assume
a single receiver antenn@ (= 1). First, we will show some results for the approaches pro-
viding pathwise outputs, followed by asynchronous scenarios where we compare with the
approaches providing a symbol level output only. In order to keep complexity realistic we
use only one extra stage after the rake, Be= 1.

3.5.1 Pathwise Output Approaches

In this section, results will be shown comparing the results of the approaches pro-
viding pathwise outputs. All the simulations in figures 3.2, 3.3 and 3.4 show results for
the output SINR (at symbol estimate level) obtained for user 1, averaged over 400 different
channel realisations as a function of the SNR. SNR and SINR are calculated with respect to
user 1. We will compare the following approaches to the RAKE receiver:

e PE from (3.4.8):Aa[n] = Y2 (~R(¢))"x[n]
e PE-Sfrom (3.4.16)Aa[n] = Y2 | d,R"(¢)x[n]

PE-D from (3.4.11)Aa[n] = (I + (I — DR(q))) x[n]

e PE-DD from (3.4.12)Aa[n] = (I - D(R(q) — 1)) x[n]
e PE-DDD from (3.4.13)Aa[n] = Y2 DyR?(¢)x[n]

In figure 3.2, we are working in a relatively low load scenario£ K/L = 0.25) and

all the receivers can be seen to perform better than the RAKE with the PE-DDD approach
doing best. It is notable, that in this case, even the unoptimised, i.e. truncated, polynomial
expansion receiver (PE) provides some gain with respect to the RAKE. In the case of high
loading(@ = 0.75), figure 3.3, it can be seen that the truncated PE receiver does no longer
work whereas the optimised approaches still perform significantly better than the RAKE.
Also note that the proposed approaches outperform the scalar PE (PE-S). In figure 3.4, the
output SINR is shown as a function of the loading factbrWe can see that while the pro-
posed approaches are sensible to the loading factor, they degrade gracefully. Further note,



64 3 — Polynomial Expansion Interference Cancellation

PE vs RAKE
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Figure 3.2: Polynomial expansion vs. RAKE: K=4, L=16, SIR = -10dB

that the PE result obtained corresponds and confirms the theoretical expression obtained in
equation (3.2.13). In summary, we can see that the general multissegiwer, PE-DDD
equation (3.4.13), performs best and since the complexity of the different approaches above
is similar, the PE-DDD approach will be retained for the simulations comparing the ap-
proaches which provide a symbol level output only.

3.5.2 Asynchronous results

In this paragraph, we show extended numerical results obtained for the multipath
case, including the approaches which provide the symbol estimate directly. We will use the
following approaches:

e RAKE: a[n] = Afx[n]
e Scalar PE (Moshavi) from (3.3.54{n] = 2, d, (AHR(q)A)b Afx[n]
e Pathwise PE/PE-DDD from (3.4.13[n] = K Y2 D,R"(¢)x[n]

e Joint PE from (3.4.21)4[n] = A B D, R (¢)x[n] = S5, W R  (¢)x[n]
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PE vs RAKE
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Figure 3.3: Polynomial expansionvs. RAKE: K=12,L =16, SIR =-10dB

We assume the maximum delay spread to be smaller than half a symbol géeriodijgure

3.5 we see the results of an asynchronous single path systems (1, ¢ = 1) where all

the users have equal power. In this case, we can see that the scalar approach is performing
practically equally well to the joint receiver while the pathwise is doing worse. If, however,
the user powers are not equal, figure 3.6, then the scalar approach is performing only just
better than the RAKE while the other approaches are not affected. When we introduce
multipath, withAM = 2 paths per user, figure 3.7, while maintaining equal power (that is,
path powers are random but every user has an equal total power), we can see that the joint
approach continues to outperform the scalar approach. However, the pathwise approach is
only marginally better due to the small number of paths. In figure 3.8, finally, we have 4
paths per user. Whereas the scalar performs about the same as in the two path case, the
pathwise approach and the joint approach now clearly outperform both the RAKE and the
Scalar PE. Note that the Joint approach becomes zero-forcing (near-far resistant) in this
configuration since the number of coefficients at its disposal (for uséf 2),(B 4+ 1) = 8,

is greater than the number of interfering usdts;- 1 = 7. Clearly, the Joint approach is

the most promising of the proposed receivers. However, it does require estimates of either
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PE vs RAKE
10 T T

T
— PE
~ —&— RAKE

Output SINR

-15 L L L L L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Loading factor

Figure 3.4: Polynomial expansion as a function of loading factor: L =16, SNR = 10dB,
equal power users

the data or the amplitudes and therefore would in practice be used together with an approach
that provides those estimates, such as the Pathwise/PE-DDD approach.

3.6 Conclusions

We have introduced the application of polynomial expansion receivers to pathwise
interference cancellation. Polynomial expansion is an approximation technique for LMMSE
and Decorrelating receivers and is particularly well suited for CDMA, due to the presence of
a large number of small correlations. The method allows the approximation of the computa-
tionally costly matrix inverse required by both the LMMSE receiver and the decorrelator by
expanding the matrix inverse as a polynomial. However, for polynomial expansion to work,
polynomial weighting coefficients need to be introduced. We have shown, that giving each
signal component a separate scaling factor allows for improved performance at a small cost.
We have introduced polynomial expansion at path level, which allows for interference can-
cellation and hence improved parameter estimation. Also, we have shown that the extension
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Figure 3.5: Polynomial expansion: L=16, K=8, M=1, equal power users

to spatio-temporal processing is straightforward for the proposed receivers. Furthermore, we
introduced new approaches at the symbol level which provide more degrees of freedom by
still allowing one scalar weighting coefficient per signal component. Compared to previous
methods, we have demonstrated that significant performance gains can be achieved. These
results have been published in [63, 64].
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Figure 3.6: Polynomial expansion: L=16, K=8, M=1, unequal power users
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Figure 3.7: Polynomial expansion: L=16, K=8, M=2, equal power users
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Chapter 4

Large System Analysis for Pathwise
Polynomial Expansion

4.1 Introduction

We have shown in the last chapter how polynomial expansion can be applied to
pathwise interference cancellation. However, it is very difficult to get any qualitative insight
as to the behaviour of such a system. Simulations approaching more realistic scenarios with
many users and long spreading codes are computationally too costly and the direct analysis
of the expression for the SINR s firstly very complicated and secondly always a function
of the particular spreading codes, amplitudes and delays for each realisation. For example,
the LMMSE receiver, depends on the spreading codes and powerslrtime users and it
is therefore very difficult to make meaningful statements using standard analytical method-
ologies. In this chapter we will therefore make use of what is teriaeg system analysis
Since the realisation of the spreading codes affects the SINR which can be obtained, the
spreading is assumed to be random in large system analysis. The principle then is to assume
that the number of users, as well as the spreading factor, will tend to infinity while the ratio
of the two, the loading factor, remains constant. This results in a system involving very large
random matrices. Results frondom matrix theoryndfree probability theoryhen allow
us to obtain closed form expressions for the SINR, fundamentally based on the fact that the
empirical eigenvalue distributions of such large random matrices converges to a non-random
limit. Furthermore, it is then possible to obtain information about moments of functions

71
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of random matrices using only the limiting moments of the individual matrices involved,
something which is generally not possible.

Random matrices have been studied for quite some time in mathematics and theo-
retical physics, for applications in quantum physics. Mostly, these studies were motivated by
the need to find the eigenvalues of large random matrices, associated with energy levels. The
results obtained by Wigner around 1955 for the limiting eigenvalue density (the semi-circle
law) for random matrices generated a huge interest in the theoretical and nuclear physics
communities [65—70].

Free probability theory, on the other hand, is a theory of hon-commutative prob-
ability in which the concept of independence in classical probability isaceal by that of
freeness. This theory was introduced around the mid-eighties by Voiculescu while studying
problems in the theory of von Neumann algebras. It was, however, only around 1990 that
the link between random matrix theory and free probability theory was made as Voiculescu
recognised that certain large random matrices can be modelled as free random variables
[71,72].

To our knowledge, it was the papers by Silverstein and Combettes, which brought
the techniques of random matrix theory and free probability first to the Communications
community around 1992, analysing array processing problems [73, 74]. This was followed
some time later by Tse and Hanly who introduced the application of large system analysis
to CDMA and showed analytical results for the LMMSE and the decorrelating receivers
[75]. It was demonstrated that the interference effectively decouples under the large system
analysis and that the interferers provide a level of interference to the user of interest which is
tractable. Furthermore, and probably most importantly, it was shown that the results derived
from the analysis of infinite systems provide reasonable approximations to finite dimensional
systems, with spreading gains as léw= 32. These results have triggered quite a number
of publications where large system techniques were applied to various problems, mainly in
the information theory community ( [76—79] etc).

Motivated by the results in [49,52,80], we will in the following apply large system
techniques to the receivers developed in chapter 3.
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4.2 Asymptotic Analysis for Polynomial Expansion Receivers

We will begin the asymptotic analysis by analysing the case of a synchronous
system. In particular, we will analyse the approach found in (3.4.21) and compare it to
the extended Moshavi approach, i.e. (3.4.25) since this will provide the best comparison
between pathwise weighting and user weighting. We shall model the synchronous system
(J=1,Q =1, M = 1), as previously motivated in section 3.2 by considering the received
discrete-time signal:

y[n] = SAa[n] + v[n] (4.2.1)
where
S = [s1...sx] (L xK)
S = [SkJ .. .Sk7L]T (L X 1)

A = diag{A,...,Ax} (K x K)
aln] = [a[n]...ax[n]]”

(4.2.2)

We further assume that the spreading codes consist of binary i.i.d. random variables such
thatsy,; € %{—l—l7 —1}. The signal after spreading matched filtering is therefore given by

x = SHSAa+ Sv = RAa+ Sty

where we have omitted the time index aRds of dimensiondy x K.

4.2.1 Symbolwise Joint Approach

We shall begin by analysing the filter given in (3.4.25). The filter applied the
pathwise RAKE outputs, is therefore given by

B
F=> D,(A"RA)'AY (4.2.3)
b=0
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The symbol estimate is given lBy= Fx. We can write the output variance of the estimate
by
E{aa} = E{tr(aall)}
= oltr (FRAAYRFY) + o2tr (FRFY)

B B
— o (Z S (DbTAW“TH DH ))

b=0 =0
B B '
to? (Z S i (DbTAbJ”“THDfI )) (4.2.4)

b=0 =0
where we have substituted the the expressioFférom (4.2.3) and used the eigendecom-
position of AHRA = TATH. In order to investigate the behaviour of the SINR for user 1,
we can look at elemertt,, 1) of the matrices under the trace operation in (4.2.4). Hence, we
can write the total energy in the estimate for user one by

B B K

o2 (Z Z Z /\?+i+2db,1tl,1tl*,1df,1)
b=0 =0 [=1

B B

(XY

b=0 =0 [=1

(Z & |m|2) +o? (ZA €] |m|2) (4.2.5)

where¢; = 2 d, 1 \21. We can see that the power in the estimate not only depends on
the eigenvalues, but also on the eigenvectors of the mAtHR A.. Note, that this is not the
case wheM), is replaced by a scalar. We can find the useful signal part of user one in the
total estimate power above from noting that

K
b 1
ot db 1t ltl ldz 1

FRAa = ZDb (ATRA) T a Z D, Z ALt a (4.2.6)

b=0
and hence the useful signal part and power for user 1 can be written as

Signal, = Z dy 1 Z A Pay (4.2.7)

=1
K K

Power; = UZZZ&ENQJPHLHQ (4.2.8)

=1 [=1



4.2— Asymptotic Analysis for Polynomial Expansion Receivers 75

Since the SINR is given by the ratio of the useful power over the interference and noise
power, we can also write it as the ratio of useful power over total estimate power less the
useful signal power, i.e.

Powery 1
INR, = = ~ 4.2.9
SINI E{la1|?} — Powery %ﬁﬂlﬂiﬁ 1 ( )
owerq

Hence, it suffices to study the ratidower;/FE{|a;|?} which we shall call the Signal to
Power ratio, SPR, to determine the SINR behaviour. Substituting for the useful signal power
and the total estimate power from (4.2.8) and (4.2.5), respectively, we obtain

ot T I 66 Pl
A (S 6l ot (SEATEFF) @2

We would now like to obtain the large system limit of the SPR by letting the number of users
and the spreading gain tend to infinity while keeping the loading factor constant. That is to
say, we letk’, I, — oo while keepings = % constant. In order to do so, we make use of
the following lemma to be able to deal with the eigenvector elements in the SPR:

SPR, =

Lemmal
(Lemma 4, [80]) AX — oc and K = N where all entries irS are real i.i.d. with all
moments finite and the series{,,/k > be absolutely summable, then

Jim ng|tkm| = lim —ng (4.2.11)

holds almost surely for any:.

This result is based on the fact that any inner product of a partial eigenvector with itself
is proportional to its relative length in the limit [80], i.e. if we write some eigenvector in
terms of subvectors, say= [t; t2]7 wheret is of lengthL andt, of lengthZ/c (c some
constant), and by definitiarf’ t = 1, then in the limitlim ... t}'t; = 1/c. Using (4.2.11),

we can now write the SPR for user one in the limit:

lim SPR; = lim ZZ 16
K—oo K—oo o2 I_ gl T 0_2 1 gl
a \ Za=1 (4.2.12)
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Rewriting the summations ovér in terms of the weighting coefficients and the eigenvalues
gives, i.e.

K
YolaP = szbldm1z/\b+m+l (4.2.13)
=1

m=0 b=0
and similarly for the other terms. We note, that these terms depend on the aysymptotic
eigenvalue moments of the matix” RA ask, I — oo. The results from large system
analysis tell us that those empirical moments almost surely converge to a non-random limit.
Hence, the sums of the eigenvalues need to be evaluated in the limit, i.e.

Jim Iitr (A"RA)™ = = lim Z/\m (4.2.14)
where )\, is an eigenvalue oA”RA. From [52,75,77] we have the following theorem,
attributed to Silverstein [68]

Theorem 2

LetC;; be an infinite matrix of i.i.d. complex-valued random variables with variance 1, and
P, be a sequence of real-valued random variables X.&e anV x M matrix, whosé:, j)th
entry iSCZ']‘/\/N. LetP be aM x M diagonal matrix with diagonal entrieg), ..., Pas.
As M — oo, we assume the empirical distributiofy( ), of these entries to converge
almost surely to a deterministic limit. LetG x () denote the empirical distribution of the
eigenvalues of the Hermitian matd&P X, then, asV, M — oo, and forM /N — 3 > 0,

Gy converges almost surely to a deterministic litditLet us define

VY = rHR}nr
R; = XPX" 4 46% (4.2.15)
wherer is a vector of i.i.d. random elements, independeX @ndP, then
Jim g = 978, 0%) (4.2.16)
= /(v + o)™ dG (v) (4.2.17)

wherev denotes the eigenvalue random variable. Further, denot&tiedtjes transfornof
G(v) by

me(z) = / . ! 4G (v) (4.2.18)
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forz € C*,i.e. IM(z) > 0 which in thelimit satisfies a fixed-point equation given by

1
ma(z) = I (4.2.19)
-z —I_ ﬁ f 1-|—TT)’LG
Note also that
. _ . . 2ym | H. -2

Bh_r}rloo Ym = I}l_r}nooZ(vz + o) uy (4.2.20)

: 1 2\m
= I}l_r}noo % Z(UZ +07) (4.2.21)
= 78,07 (4.2.22)

whereu; is the normalised eigenvector correspondingtoln the limit the termr u;|?
terms disappears [75, 80]. Since the effect shnishes in the limit, we can apply the above
to write

1 Hop a7 m
Jim —tr (ATRA)T = lim Z/\ (4.2.23)
= limr (SAAHSH)mr (4.2.24)
K—oo
= 'yfno(ﬂ,O):/Ade(A) (4.2.25)

whereG () is the limiting empirical eigenvalue distribution &7 RA or SAAYSH | re-
spectively. Hence, in principle, it's possible to find;(z) (wherez — —a?, or in our case
z — 0) from (4.2.19) with respect to the power distributib”), then findG'(\) from the
inverse function to the Stieltjes transform and then evalygte3, o2). Note that in general,
no closed form solution is possible. However, in the special cade ef PI in equation
(4.2.15) andr? = 0 an explicit solution is possible, given in [52]

P™ Z ( ) ( h 1) z—ﬁl—l (4.2.26)

= f(@ ) (4.2.27)

Vo (8, 0)

This is directly applicable to our case whamA” = PI. This would correspond to strict
power control, equalising the received dimles. From the above development, it is clear
that the determination of the limiting moments is not trivial.
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Returning to our expression for the SPR and substituting for the sums over the
eigenvalues, we can write frong°(3,0) = f(3, m):

lim SPR o2 (Silodsa f(3.0+ 1)) (Sl di, f(5.0+ 1)

1m =

K—co 1 0'3 (2520 ZbB:O db,ldin,lf (ﬁ7 b +m 4+ 2)) + 0-12} (2520 Zszo dbvldin,lf (ﬁ7 b +m + 1))
(4.2.28)

In the case of equal user powers,i®&A” = PI, equation (4.2.26) can be used directly.
Ordering the coefficient$, ; and the functiong (3, m) into vectors

d1 = [d071 e dB,l]
£, = [f(B,n)...f(B,n+B)]"
F, = [f,...f..5] (4.2.29)

we can rewrite the signal to power ratio for user 1 as

o2d,f,fHa?
im SPR, — a 194 4.2.30
e ! o2d,Fydf + o2d,F,d{ ( :
d,fiffdl

- (4.2.31)
di (Fy + ZFy ) all

Maximising the asymptotic SINR for user one is equivalent to maximiing _, ., S PR
with respect tal; which can be seen to be a generalised eigenvalue problem. Let us define

2

o
F = F+5F;
O-a

(4.2.32)
and reformulate the maximisation of the SPR as
H 1 H
df = max 7d1f1f1 ]‘?_1[1
d; ledl
d = fHF! (4.2.33)

Note that sincé" is a matrix of dimensions equal to the number of stagles, 1 x B + 1,
which is generally very small, the optimal asymptotic solution is very simple to compute.
Furthermore, note that the solution is independent from the power of user one. This implies
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that the solution for the optimal weighting coefficients will asymptotically be the same for
all users and therefore, there is no benefit in applying diagonal weighting matrices. Hence,
asymptotically, we can replade; by a simple scalad; to obtain the same result.

The practical difficulty lies in the determination of the scaléfg, n) which we
require in order to find the asymptotically optimal weighting. In [52], a recursive method
based on a combinatorial argument is shown which allows the computation pfihe)s.

It is based on the following idea: Note that

dyy: (8, 2)

o =my,_(B,2) = m/(/\ + )" G (N) (4.2.34)

and it can also be seen thgl®(3,0?) = 1 and hence/{°(3,0%) = ¢* + ¢; wherec, is
some constant. In the appendix of [52], it's also shown that

(B,0) = E(P)S
15°(8,0) = [BE(P) + BE(P?)
v5°(8,0) = BE[P’] +35°F [P?] E[P]+ 3°E°[P] (4.2.35)

where P is the power random variable. There is also a method shown to compute higher
moments ofy>°(/3,0), for details see in [52]. Combining (4.2.35) and (4.2.34), it can
be seen that the expressions fgF (3, 0) provide the constants neededniff (5, o2), e.g
72(8,0%) = 0? + BE[P] orv5°(8,0%) = v5°(8,0) + o* + 28F [P] o* etc. However, for
our problem, we only need the valuesygf (5,0) = f(8, m).

We propose an alternative way to compute g, n) using results from free
probability theory:

Proposition 3
AsK, L — oo, the matrice®R and A A ¥ are asymptotically free non-commutative random
variables (NCRV) with respect to the trace functional (see appendix 4.A).

This allows us, to compute the eigenvalue moments of the produRtafid AA using
only the moments of the individual product terms. For exanipiey .. ~tr (ATRA)™
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form = 1, 2 are given by

.1 I .1 1 -
— — — 4.2.
Jim =t (A"RA) Jim e (R) ot (A7A) (4.2.36)
. 1 H 2 . Loy Loy H Loy 1 H H
— = — —tr’(AA —tr’(R)—=tr(AA"AA
lel_rféo (tr (ATRA) 1}1_%0 {K?tr (R) K2 ( )+ K2 ( )K r( )
1
R? r?(AAH 4.2.37
Ftr(RY) it (AAP) ) (4.2.37)

see appendix 4.B for computation details. Note that we have the expressions for the moments
in R explicitly in (4.2.26) withP? = 1 and there is no requirement for equal user power
(A A" s allowed to be different from a multiple of identity). Also, sindeis diagonal,

tr (AAT)" =1r (AHA)"™ Z pr (4.2.38)

whereP}" is simply the user power. We shall now follow a similar analysis for the approach
in equation (3.4.21)

4.2.2 Pathwise Joint Approach

Consider again the synchronous single path per user system with the symbol esti-
mate given by

B
a = A" DR'x=Fx (4.2.39)
b=0
with the total power in the symbol estimate given by

B B
E{aa} = o%ir (AH > DbRb“AAHR“’lDfIA)
b=0 =0

B B
+otr (AH > > DRTHDY A) (4.2.40)

b=0 =0
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The power in the estimate for user origf|a,|*}, is hence given by element (1,1) from the
above expressions

B B K K
o= o> Y ATda > > AT AA wp g, dT A

b=0 =0 =1 m=1

B B K
2§ :E : § : b+i+1
—I_Uu A’{de AI—H—I— ul,luildzlAl
=1

b=0 =0

K K K
= AP AP Guiani, Y Entim i,
n=1 =1 m=1

ay

£

K
o2l AP IGPA gy (4.2.41)
=1

where )\; is the I-th eigenvalue oR, u; is the corresponding eigenvector such that=
[uiq .. .um]T and¢; is defined as in the last section. The signal component in the estimated
data is given, analogue to the last section by

B K
FRAa=A">"D,) M\*t'uu/ Aa (4.2.42)

b=0 =1

and the useful signal and signal power in the estimatie given by

K
Signal; = |A1|2db,1ZA?+l|ui,l|2“l

=1

K
|141|2 Z€i|ui,1|2a1
=1

2

K
*
E Eiugauyy

=1

Power; = o2|A]*

(4.2.43)

Using the same reasoning as in the last section regardin§ thek,, we can hence form
theSPR; as

- 2
.
2l |TE €uiay|

SPR, =
- - 2 -
ot (S [, G, | ) + o2 (S lelon s, )
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Note that the interference term in this case involves eigenvector elementsr » different
from unity, in contrast to the approach of (4.2.28). We shall therefore look at this term first.
We have

2

£ (4.2.44)

K
o= gl D IAP
n=1

K
> Guiguj,
=1
K K K
= ZAPY AP Guian;, Y o, (4.2.45)
n=1 =1 m=1

The key to this problem lies with the eigenvector elements. We are not aware of a solution to
render the above independent from the eigenvectors for a general set of spreading sequences.
However, there is a way out by imposing the spreading codes to be made up of Gaussian
random variables.

Lemma 4

[72] Consider a random matri of dimension. x K whose elementss]; ; are i.i.d
Gaussian random variables with zero mean and varian¢e. The matrixR = S7S
allows the eigendecompositid = UAU | with U and A asymptotically independent.
FurthermoreU is thenHaardistributed.

Hence, asymptotically the eigenvector elements are i.i.d random variables from a Haar distri-
bution and most of the mixed moments are zero (for details, consult [72]). We know already
that

K K
1
li 2= lim — 4.2.4
A, > gl = Jim D & (4.2.48)
which means that
E(Jual) = ! (4.2.47)
ura = I% L.
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We therefore need to look at all the different combinations of the indices which have non-
vanishing moments in the limit. We have the following cases [72]

£ m, n#l = B (gl tpath) =0 (4.2.48)
tm =1 = B (fual unal) = Wlm
l=mon=1 = E(lul") Iﬁ

After substituting these moments of the eigenvector elements and some algebraic manipula-
tion, we can write the SPR for user one:

orAq?

K 2
lim SPRy = li ST
m 1 = lim
o o . - P ¢
- 02 (I A2) (I ) + o2l [F S |+ oz I AT
(4.2.49)

Substituting for the; in terms ofd; ; and A; to obtain an expression suitable to determine
the weighting coefficients, we can write

num

lim SPR; = lim

4.2.
K—c0 Koo den ( 50)
where the numerator and denominator are defined by

2

1 B K
mum = Gl e S dha oA
b=0

=1

B K K
den = o2|Ay|? %dez‘:/\f“ zim |2 ZZdbld“K ZWZ“
L . =0 1= b=0 =0
+K D dyad; IZWZH (4.2.51)
b=0 =0

Further substituting the Iimiting functions for the sums of the eigenvalues in the above ex-

pression, i.e. f(3,b) = % o A?, we can rewrite the numerator and the denominator
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as

B
num = o2|A]? Zdb,lf(ﬁvb—l_l)

den

B B B
o2 AP D do i fB 0+ )| +02PY N dyady f(B b+ i+ 2)

b=1 b=0 =0

B

ZZdbld“f B,b4i+1) (4.2.52)

b=0 1
where we have defined the mean powerpy
| K
P = — 2 4.2.
P KZ|An| (4.2.53)

n=1
Finally, by rewriting everything in the vector notation introduced in (4.2.29) we obtain:
Ay2d f fHdl
lim SPR; = —— A iy L
Ko di (PFy+ A28 + 5T, ) aff

(4.2.54)

This again can be seen to be a generalised eigenvalue problem. For the optimal solution, we
hence obtain

ds = filF~! (4.2.55)
whereF is defined by the denominator terms on whéibhoperates, that is

2
F = PFy+ |4 fif{ + %Fl (4.2.56)

Therefore, again, we see that the asymptotic solution is indeed independent from the user
power (sinced; is determined up to a scalar factor) and therefore there is no benefit in
employing diagonal weighting matrices asymptotically.

4.3 Asymptotic Analysis extended to Multipath Propagation

We would now like to extend the results of the previous sections to a large sys-
tem analysis in the multipath case. Most asymptotic analyses to date have treated the syn-
chronous system case, and indeed, a fully general extension to the asynchronous model is
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difficult. We will therefore introduce certain approximations in order to make the problem
tractable. Our fully asynchronous system description is given by

y[1] = P(q)SHAa[]+ v[i]
x[n] = SYPI(q) (P(q)SHAa[n] + v[n]) (4.3.1)

wherey|[n] is the sampled, received signal axick] is the pulse-shape matched filtered and
despread signal, i.e. the RAKE finger outputs prior to combining. We will assume that the
delay spreadhaxy ., (7%, ) is much smaller than the symbol perigdso that the effect of
Intersymbol Interference (ISI) can be neglected and we can look at a one-shot detector, i.e.

y[n] = P[n|SHAa[0]+ v[n] (4.3.2)
—y = PSHAa+v (4.3.3)

Assuming that the delays are multiples of the chip-period and chip-rate sampling
(synchronised to the chip-rate), the pulse-shaped matched filtering can be assumed to be
perfect and we are left with essentially containing spreading sequences shifted by a number
of chips equivalent to the delays. Since the delays and therefore the shifts are random and
the spreading codes are made of i.i.d random variables, we assume the spreading matrix
to be modelled by

S={[s1,1..-Skm-. -SK,M] (4.3.4)

where thes; ,,, are the column vectors of lengih, consisting of Gaussian i.i.d. random
variables for usek and pathm. Hsﬁmskmu = 1, i.e. the spreading codes are normalised.
The received signal modeJ (= 1, M = 1, ¢ = 1) and the pathwise RAKE outputs are
therefore given by

= SAa+v (4.3.5)
= RAa+Sfv (4.3.6)

a as defined for one symbol, i.e[0], A as usual block diagonal. To further justify the
above model, note that it was found in [78] that a symbol asynchronous but chip synchronous
system is asymptotically equivalent to a symbol synchronous model for the purpose of an
SINR analysis. Also, if the pulse-shape is an ideal sinc, the fully asynchronous system is
asymptotically equivalent to the symbol synchronous system [82]. In the case of multipath,
we assume independence between paths, as in [77].
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4.3.1 Symbolwise Joint approach

The problem setting in this case is exactly the same as the one given for single

path case as can be seen from inspecting equations (4.2.3) and (4.2.4). The only difference
is the change in the eigenvalues of the maki¥ R A, i.e. we need to find

1 1
lim —tr(APRA)™ = lim —tr(RAAT™
K—oco 1L K—oo K
1
= lim —tr(SAAHSH)™ (4.3.7)
K—oo K

First, note thah A” = diag(A; A ... A All)is block diagonal. By taking the expec-
tation with respect to the amplitudes{ A A7} we get:

o if E{Ay,A},} =0V m#nVk,ie. thepath amplitudes of every useare

assumed to be uncorrelated, then the distributi¢f) is the limiting distribution of
the path powers and we can use the identical techniques of the last section to find a
solutionto
lim i,tr(RE{AAH 1 (4.3.8)
K—oco K
sinceE{A A"} is diagonal. Furthermore, if the average power in all the paths of all
the users is equal, we can again use (4.2.26).

If E{Ag A%k} = pomn 70V m # nVk,ie. the amplitudes are correlated then
the situation is more complicated since then the matrix’ is not diagonal under the
expectation operation and the correlation coefficients will influence the eigenvalues of
A A The technique involving the Stieltjes transform in the last section can therefore
not be used either singeA " is not diagonal, which is required according to theorem

2.

However, in appendix 4.A, we show tHatandA A are asymptotically free, noncommuta-

tive random variables. Therefore, the moments of the eigenvalues can be found by knowing
the limiting empirical distributions oR and AA¥ . Note that we have the moments of the
eigenvalues oR explicitly from (4.2.26). For the amplitudes, note that

lim tr [([AAT)™] = lim tr [(A"A)"] (4.3.9)

K—oo K—oo

K
. 1 -
= I}l_r}noo 17 kg_l P (4.3.10)
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Hence, the solution is exactly equivalent to the single path solution of section 4.2.1 and
furthermore, the solution is independent of the power distribution. Also, we notice that the
correlation between the path amplitudes of useseems to be irrelevant in the limit and
performance is the same with or without correlation.

Hence, using the expression obtained for the moments using free probability the-
ory, it is possible to obtain explicit expressions of the SINR for the Symbolwise Joint PE
approach. Asymptotically, there is no benefit in using a coefficient per user in this model,
even under power imbalance between the users and/or the paths.

4.3.2 Pathwise Joint Approach

In this section, the multipath scenario is analysed for the pathwise joint approach,
following the same procedure as used for the synchronous case. The signal model as-
sumptions are those introduced above. The total power in the symbol estimate for user
1, E{|a1|*}, needs to be recomputed from

ay

B B
E{aaf} = o%ir (AHZZDbRb“AAHR”lDfIA)

b=0 =0

B B
+oltr (AHZZDbRb““DfIA) (4.3.11)

b=0 =0
where we need the first element in the matrices above (i.e. the first element in the sum for
the trace). Using the eigendecomitiosm for R = UAU | we can write the variance from
the symbol estimate of user one as:

B B
2} = AN S Dy w A U AAT U DA,

E{|ay
b=0 =0 =J,,
B B
+ol AT Y Dy w A el Dy A (4.3.12)
b=0 =0

where we have defined the eigenvector quantities by

U = [ull.  ofl#
u = [IM O]U

_ H H
uk — I:ukJ uk7M
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Hence, the vectors,, ,,, are the rows olJ anduy, is therefore of dimension® x M K. We
can write the matrixJ by

K
I = > wA M ArA w A (4.3.13)
k=1
= ATl A ATy ATl 4 ZulAb"'lugAkAfukNHu{I
k=2

Looking at the term fok = 1, we can write thém, n)th element as follows:

M
b+1. . H H +1. H b+1 H H
u AT u;y AjAj u AT uj = u;,A + E ul,lAl,l + ul,mALm
e I#£m=1

M
* * +1__H
X E Al puip + A7 Jwi AT uy,

pFEm=1

Since

M M
H H H x
u AjAT e = E uy Ay § :ulval,p
=1 p=1

up 1

u = : (4.3.14)
Uy ar
i.e. ug,, are the rows ofu; and of dimensiong x K M. Recall that asymptotically, the
elements in the matriXJ are Haar distributed due to the Gaussian spreading codes, obeying
(4.2.48) under expectation (see also appendix 4.A). Therefore,

H H _ . H H
E{uy puijugpuy’, b = I}gnooul,muuul,pum

= 0Vm#n

Hence, ifm # n, then asymptotically

lim |u AT alf Aj Ay ATl = lim (u1 mAb-l_lu{Im) A AL (m nAH'lu{In)
K—o myn: m#En K—o ’ ’ ’ ’ ’ ’
*
Alval n

KM KM
_ , b+1 i+1
= o (EH:A, ) S (4.3.15)

p=1
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whenm = n note that

E{ULmU{{IULpU{{m} = 0Vli#p#m

(4.3.16)
Therefore,
M
lim |u AT alf Aj Ay ATl = |lim w mAb+1 Z uy 1|A1 |Puy 1A2+1u1 m
K—oo m,n: m=n K—oo I 1
m=

—|—|A1 m| uy mAb+ 111 mlll mAi—I—lul,m(4-3-l7)

and in the limit we obtain

1 M 1 KM
. b+1._H H i+1_  H _ 2 bt+i+2
A fua el A Affuattfl] = o l;; Al ) =57 ;Ap
|2 KM KM
lm b4+1yi+1
Gz 2o N
KM I=1 p#i=1
2A m2 KM )
4 AALn] 3 A (4.3.18)

KM(KM +1) &

Looking at the second term in equation (4.3.13) involving 1 we can write
K

K KM
: i 1 1 :
fim Y w A o A AT w Al WZ(Z “'2) (ZW +2) w

K—oo

k=2 k=2 =1 m=1
since
I M
Jim uf Al = = YA
| Lo
Jim w AP = =7 mzl Abti+2 (4.3.19)
For the second term in (4.3.11), note that
KM

lim uy AbFH {I I(M Z /\b‘H"'1

K—oo
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Using the following notation introduced earlief(3M, 1) = - S5 M Al and using the
above results, we can now write the matfias

K M
J = (ﬁZZmMP) JOM b+ i+ 2T + f(BM, b+ 1) f(BM, i+ 1) A A{
k=2 =1

—F(BM, b+ 1) f(BM, i+ 1)diag (A;A]) + F(BM, b+ 1) f(BM, i+ 1)diag (A A{T)

2 1 . . "
+ (KMJr T~ KM) F(BM, b+ i+ 2)diag (A1AY)

1 . .
e M b+ i+ 2) (|AL)*T — diag (A, ALT))

K
- (ﬁzHAk"z) F(BMb+i+2)Ty + f(BM, b+ 1) f(BM, i+ 1)A;A{" (4.3.20)
k=1

We can now write the output variance of the symbol estimate from (4.3.11) as

B B B 2
E{laa"y = o2} % F(AM b+ i+ AT Dy DI A+ o) (Z F(3M b+ 1>A?Db+1A1)
b=0 =0 b=0
B B
+o5 ) > F(BM,b+i+ ATD, DA, (4.3.21)
b=0 =0

where the signal part is given by

B

2
Power, = o (Z F(BM, b+ 1)A{ID5+1A1) (4.3.22)
b=0

Note here that due to multiple paths, we obtain an effective loat ef K M /L, due to the
dimensions ofs, whichisl x K M.
Using vector notation, we can now write

K" = [A{Dg;...ADg ] (4.3.23)
f(BM, 1) Ay
A = : (4.3.24)
f(BM, B+ 1)A,
Writing the output variance and minimising it under the constraintBfam , = 1 is equiv-

alent to maximising the SINR, i.e.

min  KIFK, (4.3.25)
Ki:KFA =1
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where
F = (0lF; 4+ 0.F) @ Iy (4.3.26)

with the variables defined as previously in equation (4.2.29) with the optimal solution given
by

K = (AF7'A,) T F'A, (4.3.27)

and therefore
K, =F'A =F"! : Ay (4.3.28)
f(ﬁM,B + 1)IM
11y
and
J(BM, 1)
F_l (f1®IM) = <U§F2—|—03F1)_1 & Ing
f(BM, B +1)
:fl
H
= [D{,...DF,]
— Dgl = 04;;11M = { |:<O'§F2 + O'zFl)_lLH_l fl} @ Iar

where[.];. denotes the j-th row. Therefore, it can be seen that the optimal solution is
achieved using only a scalar coefficient which is user and path independent and varies only
from stage to stage. Hence, also in this case, asymptotically there is no benefit in diagonal
weighting matrices.

Note that we can also treat the userwise PE using the above approachshce
SM_ Ay msim = Als) is also Gaussiang, |* = 1). The only difference is in the loading
we need to apply, notablg M — 3.



92 4 — Large System Analysis for Pathwise Polynomial Expansion

4.3.3 Note on Implementation

The result above suggests that there is no benefit in using diagonal weighting ma-
trices. Since the information of the amplitudes are not included in the polynomial expansion
in R, the approach can at best do equally well to the original approach by Moshavi where the
polynomial expansion is il " RA.. Hence, the Moshavi approach imposes itself as a better
solutionin the limit. However, due to the fact that the expansion involves the amplitudes, the
approach will be more sensitive to estimation error between the amplitudes and the ampli-
tude estimates. Consider the case where strict power control is employe iJ& = 1.

Then, the term in the polynomial expansion will be approximated by

ATRA (4.3.29)

which may no longer be close to identity and therefore may not work that well using poly-
nomial expansion. A pathwise approach with an expansidR,iion the other hand, only

uses the amplitudes to recombine for the final symbol estimate and will therefore avoid any
propagation of the estimation error. Therefore, in the case where the amplitude estimates
are unreliable, for example through very fast fading, it may still be advantageous to use an
expansion irR.

The above results suggest yet another paradigm shift. Notably, the obtained re-
sults suggest a distinction based on the amplitude knowledge available. In the case where
amplitudes are available or reliable, respectively, it is advantageous to use this information
and apply userwise polynomial expansion in the tex"dR A, i.e. to use the approach of
Moshavi. This approach allows to efficiently make use of all the available information while
amplitude estimation can be made part of this approach. Consider a filter following the
approach due to Moshavi where the filter for the symbol estimate is given by

B
aln] = F(gx[n]= ds (AFR(q)A)" ATx[n]
b=0

= [doI+ dlAH_{R(q)A} + 2 AT {R()AATR(q)A} + .. ] Afx[n]

clearly, at each term the spreading and despreading operation (essé&htigllys followed
by amplitude recombination. Therefore, we can combine those signals to obtain an ampli-

tude estimate, i.e.
B

Aa[n] =Y di (R(9)AA™) x[n]

=0
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RECEIVED SIGNAL MODEL

PATH-LEVEL

PE STAGE 1 PE STAGE B

A H E(q) H Ef(q) AT

SYMBOL-LEVEL

Figure 4.1: Amplitude and symbol estimation suggested by LS results when amplitude
knowledge is reliable

This should allow us to obtain a polynomial receiver with minimum complexity in a large
system, while also being able to estimate amplitudes. This proposition is shown in figure
4.1. From this we can easily see the fact that every PE stage after the RAKE is twice the
complexity of the RAKE. Also, the structure shows how the symbol level signal is spread
again to path level and despread back to symbol level in every PE stage.

In the case where the amplitudes are not available or cannot be estimated reli-
ably (in fast fading, for example), we suggest to use pathwise polynomial expansion with
the expansion being iR, if possible together with differential modulation. Differential
modulation modulates the data based on the phase difference to the last transmitted symbol.
Consider

ax[n] = br[n]ar[n — 1]

where we restrict;, to |bx|* = 1. To obtain the amplitude-data product estimate, we write
the estimate as the true value plus some interference plus noise term:

—

Azak[n] = Azak[n] + U“g[n] = bkAiak[n — 1] + Vi k

= bkm[n — 1] + U“g[n] — bkvi7k[n — 1]

Let us define

e

Z. = [A/la\k[n], ooy Aprag[n]]t
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RECEIVED SIGNAL MODEL

PATH-LEVEL

PE STAGE 1 PE STAGE B

o \[V
i
!

Correlator outputs

Figure 4.2: Symbol estimation employing differential modulation that requires no
knowledge of fastly varying amplitudes

We can then solve fdr; by solving

bi[n] = i Z[n] — bpZi[n — 1]|)
eln] = e%lplrlnabetu kln] = brZy[n — 1]||
If by, is constant modulus, i.eh;, = e/?#, the solution is given by estimating the angilg
such that
67 = dec{— arg(ZL [n)Zs[n - 1])}
This can be seen as a kind of noisy maximum ratio combining. Note that this allows the re-
combination of the paths without knowledge of the fast parameters, i.e. the path amplitudes.

This structure can be seen in figure 4.3.3.

4.4 Conclusions

In this chapter we derived analytical expressions for two polynomial expansion
approaches under large system assumptions. Interestingly, it was found that there is no ben-
efit, asymptotically, to use a scalar weighting per user or per path even under power imbal-
ances between users and paths. Furthermore, it was shown that the asymptotically optimal
solutions for the weighting coefficients are easy to compute, given the relevant eigenvalue
moments. While the asymptotic analysis proves that there is no benefit in using weighting
coefficients per path for large systems, the simulation results obtained in chapter 3 clearly
showed the benefits obtained by introducing such coefficients. Basically, we attribute those
evidently differing results to a number of factors. Firstly, the results of the asymptotic anal-
ysis are large system results which allow to introduce certain simplifications (through the
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averaging processes) which do not hold in finite dimensions and therefore, the results are
approximative in nature for finite systems. As can be seen from the simulation results pro-
vided in chapter 3, the simulations we have shown were of small dimensions, typically with

a spreading gain of only = 16. Also, whereas we have run simulations using a truly asyn-
chronous system, the analysis is based on a simplified, synchronous model (assuming no
ISI, perfect pulse-shaped matched filtering and especially independent codes between paths,
binary vs. Gaussian codes). Also, in a finite system, the power of any one user may be
significant with respect to the total, finite power of all users. In an asymptotic system, on
the other hand, it is essentially assumed that the power of any one user is asymptotically a
vanishing fraction of the total power. While there are good indications that such a system
may indeed be valid asymptotically (e.g. [77,81,82]), the formal proof is still an open issue
at this point, in particular when moving away from chip synchronous to fully asynchronous
models. In addition, the correlation function of the pulse shape employed impacts on the
large system signal model and deviations from the large system results would be expected to
increase with increasing deviation of the pulse shape frequency spectrum from an ideal low-
pass filter. Another point which has been scarcely covered, is the impact of using periodic
spreading codes as opposed to aperiodic ones in large system analysis. While, given the na-
ture of large system analysis, it may be desirable to have aperiodic codes, in our simulations
we have employed periodic codes throughout. While there are a substantial number of open
issues, we do not see the asymptotic results as contradictory to what we have obtained in
earlier chapters but instead it does provide an idea of what might be a good solution.

We have to distinguish between two aspects introduced, namely, the issue of using
diagonal weighting matrices and the estimation of the amplitude data product, required for
the amplitude estimation. From the results obtained in this chapter, the consequence is that
for larger spreading gains, it is advantageous to implement the symbol estimate by using an
approach involving the polynomial expansionAd’ R(q)A.. In this way, the receiver can
make use of the maximum of information available (due to the inclusion of the amplitudes in
the polynomial expansion) and therefore provide the best symbol estimate. However note,
that in a situation of fast fading where the estimation of the amplitudes may become very
unreliable or if no amplitude information is available, it may still be useful to consider a PE
in R(q¢) only, together with differential modulation.

Considering the estimation of the amplitudes, we do require the pathwise outputs
and this, indeed, remains the main point of a pathwise treatment. This will still allow us
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to estimate the amplitudes at an improved SINR, even in the case of applying the Moshavi
approach, as was shown in the last section.

4.A  Appendix: Asymptotic freeness ofR and AA Y

We are interested in finding the limiting behaviour of the following expression:

1 1
lim —tr(AFRA)™ = lim —tr(RAAT)™
K—oco 1L K—oo K
1
= lim —tr(SAAHSH)™ (4.A.1)
K—oo K

Assume the general model as motivated in section 4.3, i.e.

S = [s11.--Skm.--SK,M]

R = sfis (4.A.2)
A = diag{A4,...,Ax} (4.A.3)
Ap = [Apy.. At (4.A.4)

and the spreading codes, are normalised and and consist of i.i.d random elements such
thatsy,; € %{—l—l7 —1}. Note thatA A" = diag(A1A} ... A AlL)is block diagonal in
the multipath case and diagonal in the single path case.

In order to show thaR and AA* are asymptotically free (Proposition 3) with
respect to the trace operator, we introduce a number of definitions required from free proba-
bility theory.

Definition 5 (Non-commutative probability spaces and random variables)

[72]:if A is a unital algebra on the complex number fi€ldand ¢ is a linear functional
of A such thate(1) = 1, with 1 the unit element ofd, then the pair(.A, ¢) is called a
noncommutative probability spaaed the elements of are called noncommutative random
variables (NCRV). The complex number™) is called the nth moment afe A

Definition 6 (Algebra properties)

[72]: Consider the probability space of x n matrices(A,,, ¢,) where A, is a unital
*-algebra (unit, product, sum, involution defined) angd is the state/linear functional such
that ¢,,(A,) = %E[tr(An)], A, € A, Ifasn — oo, @, converges top, then the
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expectation is defined w.r.t. this probability measure. Sum and product are defined in the
normal way for matrices, involution is defined by the Hermitian transpose and the unit is
given by the identity matrik,.

Definition 7

A n x n random matrixA , is called unitarily invariantif the probability measure oA,

as a random matrix/noncommutative random variable is the same as that of the matrix
V., A, VH for any unitary matrixv,,

Theorem 8
If the distribution ofA , is unitarily invariant, it admits the following eigenvalue decompo-
sitionA,, = U, A, UY whereU, andA, are independent.

Returning to the problem at hand, writing the trac&ofising the eigendecompo-

sition
tr(VRVP) = 1r(VUAUTVH) = 1r(QAQH) (4.A.5)
- ji:Ai (4.A.6)
Q = Q;{I (4.A.7)

shows thaR is unitarily invariantto any unitary since the product of two unitary matrices,
hereQ, is also unitary. Sinc® is hermitian, it is also self-adjoint and due to the fact that
it is a random matrixU andA are independent. Further note that the elemenis iare
asymptotically i.i.d., Haar distributed random variables [72].

Theorem 9 (Theorem for free random matrices)
[71,72] Let

e A, (s)beanindependentfamily ofx » Hermitian deterministic or random matrices,
s € S in some index sef

e A, (s)A(s) admit alimit distribution compactly supported

e B,(t) = UWHB! (1)U, ()7 with U,(t) independent om,,(s) and B/, (¢) with
eigenvalues\ (n,t), ..., A,(n,t) such that

— sup, max; A;(n,t) < ooVt € T where7 is some index set



98 4 — Large System Analysis for Pathwise Polynomial Expansion

— and(B,(t), B,(t)),c has alimit distribution
Then as: — oo, the family({A,,(s) }ses, {B.(t), BX (¢) }+e7) is asymptotically free.

If we let (AA)Y/2 = A,,R = B,, U = U, andA = B/, we can see that hen® and
A A" are asymptotically free.

4.B Appendix: Computation of NCRV moments

Having established th® and A A are asymptotically NCRVs, we are now in-
terested in finding the moments.

Definition 10 (Definition of freeness)

[72] Let (A, ¢) be a noncommutative probability space and4ebe subalgebras ofl (i €
I). We say that the familfy4;);c; is in free relation (or fre€) with respect top if, for every
n € Nandi(1),...,i(n) € I suchthat(k) # i(k+1)(1 <k <n-1),

plaray .. .a,) = 0ifandonly ifay € Ay, ¢(ag) =0, 1<k <n
(4.B.1)

This basically means that evepy(a;) = 0 for all elements and that neighbouring ncrv’s
from the same subalgebra are not allowed to have consecutive indicesy(e;gs) = 0
wherep(a;) = ¢(as) = 0 buty(aiaz) # 0 because the two neighbours have consecutive
indices even though(a;) = ¢(as) =0

Theorem 11 (Moments of NCRVS)
[72,83] For free noncommutative random variables . . ., a,, the following holds:

pllar = plar)1) (ag — plaz)1) ... (an — ¢(an)1)] =0 (4.B.2)
which allows the computation of the moments.

As an example how this can be solved, here is an example from [83F,ltee A be two
free subalgebras artdc B andc € C then we can writé = &’ + b wherech = ¢(b)1, so
thate(b') = 0. Similarly we have: = ¢’ + ¢. Using the definition of freeness, we see that
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p(b'd) =0, thus
plbe) = @[V +b)(c +72)]
= @[V + e+ b + b
= pb)e(e) (4.B.3)
where we have used(bc’) = (¢ (b)1.¢') = ¢(b)p(c’) = 0 and similarly forp(b'e) = 0.

Definition 12 (moments of a product of two ncrvs)
Given the free random variables= «’ + @ andb = b’ + b we can compute the moments of
their product by:

¢ [(ab)™] = p(a)p(b) [(ab) "] + @ [a'V'(ab)" 1] + p(a)p [V'(ad) "] + (D) ¢ [a'(ab)™ ]
using this, e.g. the second moment is given by:
¢ [(ab)’] = 2*(a)* (b) + ©* () p (%) + p(a?)p* (0) (4.B.4)

The direct application of this formula gives the result in equation (4.2.36)
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Conclusions

In chapter 2 we have established the concept of user-wise distortionless pathwise
interference cancellation which is independent of the fastly varying complex amplitude coef-
ficients. This could be achieved through the separation of the received signal into fastly and
slowly varying components. Furthermore, we have alleviated the problem of signal cancel-
lation that occurs in the original pathwise approach when there is strong correlation between
the amplitudes of different paths of the same user. The advantage of the approaches intro-
duced is the relaxed adaptation requirements due to the filter's independence from the fastly
varying coefficients. This allows the scarce training data to be used in the estimation of the
fastly varying parameters while the whole signal can be used to estimate the slowly varying
parameters over a much larger interval. Since the interference cancellation takes place be-
tween paths, the signal thus obtained contains the desired parameters at an improved SINR
compared to the received signal and hence allows improved channel estimation. However,
the approaches of chapter 2 are computationally costly to implement and we have therefore
considered pathwise polynomial expansion as a low complexity approach in chapter 3. Poly-
nomial expansion allows the approximation of the computationally intensive matrix inverse
required by both the LMMSE receiver and the decorrelator by expanding the matrix inverse
as a polynomial. However, for polynomial expansion to work, weighting coefficients need to
be introduced. We have shown, that giving each signal component a scalar weighting factor
allows for improved interference cancellation and therefore improved parameter estimation.
Also, we have shown that the extension to spatio-temporal processing is straightforward.
Furthermore, we have also introduced new polynomial expansion approaches which work
at symbol level and provide more degrees of freedom by still allowing a scalar coefficient
per signal component. Unfortunately, it is very difficult to characterise the performance be-
haviour of a polynomial expansion receiver analytically using standard techniques, not least
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due to the fact that the output SINR is a function of the particular set of spreading codes,
delays and amplitudes used. We have therefore resorted to what is known as large system
analysis in chapter 4. This method lets the dimensions of the system grow to infinity and
assumes the spreading codes to be made up of i.i.d. random variables. The resulting SINR,
involving large random matrices, can then be simplified based on the fact that the empiri-
cal eigenvalue distributions of certain classes of asymptotically infinite matrices converge
to a deterministic distribution. Interestingly, it was found that there is no benefit asymp-
totically in using a weighting coefficient per multipath component or per user, even under
power imbalances. Furthermore, it was shown that the asymptotically optimal solution for
the weighting coefficients can be found easily, given the relevant moments of the eigenvalues
of the large random matrices. While the asymptotic analysis proves that there is no benefit
attained by the introduction of weighting coefficients per signal component, the simulations
in the preceding chapter have clearly shown that performance can be improved by increasing
the number of coefficients. We attribute this discrepancy to a number of open issues which
remain in the large system analysis. Notably, the asymptotic analysis is by its very nature
only approximate for finite systems. Since the simulations presented are all with relatively
low spreading factor, a certain amount of disagreement between the results can be expected.
Furthermore, the simulations have been run using a truly asynchronous system whereas the
large system analysis is based on a simplified, symbol-synchronous system. While there are
good indications that such a system may asymptotically hold for the asynchronous model,
the formal proof at this point in time is still an open issue. Also, the correlation function

of the pulse-shaping filter is of importance in the large system signal model and devia-
tions from the large system results would be expected with increasing deviation of the pulse
shape frequency spectrum from and ideal low-pass filter. Finally, the impact of using peri-
odic spreading codes versus aperiodic ones in large system analysis remains unclear. It is,
however, important to distinguish between two aspects of polynomial expansion receivers
introduced in this document, the issue of using diagonal weighting matrices and the esti-
mation of the amplitude data product, respectively. In consequence of the results obtained
from the large system analysis, it is advantageous to estimate the symbols from an approach
following the original polynomial expansion receiver, that is, to use a polynomial expansion
involving the amplitudes. Due to the extra amplitude information which such an approach
utilises, any approach which does not make use of this information can only perform worse.
It is worth mentioning, however, that in the case where amplitude estimates are very unreli-
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able due to very fast fading, the application of purely pathwise polynomial expansion may
still be advantageous, particularily in conjunction with differential modulation. Consider-
ing the issue of amplitude estimation, we continue to require the pathwise outputs and this,
indeed, remains the main point of a pathwise treatment. It is shown that even using an ap-
proach providing symbol outputs, it is still possible to obtain pathwise signals and combine
pathwise with symbolwise polynomial expansion in order to profit from the benefits of both
approaches.
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