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ABSTRACT

We pursue our Iterative Quadratic Maximum Likelihood
(IQML) approach to blind estimation of multiple FIR chan-
nels. We use a parameterization of the noise subspace in
terms of linear prediction quantities. This parameteriza-
tion is robust w.r.t. a channel length mismatch. Specif-
ically, when the channel length is overestimated, no prob-
lems occur. Underestimation leads to a reduced-order chan-
nel estimate. We introduce two Matched Filter Bounds
(MFBs) to characterize the performance of receivers using
reduced-order channel models. The �rst one (MFB1) uses
the channel model to perform the spatio-temporal matched
�ltering that yields data reduction from multichannel to
single-channel form. The rest of the processing remains op-
timal. MFB2 on the other hand bounds the performance of
the Viterbi algorithm with the reduced channel model. It is
shown that the reduced model provided by IQML is the one
that maximizes MFB1. We also propose some low complex-
ity techniques for obtaining consistent estimates with which
to initialize IQML.

1. INTRODUCTION

Consider a sequence of symbols a(k) received through m

channels y(k) =
PN�1

i=0 h(i)a(k�i) + v(k) = HNAN(k) +

v(k), y(k) = [yH1 (k) � � � y
H
m(k)]

H, HN = [h(0) � � �h(N�1)],

AN (k) =
�
a(k)H � � �a(k�N+1)H

�H
, where superscript H

denotes Hermitian transpose. Let H(z) =
PN�1

i=0
h(i)z�i =

[HH1 (z) � � �H
H
m(z)]

H be the SIMO channel transfer function.
Consider additive independent white Gaussian noise v(k)
with rvv(k�i) = E v(k)v(i)H = �2vIm �ki, but deterministic
transmitted symbols a(k). Assume we receive M samples:

YM (k) = TM(HN )AM+N�1(k) + V M(k) (1)

where Y M(k) = [yH(k) � � � yH(k�M+1)]H and similarly for
V M (k), and TM (HN ) is a block Toepliz matrix with M
block rows and [HN 0m�(M�1)] as �rst block row.

2. THE IQML ALGORITHM

A robust, though slightly approximate1 , approach to the
ML estimation problem comes about as follows. In [1] we
have shown that the multivariate prediction �lter P(z) for
the noise-free received signal satis�es P(z)H(z) = h(0).

The order of P(z) is L =
l
N � 1

m� 1

m
. Now, if h(0)? is

a m � (m�1) matrix such that h(0)?Hh(0) = 0, then

1The dimension of the parameterized noise subspace will get
slightly reduced, this has an asymptotically negligible e�ect.

P(z) = h(0)?HP(z) is a (m�1) �m polynomial that sat-
is�es P(z)H(z) = 0. Asymptotically the ML criterion be-
comes the sum of the squares of w(k) in

y(k) = H(q) a(k) + v(k))

P(q)y(k) = P(q)v(k) =
�
P(q)P

y
(q)
�1=2

w(k)
(2)

where P
y
(z) = P

H
(1=z�) and (:)1=2 is a minimum-phase

factor of its argument. Note that Ew(k)w(k)H = �2vIm�1
and hence

(m�1)�2v = tr rww(0) = tr

I
P
P
y

(z)
Syy(z)

dz

z
(3)

where PH(z) = H(z)
�
Hy(z)H(z)

��1
Hy(z) and tr denotes

trace. This leads us to introduce an approximate ML prob-
lem as

min
P

kP
T H
M�L

(P)
YMk

2
2 (4)

for any L � L. (4) can be solved in the IQML fashion.

A minimal parameterization for P is

P = h(0)?HP =
�
h(0)?H Q

�
; h(0)?H = [Im�1 g]P

(5)
where g ((m�1) � 1) and Q ((m�1) � mL) are the free
parameters and P is a permutation matrix that permutes
g into the column of h(0)?H that corresponds to the po-
sition of the largest element of h(0). To determine this
position requires an initial estimate of h(0). One such
estimate can be obtained by inspecting the estimate of
ryy(N�1) = �2ah(N�1)h(0)

H (for white a(k)). Alterna-
tive estimates for h(0) can be obtained from the initializa-

tion procedure for P to be discussed. The optimization
w.r.t. the unconstrained parameters Q and g in the IQML
procedure is simple. With the parameters in the inverted
matrix �xed at their values obtained from the previous it-
eration, the criterion is quadratic in g and Q and separable:
�rst minimize w.r.t. Q and obtain Q as a function of g.
Substitute this value of Q in the criterion and minimize the
resulting quadratic criterion in g. A more robust param-
eterization (not dependent on the permutation matrix) of
h(0)? is the following nonlinear parameterization in terms
of m�1 complex numbers si; jsij � 1. For example for
m = 5, we get

h(0)?H =

2
4 s1 c1 0 0 0

s2c1 �s2s1 c2 0 0
s3c2c1 �s3c2s1 �s3s2 c3 0
s4c3c2c1 �s4c3c2s1 �s4c3s2 �s4s3 c4

3
5



where ci =
p
1 � jsij2. Since in every iteration of the IQML

procedure, the cost function is quadratic in si and ci, min-
imization w.r.t. a particular pair si, ci is straightforward.
Minimization w.r.t. all si can be done by performing al-
ternating minimizations w.r.t. s1; s2; : : : ; sm�1 until conver-
gence.

3. CONSISTENT INITIALIZATION

A good estimate of P is required to initialize the IQML
algorithm. In fact, with a consistent initialization, one
iteration of the IQML algorithm yields an ABC (asymp-
totically best consistent) estimate. One starts by consis-

tently estimating R
y
L = EY LY

H
L for L � L+1. One ap-

proach then is to estimate �2v as �min(R
y
L) and to per-

form linear prediction on R
y
L��min(R

y
L) I as estimate of

the noise-free covariance matrix. The prediction problem
then gets truncated at a certain order where the m � m
prediction error variance matrix is deemed to be of rank
one. This gives some information on the channel length
N . This information could be exploited to clean up the co-
variance matrix estimate: in principle ryy(i) = 0; i � N

and rank(ryy(N�i)) = i; i = 1; : : : ;m�1. Then �min(R
y
L)

could be estimated again and the prediction problem could
be solved again and this process could be reiterated.

3.1. Minimal Signal Subspace Fitting

If R
y
L =

mLX
i�1

�iViV
H
i is the ordered eigendecomposition,

then N can be inferred from the distribution of the eigenval-
ues. The channel can then be estimated by signal subspace

�tting [2] min
HN

V H
L+N :mLTL(HN )

2
F
. A complete eigende-

composition is expensive though. However, it su�ces to
express orthogonality of the parameterized signal subspace
to m�1 noise subspace vectors to be able to determine HN

[1] and hence to minimize w.r.t. HNV H
m(L�1)+2:mLTL(HN )

2
F
=
Ht

NTN (V
H t
m(L�1)+2:mL)

2
2
(6)

where superscript t denotes transposition of the blocks when
considering the quantity as an appropriate block matrix.
Indeed, since the noise subspace is (part of) the column

space of T H
L�L

�
PL

�
, there exists a matrix of combination

coe�cients W such that Vm(L�1)+2:mL = T H
L�L

�
PL

�
WH .

Letting W(z) be the z-transform of the (m�1) � (m�1)
samples in the block row vector W, then the criterion in (6)
can be rewritten asW(z)P(z)H(z)

2 : (7)

Since W is full rank, W(z) is generically full rank, and
hence Wy(z)W(z) is generically a positive de�nite weight-

ing function. This implies that if
W(z)P(z)H(z)

2 = 0,

then P(z)H(z) = 0. This in turn implies that H(z) is the
correct channel transfer function, Q.E.D.
Since in this case only the m�1 \smallest" eigenvec-

tors are determined, the complete eigenvalue distribution
is not available for the determination of N . N then needs
to be estimated as indicated before. A misestimation of
N is not unlikely. If N is estimated to be N 0 > N ,
then all solutions HN 0 that render the cost function in
(6) zero satisfy PL(z)HN 0(z) = 0 and hence are of the
form HN 0(z) = HN (z)G(z) where G(z) is a scalar poly-
nomial of order N 0�N . Hence this approach so far is not

robust as a means to estimate the channel directly. How-
ever,HN 0(z) = HN (z)G(z) can be interpreted as the overall
transfer function fed by white symbols that �rst get colored
by G(z) and then pass the correct channel HN (z). The
coloring of the channel input modi�es the prediction �lter
P(z) obtained from HN 0(z)Hy

N 0(z), but not the P(z) part
[2], which is the quantity of interest here. Below we show
an example with m = 2, N = 4, N 0 = 6 and randomly
generated real channel coe�cients.

HN =
h
0:9685 0:4201 1:6859 �0:9020
0:6703 �2:8728 0:0279 �2:0533

i
ĤN =

h
0:2303 0:0999 0:4008 �0:2145
0:1594 �0:6830 0:0066 �0:4882

i
ĤN 0 =

h
�0:1175 0:0105 �0:3129 0:1577 �0:2924 0:1258
�0:0813 0:3910 �0:2791 0:6516 �0:1341 0:2864

i
�PN = b�PN = b�PN 0 =[ 0:5691 �0:8223 �2:4391 �0:3567

0:0237 �1:4314 �1:7433 0:7659 ]

4. MODEL REDUCTION

The IQML method proposed by Hua in [3] uses a di�erent
choice for the blocking equalizers:

P(z) =

2
4 �H2(z) H1(z) � � � 0

...
...

. . .
...

�Hm(z) 0 � � � H1(z)

3
5 (8)

which is also FIR. However, the noise subspace is in this
case parameterized by the columnspace of a matrix that
has many more columns than its column rank. Further-
more, if the channel order is overestimated as N 0 > N , then
the channel estimate is of the form HN 0(z) = HN (z)G(z)
where the scalar polynomial G(z) of order N 0�N represents
N 0�N zeros in common between the individual Hi;N 0(z).

HN(z) could again be found from HN 0(z) via the P(z) of
linear prediction as indicated before. In contrast to Hua's
method, our parameterization of the noise subspace does
not have the dimensionality problem. Furthermore, since
in every iteration of the IQML problem, we solve a predic-
tion problem, there is no problem with order overestimation
because the superuous prediction coe�cients become au-
tomatically zero.
Furthermore, it is interesting to analyze what happens

when the prediction order and hence the channel order gets
underestimated. Let PL0 (z) be the blocking equalizer of re-

duced order. From PL0(z)HN 0(z) = 0 we can determine the
corresponding reduced-order channel estimate which will
satisfy

PH
N0 (z)

+P
P

y

L0 (z)
= Im : (9)

For the investigation of the model reduction behavior of
the ML criterion, we shall neglect the estimation variance.
Hence, the ML criterion (4) divided by M leads asymptot-
ically for large M (LLN) to the criterion

tr rww(0) = tr

I
P
P

y

L0
(z)

Syy(z)
dz

z

= tr ryy(0)� tr

I
PH

N0 (z)
Syy(z)

dz

z

= tr ryy(0)� �2v � �2a

I
Hy
N (z)PH

N0
(z)HN (z)

dz

z
:

(10)
Before interpreting this last expression, we shall review the
concept of the Matched Filter Bound (MFB).
For the multichannel H(z) shown in Fig. 1, the MFB

is given by kHk2�2a=�
2
v where we assume that the symbols
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H
y(z)H(z)� kHk2
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(Hy(z)H(z))�y=2

a(0)�k0

Figure 1. Four ways to get the MFB from SNRs.

a(k) are white and the noise v(k) is temporally and spa-
tially white. Then the MFB can alternatively be calculated
as the sum of the SNRs in the individual channels in (a), as
the SNR of the appropriate output sample of the matched
�lter (MF) when transmitting only one sample in (b), as
the SNR of the output of the whitened MF (WMF) in (c)
of �nally as the SNR at the decision element of the (unre-
alizable) non-causal DFE (NCDFE) in (d). The MFB that
we indicated here is the one that corresponds to continu-
ous transmission. The MFB becomes sample-dependent in
the case of burst (packet) transmission. The MFB indi-
cates the optimal symbol detection performance when the
channel H(z) is completely known. We shall now discuss
appropriate MFBs when a reduced-order channel model is
used. Two levels of suboptimality ensue in that case. These
correspond to the two ways of implementing ML sequence
estimation (MLSE) in the multichannel case: either used a
vectorial matched �lter and work with a scalar signal, or
work with the vector received signal directly.

4.1. Matched Filter Bound One (MFB1)

Assume we have a reduced-order model z�dHN 0(z) of
HN(z) (d 2 f0; 1; : : : ;N�N 0g). In a �rst step of subopti-
mality, we can consider that in the data reduction step from
multichannel to single-channel, we use the MF matched to
the reduced model z�dHN 0(z). However, after this sub-
optimal data reduction, we shall allow optimal process-
ing of the resulting single channel (this requires knowledge

of Hy

N 0(z)HN (z) which represents less information than
HN(z) itself). In order to �nd the conventional MFB for
the processing of the resulting scalar channel, it su�ces to
whiten the noise after the vector MF. The resulting scalar
channel then indeed becomes one of additive white noise
n(k) as indicated in Fig. 2 so that the MFB can be calcu-
lated as considered before.

a(k)

a(k)

HN (z)

zdH
y

N 0(z)HN (z)

(Hy
N 0 (z)HN 0 (z))y=2

n(k) (white noise)

zdH
y

N 0(z) (Hy

N 0(z)HN 0(z))�y=2

v(k)

y(k)

Figure 2. MFB1: reduced-order multichannel MF fol-
lowed by a scalar MF.

We get for the continuous transmission MFB

MFB1 =
�2a
�2v

I
Hy
N (z)PH

N0 (z)
HN (z)

dz

z
: (11)

By comparing with (10), we �nd that asymptotically the
reduced-order channel estimate obtained with our IQML
method is the one that maximizes MFB1!
It is interesting to analyze the variation of MFB1(N 0) as

a function of the reduced order N 0. For N = N 0 we get

MFB1(N)=
�2
a

�2v
kHNk

2. It is not di�cult to show that in

the limiting case N 0 = 1 (purely spatial channel model), we

get MFB1(N)=
�2
a

�2v
�max

�
HNH

H
N

�
. We then can derive the

following bounds

1 �
MFB1(N)

MFB1(1)
=

tr
�
HNH

H
N

�
�max

�
HNH

H
N

� � min(m;N) (12)

The lower bound is attained when h(i) � h(0); i =
1; : : : ; N�1. The upper bound is attained when either
HNH

H
N � Im or HH

NHN � IN , whichever is of full rank.
In a statistical set-up, if the m channel impulse responses
are i.i.d., then the upper bound is approached as the delay
spread grows. Note that the case N 0 = 1 corresponds to
replacing a full spatio-temporal treatment by the cascade
of a purely spatial combiner followed by a purely temporal
treatment.
Since the IQML method will normally be applied to a

burst of data Y M (k), it is interesting to pursue the burst
mode equivalent of MFB1. Let TN and TN 0 denote TM (HN )
and TM (HN 0) resp. and consider the Cholesky factorization
T H
N 0TN 0 = LLH . Then the M+N 0�1 reduced-order WMF
outputs are

L�1T H
N 0Y = L�1T H

N 0TNA+ L�1T H
N 0V (13)

The covariance matrix of the noise component is indeed
�2vIM+N 0�1 while the covariance matrix of the signal part
is �2aL

�1T H
N 0TNT H

N TN 0L�H . The sum of the SNRs of all
WMF outputs is then

M+N 0�1X
i=1

�2a
�2v

�
L�1T H

N 0TNT
H
N TN 0L�H

�
ii
=

�2a
�2v

tr
�
PT

N0
TNT

H
N

�
(14)

This point of view corresponds to (a) in Fig. 1. To �nd the
equivalent of (d) in Fig. 1, consider passing the previous
WMF output L�1T H

N 0Y through the scalar MF T H
N TN 0L�H .

This gives the M+N�1 outputs

T H
N PT

N0
Y = T H

N PT
N0
TNA+ T H

N PT
N0
V (15)

The sum of the SNRs at the NCDFE detector for the
M+N�1 elements of AM+N�1(k) is

M+N�1X
i=1

�2a
�2v

�
T H
N PT

N0
TN
�
ii
=

�2a
�2v

tr
�
PT

N0
TNT

H
N

�
(16)

which is the same as in (14).
In order to investigate the e�ect of the model reduction

performed by the IQML method, some simulations were
performed for m = 2 channels. In order to concentrate
on the model reduction e�ects and not on the estimation
errors, the averaged likelihood function was maximized.
Since the noise is white, this boils down to maximizing
tr
�
PT

N0
TNT

H
N

�
for which we developed the details of the

IQML method. This cost function is proportional to the
average MFB1 for burst mode transmission. Fig. 3 shows
the evolution of the average MFB1 as a function of N 0 for
a case in which the two impulse responses are orthonormal
and a case in which they are almost colinear.



1 2 3 4 5 6
2.5

3

3.5

4

4.5

5

5.5

Model Order

MFB1 for orthogonal subchannels

1 2 3 4 5 6
2.881

2.884

2.887

2.89

2.893

2.896

2.899

2.902

Model Order

MFB1  for quasi−colinear subchannels

Figure 3. MFB1 as a function of N 0 = 1; : : : ;N form = 2,
M = 50, N = 6 for orthonormal (left) and almost colinear
(right) impulse responses.

4.2. Matched Filter Bound Two (MFB2)
We now go all the way in suboptimality. We will not only
assume that the multichannel MF is based on the reduced
channel model but in fact that the whole receiver is. To
�nd the optimal performance in this case, consider MLSE.
The received burst through the channel HN (z) is Y M (k) =
TM (HN )AM+N�1(k)+VM (k). Based on the reduced-order
model z�dHN 0(z), the MLSE problem is

min
a(i) 2 A

d 2 f0; 1; : : : ;N�N 0g

kY M (k)� TM (HN 0)AM+N 0�1(k�d)k
2

(17)
We obtain the MFB2 by considering the detection of a single
symbol a(i) assuming that the other symbols are known. It
is easy to see that the continuous transmission version of
this leads to the NCDFE depicted in Fig. 4.

a(k)
HN (z) zdH

y

N 0 (z)

v(k)

y(k) a(k)z(k)
kHN 0k�2

H
y

N 0(z)HN 0(z)� kHN 0k2

Figure 4. MFB2: MFB for MLSE with the reduced-order
channel model.
The SNR at the NCDFE detector is

MFB2 =
kHN 0k2�2a

�2v + �2akH
y

N 0(z)(zdHN (z)�HN 0(z))k2=kHN 0k2
:

(18)
In contrast to MFB1, the delay d in the reduced-order chan-
nel model plays a role in MFB2. Note that the presence of
an adjustable delay creates local minima for MLSE. Blind
methods only allow the estimation of the channel up to a
multiplicative constant. MFB2 on the other hand is quite
sensitive to the choice of this scale factor. Within the spirit
of blind methods, we have determined the magnitude of
this scale factor on the basis of the variance of the received
signal, which leads to kHN 0k = kHNk. The determina-
tion of the phase of the scale factor is less obvious though.
In simulations we have avoided this issue by restricting to
real impulse responses. Some simulation results are shown
in Fig. 5. There, the evolution of MFB1 and MFB2 as a
function of N 0 is shown for the following two channels

H1 =
h

1:0000 0:8000 0:5000 0:6000 0:1000 0:0050
�1:5000 1:4000 �0:9000 1:1000 �0:0300 0:0050

i
H2=

h
1:0000 0:5000 �0:1500 0:0550 0:0145 �0:0014
1:5000 �0:9500 0:3050 0:0695 0:0431 �0:0043

i
(19)

An example of the evolution of the averaged IQML cost
function during the iterations of the IQML algorithm is
shown in Fig. 6. We have found that the evolution is not
always monotonic, contrary to what one might believe on
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Figure 5. Comparison of MFB1 and MFB2 as a function
of N 0 for channels H1 and H2 , m = 2, N = 6, M = 50.

the basis of Fig. 6. In fact, often a steady-state of small
uctuations is observed. However, we have also found that
most of the convergence takes place in the �rst iteration for
reasonably good initializations. Furthermore, the algorithm
appears to be fairly insensitive to the initialization, various
ways of obtaining a truncated P almost always leading to
the same result after convergence. The initialization used
in Fig. 6 in fact is based on the prediction problem for the
covariance matrix of a noisy signal with SNR=10dB (noise
in the signal leads to a bias in P).
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Figure 6. Evolution of the averaged IQML cost function
during the iterations for H1 and N 0 = 1; : : : ;N .
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