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ABSTRACT

Most of the present mobile communication standards include a training sequence to es-

timate the channel. Blind techniques allow the estimation of the channel without requiring

training symbols, thus increasing bandwidth e�ciency, but lack from robustness. The pur-

pose of semi-blind equalization is to exploit the blind information as well as the information

coming from the known symbols. Semi{blind techniques robustify the blind problem and al-

low the estimation of longer impulse responses than possible with a certain training sequence

length; for a desired estimation quality, they also allow the use of shorter training sequences.

Furthermore, they o�er better performance than blind and training methods.

We present identi�ability conditions for semi{blind FIR multichannel estimation: semi{

blind methods are able to estimate any channel, even when the position of the known symbols

in the burst is arbitrary. Performance bounds for semi{blind multichannel estimation are pro-

vided through the analysis of Cram�er-Rao bounds and a comparison of semi{blind techniques

with blind and training sequence based techniques is done. A study on performance under

constraints is proposed to characterize blind performance.

The proposed semi{blind methods are mainly based on Maximum{Likelihood which can

incorporate the knowledge of input symbols. For grouped known symbols, suboptimal criteria

appear as a linear combination of a training sequence based criterion and the blind ML

criterion. In order to build powerful semi{blind ML methods, we also focus on the study

of blind ML methods. At last, we present methods that combine a blind criterion with a

training sequence based criterion.

Receiver structures are also presented. The structure of the burst mode equalizers are

studied and especially the structure of the ISI canceller that we call Non{Causal Decision{

Feedback Equalizer (NCDFE): an implementation of the NCDFE is proposed based on

soft decisions. At last, performance bounds on Maximum Likelihood Sequence Estimation

(MLSE) are given when the channel order is underestimated.
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1.1 Training Sequence based Methods and Blind Methods

The development of wireless communications has given rise to a host of new research prob-

lems in digital communications, but has also refocused attention on some classical problems.

Equalization is one of the main signal processing issues in digital communications over chan-

nels with InterSymbol Interference (ISI). In mobile communications, the ISI problem, due

to multipath propagation, is particularly di�cult as the propagation channels characteristics

are severely subjected to pathloss and fading, and propagation characteristics change rapidly.

Traditional equalization techniques are based on training. The sender transmits a training

sequence (TS) known at the receiver which is used to estimate the channel coe�cients or to

directly estimate the equalizer. Most of the present mobile communication standards include

a training sequence to estimate the channel. In GSM [1], the data is organized and transmitted

in bursts. Each normal burst contains a middamble training sequence used to estimate the

channel, considered as time{invariant over the duration of a burst. A Viterbi equalizer based

on the estimated channel is applied to estimate the transmitted data symbols of the actual

burst.

In most cases, training methods appear as robust methods but present some disadvan-

tages. Firstly, bandwidth e�ciency decreases bandwidth e�ciency as a non{negligible part

of the data burst can be occupied: in GSM, for example, 20% of the bits in a burst are

used for training. Furthermore, in certain communication systems, training sequences are

not available or exploitable, when synchronization between the receiver and the transmitter

is not possible.

These reasons motivated the introduction of the blind methods in the 70s with the work

of Sato [2]. The idea behind blind equalization techniques is to estimate the channel or the

equalizer based only on the received signal without any training symbols.

The �rst wave of blind techniques was based on the exploitation of the �nite alphabet

(decision directed, constant modulus algorithms, etc) while the second wave was based on

Higher{Order Statistics (HOS) [3]. The HOS techniques use a Single Input Multiple Output

(SISO) model, where a single input symbol stream is transmitted through a single linear

channel and sampled at the symbol rate: from the second{order moment of the data, only the

amplitude of the transfer function of the �lter can be determined but not the phase function.

Based on a condition of non{gaussianity for the sources (otherwise only �rst and second{

order statistics are available), the higher{order methods can identify the phase function. The

major disadvantage of HOS methods is that they often need a large amount of data resulting

in a high computational cost.

The introduction of multichannels, or SIMO models where a single input symbol stream

is transmitted through multiple linear channels, has given rise to a whole bunch of new blind

estimation techniques that do not need higher{order statistics. When the received signal is

oversampled at a rate higher than the symbol rate, the resulting sampled signal is cyclo-
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stationary. Gardner [4], Tong, Xu and Kailath [5] proved that, due to spectral redundancy

properties, both the amplitude and the phase function of the channel can be identi�ed from

the Second{Order Statistics (SOS) of the data. This temporally oversampled model was

shown to be equivalent to a spatially oversampled model where the signal is received through

multiple antennas [6]. As discussed in section 1.4, all the methods based on the multichannel

model are not strictly based on second{order statistics of the data but rather on the structural

properties of the received signal itself. We will however call these methods SOS methods as

they do not use HOS. This thesis focuses on SOS techniques.

As detailed in section 1.4, some SOS estimation techniques su�er from a lack of robustness:

channels must verify diversity conditions and the methods can fail when the channel length

is overestimated. Furthermore, the blind techniques leave an indeterminacy in the channel or

the symbols, a scale or phase factor (possibly discretely valued). This suggests that SOS blind

techniques should not be used alone but with some form of additional information. However,

the same is true also for training sequence based methods, especially when the sequence is

too short to estimate the data. Semi{blind techniques are proposed here to overcome these

problems.

1.2 The Semi{Blind Principle

In this thesis, we shall focus on blind and semi{blind FIR multichannel estimation that are

further used to feed a Viterbi equalizer, or a linear or decision{feedback equalizer.

The data is transmitted by burst and we assume here that known symbols are present in

the burst in the form of a training sequence aimed at estimating the channel or simply some

known symbols used for synchronization or as guard intervals, like in the GSM or DECT

burst. In this case, when using a training or a blind technique to estimate the channel,

information gets lost. Training sequence methods base the parameter estimation only on

the received signal containing only known symbols, and all the other observations, containing

(some) unknown symbols, are ignored. Blind methods are based on the whole received signal,

containing known and unknown symbols, possibly using hypotheses on the statistics of the

input symbols, like the fact that they are i.i.d. for example, but no use is made of the

knowledge of some input symbols. The purpose of semi{blind methods is to combine both

training sequence and blind information (see �gure 1.1) and exploit the positive aspects of

both techniques stated in section 1.1.

Semi{blind techniques, because they incorporate the information of known symbols, avoid

the possible pitfalls of blind methods and with only a few known symbols, any channel,

single or multiple, becomes identi�able. Furthermore, exploiting the blind information in

addition to the known symbols, allows one to estimate longer channel impulse responses

than possible with a certain training sequence length, a feature that is of interest for the

application of mobile communications in mountainous areas. For methods based on the
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Figure 1.1: Semi{Blind Principle: example of a GSM burst.

second{order moments of the data (which we will call Gaussian methods), one known symbol

is su�cient to make any channel identi�able. In addition, semi{blind tachniques allow one

to use shorter training sequences for a given channel length and desired estimation quality,

compared to a training approach. Apart from these robustness considerations, semi{blind

techniques appear also very attractive from a performance point of view, as their performance

is superior to that of training sequence or blind techniques separately. Semi{blind techniques

are particularly promising when TS and blind methods fail separately: the combination of

both can be successful in such cases.

1.3 The Multichannel Model

We consider here linear modulation (nonlinear modulations such as GMSK can be linearized

with good approximation [7, 8]) over a linear channel with additive noise. The received signal

after a linear receiver �lter is then the convolution of the transmitted symbols with an overall

channel impulse response, which is itself the convolution of the transmit shaping �lter, the

propagation channel and the receiver �lter. The communication system is as �gure 1.2.

The overall channel impulse response is modeled as FIR which for multipath propagation

in mobile communications appears to be well justi�ed. In mobile communications terminol-

ogy, this thesis will mostly consider the single-user case; some work has also been done for

the multi-user case in which the received signal contains a mixture of multiple users.

We describe the FIR multichannel model used throughout the thesis. This multichannel

model applies to di�erent cases (see �gure 1.3): oversampling w.r.t. the symbol rate of a

single received signal [5, 9, 10] or the separation into the real (in{phase) and imaginary
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Figure 1.2: Communication system.

(quadrature) component of the demodulated received signal if the symbol constellation is

real [11, 12]. In the context of mobile digital communications, a third possibility appears in

the form of multiple received signals from an array of sensors (�gure 1.3(b)). These three

sources for multiple channels can also be combined.

Let us further develop the case of oversampling. The received signal which is cyclosta-

tionary [4] can be written as

y(t) =
X
k

h(t� kT )a(k) + v(t) (1.1)

where the a(k) are the transmitted symbols, T is the symbol period and h(t) is the channel

impulse response. The FIR channel is assumed of duration NT (approximately). If the

received signal is oversampled at the rate
m

T
(or if m di�erent received signals are captured by

m sensors every T seconds, or a combination of both), the discrete input-output relationship

can be written as:

y(k) =

N�1X
i=0

h(i)a(k�i) + v(k) ;

y(k) =

264 y1(k)
...

ym(k)

375 ; v(k) =
264 v1(k)

...

vm(k)

375 ;h(k) =
264 h1(k)

...

hm(k)

375
(1.2)

where the subscript i denotes the ith channel. In the case of oversampling, yi(k) ; i = 1; : : : ; m

represent the m phases of the polyphase representation of the oversampled signal: yi(k) =

y(t0 + (k +
i

m
)T ). In this polyphase representation of the oversampled signals, we get a

discrete-time circuit in which the sampling rate is the symbol rate.

For real symbols, it will be advantageous to treat the real and imaginary parts of the

channel and received signal separately:"
Re(yl(k))

Im(yl(k))

#
=

N�1X
i=0

"
Re(hl(i))

Im(hl(i))

#
a(k�i) +

"
Re(vl(k))

Im(vl(k))

#
; l = 1; : : : ; n (1.3)
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Figure 1.3: Multichannel model: case of oversampling, multiple antennas and separation

of inphase and quadrature components when the input symbols are real. Example of a

multichannel with 2 subchannels.
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where n now denotes the product of the oversampling factor and the number of sensors.

The vector signals now become y(k) = [Re(y1(k)) Im(y1(k)) � � �Re(yn(k)) Im(yn(k))]T and

similarly for h(k) and v(k). This leads to a representation similar to (1.2). However, the

number of channels gets doubled: m = 2n, which corresponds to an increase in diversity [11,

12]. With this reformulation of the case of real symbols, which we will henceforth assume,

all quantities are real when the symbols are real.

In all cases, we can write the input-output relationship as

y(k) = HA(k) + v(k) ;

H = [h(0) � � �h(N�1)] ; A(k) = [a(k) � � �a(k�N+1)]T :
(1.4)

The output is a vector signal corresponding to a SIMO (Single Input Multiple Output) or

vector channel, consisting ofm SISO discrete-time channels. Note that monochannels appear

as a limiting case of multichannels for which all the zeros are in common (except that in the

multichannel case, the white noise variance is identi�able).

Let H(z) =
PN�1

i=0 h(i)z�i = [H1(z) � � �Hm(z)]T be the SIMO channel transfer function.

Consider additive independent white Gaussian noise v(k) with rvv(k�i) = Ev(k)vH(i) =

�2vIm �ki, and E v(k)vT (i) = 0 in the complex case (circular noise). Assume we receive M

samples:

Y M(k) = TM (h)AM(k) + V M(k) (1.5)

where Y M (k) = [yT (k) � � �yT (k�M+1)]T and similarly for V M (k). TM(h) is a block Toeplitz

matrix with M block rows and [H 0m�(M�1)] as �rst block row:

T (h) =

266664
h(0) � � � h(N�1) 0 � � � 0

0 h(0) � � � h(N�1)
.. .

...
...

. . .
. . .

. . .
. . . 0

0 � � � 0 h(0) � � � h(N�1)

377775 (1.6)

and

h =
�
hT (0) � � �hT (N�1)

�T
: (1.7)

The channel length is assumed to be N which implies h(0) 6= 0 and h(N�1) 6= 0 whereas

the impulse response is zero outside of the indicated range. We shall simplify the notation in

(1.5) with k =M�1 to
Y = T (h)A+ V : (1.8)

Commutativity of Convolution We will need the commutativity property of convolution:

T (h)A = Amh (1.9)



8 Introduction Chapter 1

where: Am = A1 
 Im,

A1 =

266664
a(M�1) a(M�2) � � � a(M�N)

a(M�2) . .
.

. .
. ...

... . .
.

. .
. ...

a(0) � � � � � � a(�N+1)

377775 : (1.10)

Sometimes, we will simplify Am to A.

Semi{Blind Model The vector of input symbols can be written as: A = P

"
AK

AU

#
where

AK are the MK known symbols and AU the MU = M+N�1�MK unknown symbols. The

known symbols may be dispersed in the burst and P designates the appropriate permutation

matrix. For blind estimation A = AU , while A = AK = ATS for TS based estimation. We

can split both parts in the channel output as T (h)A = TK(h)AK + TU(h)AU .

Irreducible, Reducible, Minimum-phase Channels A channel is called irreducible if its

subchannels Hi(z) have no zeros in common, and reducible otherwise. A reducible channel

can be decomposed as:

H(z) = HI(z)Hc(z); (1.11)

whereHI(z) of length NI is irreducible and Hc(z) of length Nc = N�NI+1 is a monochannel

for which we assume Hc(1) = hc(0) = 1 (monic). A channel is called minimum{phase if

all its zeros lie inside the unit circle. Hence H(z) is minimum{phase if and only if Hc(z) is

minimum{phase.

Minimum Zero-Forcing (ZF) Equalizer Length, E�ective Number of Channels The Be-

zout identity states that for an FIR irreducible channel, FIR ZF equalizers exist [13]. The

minimum length for such an FIR ZF equalizer is

M = min fM : TM(h) has full column rankg : (1.12)

One may note that TM(h) has full column rank for M � M . In [14], it is shown that if the

mN elements of H are considered random, more precisely independently distributed with a

continuous distribution, then

M =

�
N � 1

m� 1

�
with probability 1. (1.13)

In this case, the channel is irreducible w.p. 1. One could consider other (perhaps more

realistic) channel models. Consider e.g. a multipath channel with K paths in which the
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multichannel aspect comes from m antennas. Without elaborating the details, it is possible

to introduce an e�ective number of channels me which in this case would equal (w.p. 1)

me = rank(H) = min fm;N;Kg : (1.14)

With a reduced e�ective number of channels, the value of M increases to M =

�
N � 1

me � 1

�
w.p. 1. Note that in the �rst probabilistic channel model leading to (1.13), if m > N , then in

fact me = N , but this does not change the value of M = 1. Another type of channel model

arises in the case of a hilly terrain. In that case, two or more random non-zero portions of

channel impulse response are disconnected by delays. If these delays are substantial, then for

the purpose of determining M , the problem can be approached as a multi{user problem by

interpreting the di�erent chunks of the channel as channels corresponding to di�erent users.

Multi{user results for M [13] could then be applied.

In general, for an irreducible channel, M � N�1 [15] in which the upper bound would

correspond to me = 2. Note that me = 1 corresponds to a reducible channel (in which case

M =1).

We summarize here the main notations that will be used in the thesis:

M : Output Burst Length

MU : Number of Unknown Symbols

MK : Number of Known Symbols

N : Channel Length

m : Number of Subchannels

H(z) =
PN�1

i=0 h(i)z�i : Transfer Function of the Multichannel

H : Channel Matrix

T (h) : Convolution Matrix

A : Input Symbol Vector

AK : Vector of Known Symbols

AU : Vector of Unknown Symbols

V : Output Noise

Y = T (h)A+ V : Input{Output Relationship
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1.4 Channel Identi�cation Methods

We will see that semi-blind methods are based on TS and blind methods, and consist some-

times simply of a linear combination of a training based criterion and a blind criterion.

Semi{blind methods inherit the characteristics of blind methods which is why the study of

blind techniques is important. We propose here a brief state of the art of the main blind

methods which will help to understand the motivation behind our methodological choices.

The reader already familiar with this subject may proceed to section 1.5.

Blind methods can be classi�ed according to the increasing a priori knowledge on the

input symbols exploited1, as follows (see �gure 1.4):

1. No information exploited: the deterministic methods.

2. Second{order statistics: the Gaussian methods.

3. Higher{order statistics.

4. Finite symbol constellation alphabet: the Finite Alphabet (FA) methods

5. Complete Symbol Distribution: stochastic methods.

HOS methods are not the subject of this thesis, so we limit the remainder of this discussion

to information levels 1, 2, 4 and 5. The proposed review follows this classi�cation.

Increasing A Priori
Knowledge Exploited

Increasing
Non Convexity

Distribution
Joint

Part of 

STOCHASTIC

Distribution
Joint 

GAUSSIAN

Statistics
Second-Order

HIGH ORDER
STATISTICS ALPHABET

FINITE

Distribution
Joint

Part of 

DETERMINISTIC

No Information

Figure 1.4: Classi�cation of the channel identi�cation methods according to the a priori

knowledge about the input symbols exploited.

1.4.1 Deterministic Model

In the deterministic model, both input symbols and channel coe�cients are assumed to be

deterministic quantities. Deterministic methods proceed either to the joint estimation of h

and A or to the estimation of h with A considered as a nuisance parameter (the estimation

of h and A is decoupled from the estimation of �2v). The estimation is done directly from

1between information level 3 and 4, the order could be inversed
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the received signal Y = T (h)A+ V , and the channel can be estimated up to a scale factor:

deterministic methods are often solved under the constraint khk2 = 1 (although it leaves a

phase ambiguity, as explained in Chapter 3).

Consider the noise{free vector of M received samples XM = TM(h)AM . Determining h

and AM from XM consists in solving a system of equations. As h can be determined up to a

scale factor, the system contains Nm�1 unknowns for the channel andM +N�1 unknowns

for the symbols, and there areMm equations. Ifm > 2, provided thatM � N+
l
2N�1
m�1

m
, the

system contains more equations than unknowns. This simple observation does not provide a

proof of identi�ability (a rigorous proof is given in Chapter 2), it is just intended to give an

insight on how, from a multichannel deterministic point of view, the parameters A and h can

be determined. For a monochannel, the number of equations will always be smaller than the

number of unknowns, and deterministic methods fail.

Deterministic methods are based on structural properties of the received signal and es-

pecially on the low{rank property of T (h). For an irreducible channel and under certain

conditions on the burst length and input symbols, the channel can indeed be determined

uniquely (up to a scale factor) from the column space of T (h) that is called the signal sub-

space or from its orthogonal complement called the noise subspace. As detailed in Chapter 2,

the signal or noise subspace can exactly be obtained from the noise{free signal X and esti-

mated from the noisy data.

Subspace Fitting Methods Consider the sample covariance matrix of the received signal

Y L of length L and its expected value (w.r.t. the noise only, as A is deterministic):

RYLYL = TL(h)

"
M�L�1X
k=0

AL(k)A
H
L (k)

#
T HL (h) + �2vI (1.15)

provided some regularity constraints are ful�lled

M�L�1X
k=0

AL(k)A
H
L (k) is a square invertible

matrix, so the space spanned by TL(h)

"
M�L�1X
k=0

A(k)AH(k)

#
T HL (h) is the signal subspace.

RYLYL admits M + N � 1 (the dimension of the signal subspace) eigenvectors belonging to

the signal subspace, and Mm� (M +N � 1) eigenvectors belonging to the signal subspace

all associated to the eigenvalue �2v . The eigendecomposition of RYLYL is:

RYLYL = VS�SV
H
S

+ VN�NV
H
N

(1.16)

where the columns of VS span the signal subspace and the columns of VN the noise subspace,

�N = �2vI . Let
bVS et bVN be estimates of the signal and noise eigenvectors obtained from the

sample covariance matrix. The Signal Subspace Fitting (SSF) tries to �t the column space
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of T (h) to its estimates through the quadratic criterion:

min
khk2=1

kP
bVN
T (h)k2 : (1.17)

Another form of subspace �tting is noise subspace �tting:

max
jhk2=1

kP
bVS
T (h)k2 : (1.18)

The two criteria are quadratic in h, but the two methods require an eigendecomposition,

which can be costly. A method avoiding the eigendecomposition was proposed in [16].

Subchannel Response Matching (SRM) SRM [17], which is also called Cross-Relation

(CR) method [18], is based on a linear parametrization of the noise subspace. In the case

m = 2 where the multichannel H(z) = [HT1 (z) HT2 (z)]
T has 2 subchannels, a parametrization

of the noise subspace is H?(z) = [�H2(z) H1(z)]: T (h?)T (h) = 0 where T (h?) is the con-
volution matrix built from H?(z) and spans the entire noise subspace. In the noise free case,

T (h?)Y (= T (h?)T (h)A) = 0. Using the commutativity of convolution T (h?)Y = Yh,
where Y is a structured matrix �lled out with the elements of Y : the channel coe�cients

can be identi�ed uniquely from this equation as the minimal left eigenvector of Y [18, 19].

When the received signal is noisy, h is obtained by solving the least{squares quadratic cri-

terion minkhk=1 kT (h?)Y k2 , minkhk=1 kYhk2. For more than 2 subchannels, di�erent

noise parametrizations are possible [20]. In the case of 2 subchannels, SRM and SF are the

same [21].

Blocking equalizers determined by linear prediction A minimum parameterization P of

the noise subspace can be found in terms of prediction quantities [9, 13, 22]: P can be

obtained from the prediction �lters or through the SRM-like criterion min
P

kT (P )Y k2 with

speci�c constraints on several coe�cients of P [23]. The channel is then determined uniquely

by the subspace �tting criterion: min
khk=1 kPT (h)k2. Such a parametrization of the noise

subspace o�ers the advantage to hold in a multi{user context also: this is not true for the

parametrization in terms of channel coe�cients, which is intended exclusively for single user

cases.

Two{sided Linear Prediction or Least{Squares Smoothing Recently a certain number of

equivalent blind methods have been developed independently. Let XN (k) be the noise free

received signal of length N , the channel length, at time k.

XN(k) = �h a(k)| {z }
contribution of the symbol of interest

+

�h�1a(k � 1) + � � �+ �h�N+1a(k �N + 1)| {z }
past contributions

+�h1a(k + 1) + � � �+ �hN�1a(k+N � 1)| {z }
future contributions

(1.19)
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�h is a block{wise ipped version of the vector h, and �hi contain a truncated version of �h.

What these methods try to do is remove the past and future contributions, so that the

resulting signal is �h a(k) from which the channel coe�cient can be recovered. �h a(k) can

also be seen as the prediction error of the two{sided linear prediction of XN(k), which is

estimated as the minimal eigenvector of a submatrix of R�1YLYL . This last interpretation is

given in [24] based on [25], in which the Capon principle for linearly constrained minimum

variance beamforming is applied to blind equalization. A Least{Squares smoothing solution

is proposed in [26]. Other works give related techniques [27]. A joint order detection and

channel estimation [26, 24] can be done, which is a major advantage for a deterministic

method. In [24], the link between all these methods is established; it furthermore provides

a correction of the methods [25, 26] which consider noisy quantities, which gives biased

estimates.

Deterministic Maximum{Likelihood (DML) As detailed later in this thesis, the DML cri-

terion is:

min
A;khk=1

kY � T (h)Ak2 : (1.20)

This criterion can be solved directly in this form by minimizing alternatively w.r.t. A and

h [28, 29]. This algorithm possesses some nice properties (see Chapter 7): at each iteration

of the alternating minimization, the cost function decreases, and, for an asymptotic number

of data, converges to the DML global estimate. It su�ers, however, from slow convergence

speed.

Another way of solving (1.20) is to eliminate A (by minimizing w.r.t. A and substituting

its expression in (1.20)) to get a DML criterion in h:

min
h
Y HP?

T (h)Y : (1.21)

Computationally less intensive solutions to solve this criterion are based on a linear parametriza-

tion of the noise subspace. Using the parameterization H?(z):

(1:21)) min
h
Y HT H(h?)

h
T (h?)T H(h?)

i+
T (h?)Y : (1.22)

The Iterative Quadratic Maximum{Likehood (IQML) method was proposed in [19]: at each

iteration, the denominator T (h?)T H(h?) is considered constant, evaluated from the previous

iteration, so that the DML criterion becomes quadratic. In [9, 30], the IQML strategy was

also proposed based on the blocking equalizers. At low SNR, IQML is biased and performs

poorly: SRM used to initialize IQML in [19] performs in fact better at low SNR conditions.

Solutions are proposed in this thesis to remove this bias due to the noise, one of which will

be proven to asymptotically attain the DML performance.
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DML is the most powerful method among all the deterministic methods. SRM however

performs nearby as illustrated in this thesis. The optimally weighted subspace �tting method

does not strictly belong to the deterministic category as the optimal weighting assumes the

input symbols as i.i.d. and uses their statistics: they are located between the deterministic

and Gaussian methods. For some weighting (not the optimal one), subspace �tting will have

the same performance as DML asymptotically in the number of data, as in the Direction Of

Arrival (DOA) context, but also in the size of the covariance matrix considered.

1.4.2 Gaussian Model

In the Gaussian model, the input symbols are considered to be i.i.d. Gaussian random vari-

ables with mean 0 and variance �2a. This model may appear inappropriate as the input

symbols are in fact discrete-valued.

The purpose of the Gaussian model is to take into account �rst and second{order moments

of the data, which appear to play a predominant role in the multichannel context. In the

blind case, the mean is zero (but it will not be the case for the semi{blind techniques) and

the second{order moment is:

RY Y (�) = �2aT (h)T
H(h) + �2vI : (1.23)

Unlike the deterministic case, the input symbols in the Gaussian model are no longer nuisance

parameters for the estimation of h. The parameters to be jointly estimated are the channel

coe�cients and the noise variance. The channel is identi�able up to a phase factor and

Gaussian methods should be solved using a phase constraint.

Already existing blind methods which base channel estimation on the second{order mo-

ments of the data, and in which the input symbols are considered i.i.d. random variables,

can be classi�ed into the Gaussian category as the three �rst methods described below. The

Gaussian assumption is intended for the Maximum{Likelihood (ML) approach for which the

complete distribution is required. The Gaussian distribution is the simplest distribution,

leading to simple derivations and allowing to incorporate the �rst and second-order moments

of the data: Y � N (mY (�); RY Y (�)); the Gaussian hypothesis for the symbols leads to a

Gaussian distribution for Y .

Linear Prediction Approach Linear prediction based techniques applied to multi{user chan-

nel identi�cation were �rst approached in [31] using HOS. Independently, Slock [9] elabo-

rated this method based on SOS, which was pursued by Abed Meraim [32] and �nalized by

Gorokhov [33]. Let P(z) be the MMSE linear prediction �lter of the data. In the single chan-

nel case, the optimal prediction �lter is of in�nite length; in the multichannel case however,

P(z) is �nite. The fundamental equation is here:

P(z)H(z) = h(0) : (1.24)
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The prediction error is �2~y = �2ah(0)h
H(0). P(z) is estimated from an estimate of the denoised

covariance matrix of the data, and h(0) as the maximal eigenvector of the prediction error.

H(z) is determined from (1.24) using a least-squares criterion or, giving better performance,

by the weighted least{squares criterion [33]. The prediction method can be solved with

di�erent levels of complexity: the one based on the Levinson algorithm [34] has the lowest

cost (compared to the one which bases the computation of the predictor on the pseudo{inverse

of the covariance matrix.)

The Schur Method It can be proven that the LDU factorization (done by the Schur al-

gorithm) of the denoised covariance matrix is: RY Y = RY ~YR~Y ~YR~Y Y = LDLH , where ~Y

is the prediction error vector. Considering denoised data, the prediction error signal is

~y(k) = h(0)a(k) (obtained by equation (1.24)) and using y(k) =
PN�1

i=0 h(i)a(k � i), the

block (k; k0) of RY ~Y is RY ~Y (k; k
0) = E(y(k)~yH(k0)) = �2ah(k�k0)h

H(0), so that the channel

coe�cients can be deduced from the columns of the triangular factor L. For more details,

see [35, 36]. For the same level of complexity, the Schur method gives better simulated

performance than the prediction method [34].

Covariance Matching (CM) Method The covariance matching method performs a weighted

least-squares �t between the model of the second{order statistics of the received signal and

their sample estimate built from the data. Let the vector r(�) containing the non{redundant

elements of RY Y (see Chapter 9) and r̂ the corresponding sample estimates. The covariance

matching criterion is

min
h;�2v

(r(�)� r̂)HW(r(�)� r̂) (1.25)

where W is a weighting matrix. In [37, 38], only the �rst N non zero correlation coe�cients

are considered in the CM criterion. The optimal performance is obtained when the number

of covariance lags involved tends to in�nity, as stated in [39]: covariance matching is then

asymptotically the best method exploiting the SOS.

Gaussian Maximum Likelihood (GML) As Y � N (0; RY Y (�)), the GML criterion is:

min
�=[h;�2v ]

ln detRY Y (�) + Y
HR�1Y Y (�)Y : (1.26)

The Gaussian hypothesis is only used to build the GML criterion, which is solved using the

true symbol distribution. A semi{blind ML method based on this model was proposed in [40]

and shown to give better performance than ML based on the deterministic model [41]. The

Gaussian hypothesis for the sources is also regularly used in direction of arrival �nding and

the associated ML is proven to give better performance than the deterministic ML meth-

ods [42].
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The blind optimally weighted CMmethod [39] based on an asymptotically large covariance

matrix will be shown, by numerical evaluation of the theoretical performance expressions, to

be equivalent to blind GML. So GML, although based on a inaccurate hypothesis, appears

to be the best method using SOS along with the optimally weighted CM. CM and GML are

further studied in Chapter 9.

In [33], it is proven that the optimally weighted SSF has the same performance as the

optimally weighted CM (computed with the constraint khk2 = 1 and a phase constraint),

for a covariance matrix of in�nite length and that optimally weighted SSF has the same

performance as the weighted least squares based prediction method.

1.4.3 Methods Exploiting the Finite Alphabet

These methods are based on ML and exploit the �nite alphabet (denoted Ap) constraint of
the input symbols:

min
h;A2Ap

kY � T (h)Ak2 : (1.27)

Some FA methods proceed by alternating minimizations between h and A, with A constrained

to the �nite alphabet. Both estimations are done in a least-squares way: the most problematic

estimation is that of the symbols because of the FA constraint. The Viterbi algorithm can

be used; a trellis search technique was proposed in [43], as well as a reduced{state sequence

estimation in [44]. Talwar [45] proposed a much less complex solution: the FA constraint is

�rst ignored and the symbols are estimated by a quadratic least{squares criterion (they are

the output of a burst mode MMSE{ZF equalizer), then the estimates are projected onto the

nearest discrete value of the �nite alphabet. Some methods also exist that give closed form

solution [46].

1.4.4 Stochastic ML Methods

SML considers the input symbols as random variables. Their true distribution is taken into

account: the symbols are assumed zero mean, i.i.d., equiprobable, and with values of the

�nite alphabet. f(Y jh) = f(Y jA; h)f(A) =
P

A2Ap
f(Y jA; h), so the SML criterion is:

min
h;�2v

1

�2v

X
A2Ap

exp

�
�

1

�2v
kY � T (h)Ak

�2
: (1.28)

Direct optimization of the SML criterion represents a costly solution. The Expectation{

Maximization (EM) [47] algorithm is used to solve SML using the Hidden Markov model

(HMM) framework: see [48], for a description of di�erent methods. The EM algorithm will

converge to the SML solution given a good initialization. Semi{blind SML is formulated

in [49].
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1.4.5 Further Characterization of the Blind Models

It appears that the more knowledge about the input symbols is incorporated in the model,

the better performance one gets. This also comes with an increase in complexity. In the

following, we further characterize the di�erent models.

Identi�cation Indeterminacies The di�erent methods are also classi�ed according to de-

creasing severe identi�cation indeterminacies. For example, for complex input constellations,

blind deterministic methods can identify the channel up to a complex scale factor, ĥ = �ho,

with � 2 C ; in the Gaussian case, the channel can be identi�ed up to a phase factor ĥ = ej'ho,

with ' 2 R; FA and stochastic methods can identify the channel up to a discrete{valued

phase factor, ĥ = ej'ho, with ' taking a �nite number of discrete values (depending on the

symmetry properties of the symbol constellation).

Robustness to Channel Length Overestimation. Blind deterministic methods are not ro-

bust to channel length overestimation: in general, the di�erent channel lengths have to be

tested to detect the right one. The blind Gaussian, FA and stochastic methods will automat-

ically give the right channel order. Note however that the deterministic semi{blind extension

will pro�t from the robustness of TS based methods to channel order overestimation.

Performance. The above classi�cation respects the order of increasing performance. The FA

methods are particularly powerful: indeed, a performance bound for FA methods corresponds

to the case in which all the input symbols would act as training sequence. Computationally

less complex methods like [45] are particularly interesting.

In view of the di�erent points mentioned above, one may wonder why we would like to

use deterministic methods instead of Gaussian methods and Gaussian methods instead of FA

methods. Blind deterministic methods possess the remarkable property of providing, in the

noiseless case and with a �nite amount of data, the exact channel (apart from indetermina-

cies). This property is also true for FA methods but not for Gaussian methods, in general

(GML is high{SNR consistent). For a �nite amount of data, exact second-order statistics

cannot be estimated exactly and Gaussian methods will not be able to estimate the channel

exactly.

The blind deterministic methods also o�er the advantage of allowing closed{form solu-

tions, or convex cost functions, thus avoiding local minima. These methods are one-shot

methods (or almost) and so assure a high speed of convergence. For solving blind Gaussian,

FA or stochastic techniques, generally iterative and more computationally intensive algo-

rithms need to be used with the risk of falling into local minima if not correctly initialized.

This risk is particularly high for the FA techniques: the exploitation of the �nite alphabet
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leads indeed to highly multimodal cost functions.

1.5 Motivation for the Chosen Methods

1.5.1 Models

The above discussion was about blind estimation. The associated semi{blind versions inherit

from their blind counterpart properties, advantages or disadvantages.

Semi{blind FA methods like [45] are powerful techniques but require a good initialization

quality. When the training sequence is too short to give a good channel initialization or when

blind methods fail, the initialization may be too bad for the iterative FA methods to work

directly. One can instead proceed in smaller steps by �rst using a semi{blind deterministic

method to initialize a semi{blind Gaussian method, which could in turn be used to initialize

a semi{blind FA method.

It should be noted that the performance di�erence for the deterministic and Gaussian

models gets smaller as more and more symbols are known. Performance di�erences are

mostly visible in the case of blind methods, especially for ill{conditioned channels.

1.5.2 Methods

To develop semi{blind methods, we focused on deterministic and Gaussian ML methods and

to a certain extent on FA ML methods for several reasons:

� ML are the most powerful methods.

� They allow to naturally incorporate the knowledge of known input symbols and con-

stitute optimal semi{blind criteria in the sense that no information coming from the

known symbols or no blind information is lost.

� When the known symbols are grouped, suboptimal criteria can be found appearing as

a linear combination of a training sequence based criterion and a blind criterion. These

suboptimal criteria o�er the advantage to keep the structure of the blind problem which

allows to build fast algorithms.

1.6 Thesis Outline and Contributions

The thesis is divided onto three parts. The �rst one is aimed at determining semi{blind

identi�ability conditions and performance bounds. It has given rise to a certain number of

theoretical studies as detailed below. In the second part, we focus on blind and semi{blind

multichannel estimation techniques mainly based on deterministic and Gaussian ML. At last,
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in the third part, receiver structures applied to a burst mode transmission of the data are

studied. Most of the chapters in this thesis correspond entirely or partly to journal papers

in preparation.

1.6.1 Part I

Chapter 2 Blind identi�ability conditions are �rst studied and semi{blind conditions are

then derived in terms of channel characteristics, burst length and input symbol characteristics.

Identi�ability is guaranteed if the parameters can uniquely be determined from the probability

density function of the data. To assure semi{blind identi�ability, one needs as many known

symbols as the number of parameters that blind methods cannot determine. A remarkable

property is that this last condition holds even if the known symbols are dispersed all over the

burst. For example, a single channel cannot be identi�ed by a blind deterministic method;

provided that there are 2N�1 known symbols present in the burst and not necessarily grouped
together, semi{blind techniques will be able to estimate the channel. This result is proved in

chapter 5: in fact, we only prove that there is local identi�ability and conjecture that there

is global identi�ability. These results were presented partly in:

E. de Carvalho and D.T.M. Slock, \Identi�ability Conditions for Blind and Semi-

Blind Multichannel Estimation," in European Association for Signal Processing

EUSIPCO 98, Island of Rhodes, Greece, September 1998.

Identi�ability conditions for blind and semi-blind multi{user multichannel estimation are give

in:

Luc Deneire, Elisabeth de Carvalho, and Dirk Slock, \Identi�ability Conditions for

Blind and Semi-Blind Multiuser Multichannel Identi�cation," in 9th IEEE Signal

Processing Workshop On Statistical Signal And Array Processing, Portland, Oregon,

USA, September 1998.

Chapter 3 This short chapter gives theoretical elements on the FIMs and CRBs. Their

expression is given for Gaussian distribution data. In this case, local identi�ability from the

density distribution is equivalent to FIM regularity under certain mild conditions. In blind

estimation, not all the parameters can be estimated: we have seen for example that a scale

or phase factor cannot be estimated in the deterministic or Gaussian model. This results in

singularities in the FIM and the CRB (which is the inverse of the FIM) is not de�ned. In

this chapter, we provide a general study for estimation under constraints. These results are

applied to the characterization of blind performance in Chapter 4. In particular, we propose

a bound, the pseudo{inverse of the FIM, which gives for a minimal number of independent

constraints, the lowest CRB.
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Chapter 4 and Chapter 5 One of the objectives of these chapters is to compare semi{

blind to blind and training sequence based estimation through their CRBs. We illustrate

the superiority of semi{blind techniques already described in section 1.2. This study was

initiated in:

E. de Carvalho and D.T.M. Slock, \Cram�er-Rao Bounds for Semi-blind, Blind and

Training Sequence based Channel Estimation," in Proc. SPAWC 97 Conf., Paris,

France, April 1997.

1.6.2 Part II

Chapter 6 The formulation of blind and semi{blind DML and GML is undertaken and

theoretical performance is derived for an asymptotical number of data (unknown and known

input symbols); the case of high SNR is also treated. Although DML is a popular method,

its performance has never been derived except at high SNR. We prove that DML does not

reach the CRB except at high SNR. The CRB for the Gaussian model of Part I is derived

assuming the symbols are Gaussian. Here we compute the performance of GML considering

the true symbol distribution. Performance is below the CRB. Simulations show that GML

performs better than DML. These results are presented in:

E. de Carvalho and D.T.M. Slock, \Asymptotic Performance of ML Methods for

Semi-Blind Channel Estimation," in Proc. Asilomar Conference on Signals, Sys-

tems & Computers, Paci�c Grove, CA, Nov. 1997.

Chapter 7 We devote this chapter to fast solutions for solving DML. IQML is a popular

method to solve DML: it appears that IQML gives biased estimates and performs poorly

at low SNR. We propose two solutions to remedy this situation. The �rst solution removes

an estimate of the noise contribution in the IQML criterion. The second one computes the

gradient of DML and at each iteration attempts to null it: this algorithm can also be seen as

a form of denoised IQML. We compute the asymptotical performance of DIQML and PQML:

PQML performs better than DIQML and has the same asymptotic performance as DML.

Some properties of the alternating minimization strategy are also stated and the algorithm is

compared to DIQML and PQML. PQML appears to be the best method to solve DML. These

blind algorithms as well as their semi{blind extensions treated in Chapter 8, were presented

in:

J. Ayadi, E. de Carvalho, and D.T.M. Slock, \Blind and Semi-Blind Maximum

Likelihood Methods for FIR Multichannel Identi�cation," in Proc. ICASSP 98

Conf., Seattle, USA, May 1998.
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Chapter 8 This chapter proposes semi{blind DML based algorithms. We consider the

known symbols as grouped. Three (slightly) suboptimal semi{blind criteria are derived based

on three di�erent training sequence based criteria. The criteria appear as a linear combination

of blind DML and a training sequence criterion. The coe�cients of this linear combination are

optimal in the ML sense. We also derive a semi{blind criterion based on a linear combination

of the (denoised) SRM criterion and the TS criterion to initialize the semi{blind DML based

algorithms. Some semi{blind algorithms have been proposed that linearly combine a certain

blind criterion with a training sequence based criterion. The right weighting seems di�cult

to �nd in that case. We propose a solution to this problem and give a �rst approach to a

subspace �tting based semi{blind criterion. This results are given partly in the Icassp 98

paper, as well as in:

E. de Carvalho and D.T.M. Slock, \Maximum-Likelihood FIR Multi-Channel Esti-

mation with Gaussian Prior for the Symbols," in Proc. ICASSP 97 Conf., Munich,

Germany, April 1997.

An extension of the blind and semi{blind PQML to the multi{user case can be found in:

Elisabeth de Carvalho, Luc Deneire, and Dirk Slock, \Blind and Semi-Blind Maxi-

mum Likelihood Techniques for Multiuser Multichannel Identi�cation," in European

Association for Signal Processing EUSIPCO 98, Island of Rhodes, Greece, Septem-

ber 1998.

Chapter 9 GML is interpreted as a form of covariance matrix criterion. The performances

of GML and of optimally weighted covariance matching are numerically evaluated and com-

pared: they appear to have the same asymptotic performance. The scoring algorithm is

used to solve blind and semi{blind GML which is compared to the DML based methods.

We furthermore develop two computationally low algorithms based on approximations of the

steepest descent algorithm and of the scoring algorithm for blind GML. Part of these results

can be found in:

E. de Carvalho and D.T.M. Slock, \Semi-Blind Maximum-Likelihood Estimation

with Gaussian Prior for the Symbols using Soft Decisions," in 48th Annual Vehicular

Technology Conference, Ottawa, Canada, May 1998.

E. de Carvalho and D.T.M. Slock, \A Fast Gaussian Maximum-Likelihood Method

for Blind Multichannel Estimation," in Signal Processing Advances in Wireless

Communications (SPAWC), Annapolis, Maryland, USA, May 1999.

Chapter 10 The soft decision strategy is particularly well suited to the general semi-blind

framework. From a semi{blind channel estimate, an equalizer is built. Hard decisions are

taken on the more reliable equalizer outputs, i.e. the ones that are the closest to the decision



22 Introduction Chapter 1

point: those hard decisions are considered as known. The other non{reliable outputs are

left undecided and then remain unknown. A new semi{blind criterion can then be derived

based on the augmented number of known symbols. This strategy could be seen as an

intermediate step between pure semi{blind and the FA method [45] and could prevent the

latter to fall into local minima due to errors in the hard decisions. Unfortunately, this strategy

introduces correlations between the known/unknown symbols and the noise: as a result, the

semi{blind criterion based on the augmented number of known symbols becomes erroneous.

We introduce a way of choosing the reliable symbols which allows partly to alleviate the

correlation problem. This idea of soft decisions can be found in the VTC 98 paper previously

cited.

1.6.3 Part III

Chapter 11 The optimal structure of burst mode equalizers is derived: the structure of

the classical equalizers are derived as well as that of the ISI canceller that uses past and

future decisions and that we call Non Causal Decision Feedback Equalizer (NCDFE). The

performances of the di�erent equalizers are compared. The optimal equalizer �lters are

time{varying which implies an increasing complexity w.r.t. continuous processing equalizers.

By correctly choosing the number and position of some known symbols, (time-invariant)

continuous processing �lters applied to burst mode can be organized to give su�ciently good

performance, so that optimal (time-varying) burst processing implementation can be avoided.

The results of this study can be found in:

D.T.M. Slock and E. de Carvalho, \Unbiased MMSE decision-feedback equalization

for packet transmission," in Proc. EUSIPCO 96 Conf., Trieste, Italy, September

1996.

E. de Carvalho and D.T.M. Slock, \Burst Mode Equalization: Optimal Approach

and Suboptimal Continuous{Processing Approximation," Submitted, Signal Pro-

cessing, Special Issue on Signal Processing Technologies for Short{Burst Wireless

Communications.

Chapter 12 When there are no errors in the non{causal feedback, the NCDFE attains

the ISI{free situation and appears to be the most powerful equalizer, representing a less

complex alternative to the Viterbi equalizer. As for the classical DFE, errors in the non{

causal feedback can cause error propagations. Instead of using hard decisions, we use soft

decisions which reduce error propagation. The structure of the NCDFE was derived in the

following �rst paper, along with an implementation of MLSE based on the NCDFE; the soft

decision strategy was applied in the second paper.

D.T.M. Slock and E. de Carvalho, \Burst Mode Non-Causal Decision-Feedback

Equalization and Blind MLSE," in Proc. GLOBECOM 96 Conf., London, Great

Britain, November 1996.
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E. de Carvalho and D.T.M. Slock, \Burst Mode Non-Causal Decision-Feedback

Equalizer based on Soft Decisions," in 48th Annual Vehicular Technology Confer-

ence, Ottawa, Canada, May 1998.

Chapter 13 The usual Matched Filter Bound (MFBs) provides the optimal symbol detection

performance of receivers i.e. when no ISI is present, when the channel is perfectly known.

We propose two MFBs to characterize the optimal performance using reduced-order channel

models. These bounds are of interest when the physical channel is in�nite and needs to

be truncated: for the Viterbi equalizer implementation for example, it may be desirable to

reduce the channel length in order to lower the complexity. The associated papers are:

E. de Carvalho and D.T.M. Slock, \Maximum-Likelihood Blind Equalization of

Multiple FIR Channels," in Proc. ICASSP 96 Conf., Atlanta, USA, May 1996.

D.T.M. Slock and E. de Carvalho, \Matched Filter Bounds for Reduced-Order

Multichannel Models ," in Proc. GLOBECOM 96 Conf., London, Great Britain,

November 1996.
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Part I

Identi�ability Conditions and

Performance Bounds





Chapter 2

IDENTIFIABILITY CONDITIONS

The deterministic and Gaussian models for the unknown symbols are consid-

ered here. We investigate the identi�ability conditions of blind and semi{blind

FIR multichannel estimation in terms of channel characteristics, received data

length, input symbol excitation modes as well as number of known symbols for

semi{blind estimation. Semi{blind methods appear superior to blind and train-

ing sequence methods, and allow the estimation of any channel with only a few

known symbols. Furthermore, the Gaussian model appears more robust than

the deterministic one as it leads to less demanding identi�ability conditions.
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2.1 Identi�ability De�nition

Let � be the parameter to be estimated and Y the observations. In the regular cases (i.e. in

the non blind cases), � is called identi�able if [50]:

8 Y ; f(Y j�) = f(Y j�0) ) � = �0 : (2.1)

This de�nition has to be adapted in the blind identi�cation case because blind techniques

can at best identify the channel up to a multiplicative factor �: � 2 C in the deterministic

model and j�j = 1 in the Gaussian model. The identi�ability condition (2.1) will be for � to

equal �0 up to the blind indeterminacy.

For both deterministic and Gaussian models, f(Y j�) is a Gaussian distribution: identi�-

ability in this case means identi�ability from the mean and the covariance of Y .

2.2 Identi�ability in the Deterministic Model

In the deterministic model, Y � N (T (h)A; �2vI) and � = [ATU hT ]T . Identi�ability of � is

based on the mean only; the covariance matrix only contains information about �2v . AU and

h are identi�able if:

T (h)A = T (h0)A0 )8<: AU = A0U and h = h0 for semi{blind and TS based estimation

A =
1

�
A0 and h = �h0 for blind estimation

(2.2)

with � complex, for a complex input constellation, and real, for a real input constellation.

Identi�ability is then de�ned from the noise{free data which we shall denote by X = T (h)A.

2.2.1 TS Based Channel Identi�ability

We recall here the identi�ability conditions for TS based channel estimation. From (1.9),

T (h)A = Ah: h is determined uniquely if and only if A has full column rank, which corre-

sponds to conditions (i)� (ii) below.

Necessary and su�cient conditions [TS] The m{channel H(z) is identi�able by TS

estimation if and only if

(i) Burst Length M � N .

(ii) Number of input symbol modes1� N .

Condition (i) is equivalent to: number of known symbols MK � 2N�1. The burst length M
is the length of Y , expressed in symbol periods.

1for a de�nition of the notion of modes, see for example [19, 18]
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2.2.2 Blind Channel Identi�ability

The deterministic blind identi�ability de�nition (2.2) corresponds to what is called strict

identi�ability in [51]. The authors of [18, 19] de�ne identi�ability based on the Cross{Relation

(CR) method: a channel is said CR-identi�able if the channel can be identi�ed uniquely (up to

a scale factor) by the noise{free CR method. In [19], identi�ability is based on the (complex)

FIM matrix: a channel is said identi�able if the FIM has exactly one singularity. In [19, 51],

those three identi�ability forms were found to be equivalent. [18, 19] give su�cient conditions,

and necessary conditions separately for the channel, the burst length and the symbol modes

for the CR{identi�ability (extended to the FIM and strict identi�ability in [19, 51]). In [18],

necessary and su�cient conditions on the channel and the modes (but not on the burst length

though) are also given and a coupled relation between the channel and the input symbols

modes appears, which usefulness is not guaranteed.

We give here necessary and then su�cient conditions for deterministic blind identi�cation

in terms of channel characteristics, burst length and input symbol modes. Our original

objective was to prove that su�cient conditions [DetB] are also necessary conditions. We

have not been able to prove it for the moment, but we highly conjecture that this is true.

Necessary conditions In the deterministic model, the m{channel H(z) and the unknown

input symbols AU are blindly identi�able only if

(i) H(z) is irreducible.

(ii) Burst length M � N+

�
2
N�1
m�1

�
.

(iii) Number of input symbol modes � N + 1.

Proof: (i): If the channel is not irreducible, then T (h) does not have full column rank. If A

is in the null space of T (h), X = T (h)A = 0 and identi�ability is not possible: either A = 0

and h cannot be identi�ed, or A 6= 0 and A0 = 0 and any h0 veri�es T (h0)A0 = 0. If A is not

in the null space of T (h), we can �nd A0 6= 0 verifying T (h)A0 = 0 and A
00

= A+A0 linearly

independent from A veri�es T (h)A
00

= X . The irreducibility condition is also a necessary

condition for the subspace �tting method, which, if the channel is reducible, can only identify

its irreducible part.

(ii): Condition (ii) says that the number of equations (= mM) should be greater than the

number of unknowns: Nm�1 unknowns for H, M+N�1 for the unknown symbols.

(iii): A proof of condition (iii) can be found in [51].

�

Su�cient conditions [DetB] In the deterministic model, the m{channel H(z) and the
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input symbols A are blindly identi�able if

(i) H(z) is irreducible.

(ii) Burst length M � N + 2M .

(iii) Number of input symbol modes � N +M .

Proof: see Appendix A.

�

These conditions express the fact that one should have enough data with the right prop-

erties to be able to completely describe the signal (or noise) subspace. The proof is based

on subspace �tting results. An alternative proof based on linear prediction and blocking

equalizers has been given in [52].

Note that the su�cient conditions above are su�cient conditions for the subspace �tting

method. A priori, su�cient conditions for identi�ability as in (2.1) could be weaker than the

su�cient conditions for the subspace �tting method. These conditions appear to be su�cient

for all the deterministic methods listed in section 1.4 except for SRM [19].

Note that when 2M =
l
2N�1
m�1

m
(which happens in the case m = 2), the burst length

condition is necessary and su�cient.

2.2.3 Semi{Blind Channel Identi�ability

Consider the general case of a reducible channel: H(z) = HI(z)Hc(z). We �rst give necessary

and then su�cient conditions for semi{blind identi�ability in the case of grouped known

symbols. We denote M I as the smallest M for which TM(hI) has full column rank.

Necessary conditions In the deterministic model, the m{channel H(z) and the unknown

input symbols AU are semi{blindly identi�able only if

(i) Burst length M � NI+

�
2N�MK�1

m�1

�
.

(ii) Number of grouped known symbols MK � 2Nc�1.

Proof: Condition (i) says that the number of equations (= mM) should be larger than the

number of unknowns: NIm unknowns for HI , Nc�1 unknowns for Hc and M+N�1�MK

for the unknown symbols. Hc(z) and the ambiguous scale factor can only be identi�ed thanks

to the known symbols: condition (ii) gives the minimal number of grouped known symbols

necessary to identify those parameters.

�

Su�cient conditions [DetSB] In the deterministic model, the m{channel H(z) and the

unknown input symbols AU are semi{blindly identi�able if
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(i) Burst length M � max(NI+2M I ; Nc�NI+1)

(ii) Number of excitation modes of the input symbols: at least NI+M I that are not zeros of

H(z) (and hence Hc(z)).

(iii) Grouped known symbols: numberMK � 2Nc�1, with number of excitation modes � Nc.

Proof: See Appendix C.

�

For an irreducible channel, 1 known symbol is su�cient. For a monochannel, 2N�1
grouped known symbol are su�cient. If 2N�1 grouped known symbols containing N inde-

pendent modes are available, condition (ii) becomes superuous.

We do not prove identi�ability in the case where the known symbols are not grouped. We

conjecture however that identi�ability is guaranteed with the same number of known symbols

even in that case. Indeed, we show in Chapter 4, that FIM regularity holds under conditions

almost similar to [DetSB], which implies local identi�ability (result of Chapter 3).

In case the known symbols are dispersed and all equal to 0, the su�cient conditions still

hold (except that (iii) can be relaxed to MK � 2Nc�2) but the channel is now identi�able

up to a scale factor only. When those zero known symbols are not su�ciently dispersed

however so that at least Nc of them are grouped, it is easy to �nd con�gurations in which

identi�cation cannot be guaranteed, even up to a scale factor.

2.2.4 Semi{Blind Robustness to Channel Length Overestimation

A major disadvantage of the deterministic methods is their non robustness to channel length

overestimation. Semi{blind methods allow to overcome this problem. We consider again a

reducible channel: H(z) = HI(z)Hc(z).

Su�cient conditions [DetSBR] In the deterministic model, the m{channel H(z) and the

unknown input symbols AU are semi{blindly identi�able when the assumed channel length N 0

is overestimated if

(i) Burst length M � max(NI+2M I ; 2(N
0�NI+1)�N).

(ii) Number of input symbol excitation modes: at least NI+M I that are not zeros of Hc(z).

(iii) Known symbols: MK � 2(N 0�NI)+1, grouped.

Number of known symbol modes � N 0�NI+1.

Proof: See Appendix D.

�

These results are also valid (with probability one), with the same number of known

symbols but now arbitrarily distributed.
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2.3 Identi�ability in the Gaussian Model

2.3.1 Gaussian Model

The parameters to be estimated are the channel coe�cients and the noise variance: � =

[hT �2v ]
T . Recall that identi�ability is identi�ability from the mean and covariance matrix,

so identi�ability in the Gaussian model implies identi�ability in any stochastic model, since

such a model can be described in terms of the mean and the covariance plus higher{order

moments.

2.3.2 Blind Channel Identi�ability

In the blind case, mY (�) = 0, so identi�ability is based on the covariance matrix only. In the

Gaussian model, the channel and the noise variance are said identi�able if:

CY Y (h; �
2
v) = CY Y (h

0; �2v
0

)) h0 = ej'h; and �2v
0

= �2v : (2.3)

When the signals are real, the phase factor is a sign, when they are complex, it is a complex

unitary number.

Blind identi�ability conditions based on the second-order statistics of the noise{free out-

puts of a FIR multichannel driven by a white stationary input sequence were given in [53, 54].

Only conditions on the channel are given: in [53, 54], a channel is said blindly identi�able

up to a phase factor if the channel is irreducible. In fact, it is possible to identify blindly

the channel based on the second-order moments even for a reducible channel, it is only not

possible to determine if the zeros are minimum or maximum{phase. We give conditions on

the channel and the correlation sequence length. (The conditions on the input symbols are

that they are white).

Irreducible Channel

Su�cient conditions [GaussB1] In the Gaussian model, the m{channel H(z) is identi-

�able blindly up to a phase factor if

(i) H(z) is irreducible.

(ii) Burst length M �M + 1

Proof: When condition (ii) is veri�ed, TU(h) is (strictly) tall and �2v can then be uniquely

identi�ed as the minimal eigenvalue of CY Y (�). H(z) can then be identi�ed up to a phase

factor from the denoised covariance matrix CY Y (�) � �2vI by linear prediction [10]: under

conditions (i) and (ii), one can �nd P (z), the multivariate prediction �lter of order M and
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h(0) (the �rst coe�cient of H) up to a phase factor from the denoised covariance matrix,

and they are related to H(z) via the relationship:

P (z)H(z) = h(0) : (2.4)

This relationship allows to recover uniquely H(z) from P (z) up to a phase factor.

�

If the noise variance was known, condition (ii) would be M � M . These conditions are

also su�cient conditions for the covariance matching method and the Gaussian ML method.

Note that not all the non{zero correlations (time 0 to N � 1) are needed for identi�cation

but only the �rst M + 1.

Identi�ability could also have been established from a spectral factorization point of view.

The spectral factorization of SY Y (z) = �2aH(z)Hy(z) is unique provided that H(z) is irre-

ducible and givesH(z) up to a unitary constant (�2a being known). This point of view however

requires the knowledge of the whole non-zero correlation sequence.

Reducible Channel

Let H(z) be a reducible channel: H(z) = HI(z)Hc(z).

Su�cient conditions [GaussB2] In the Gaussian model, the m{channelH is identi�able

blindly up to a phase factor if

(i) Hc(z) is minimum{phase.

(ii) M � max(MI+1; Nc�NI+1).

Proof: Under condition (ii), T (hI) is strictly tall and �2v can be identi�ed as the min-

imal eigenvalue of CY Y (�). The irreducible part HI can be identi�ed up to a scale fac-

tor thanks to the deterministic method described in section 2.2.2 [13] provided that M �
M I + 1: let h0I = �hI be this estimate of hI .

�
T H(h0I)T (h

0

I)
�
�1 T H(h0I)

�
CY Y (�)� �2vI

�
T (h0I)

�
T H(h0I)T (h

0

I)
�
�1

= �2aT (��1hc)T H(���hc). ��1Hc(z) can now be identi�ed up to

a phase factor by spectral factorization provided that �Hc(z) or hence Hc(z) is minimum{

phase and T (hc)T H(hc) contains the Nc non{zero correlations, i.e. M + NI � 1 � Nc or

M � Nc�NI+1.

�

Monochannel Case

In the monochannel case, the noise variance �2v cannot be estimated and so neither h. How-

ever, if we consider �2v as known, the channel can be identi�ed by spectral factorization. The

su�cient conditions are for the monochannel to be minimum-phase and the burst to be at

least of length N .
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2.3.3 Semi{Blind Channel Identi�ability

In the semi{blind case, identi�ability is based on the mean and the covariance matrix.

Identi�ability for any Channel

In the semi{blind case, the Gaussian model presents the advantage to allow identi�cation

from the mean only. mY (�) = TK(h)AK = AKh: if AK has full column rank, h can be

identi�ed. The di�erence with the training sequence case is that in the identi�cation of h

frommY (�) = TK(h)AK , the zeros due to the mean of AK also give information, which lowers

the requirements on the number of known symbols. For one non-zero known symbol a(k)

(with 0 � k � M�N , i.e. not located at the edges), the non-zero part of AK is a(k)INm.

The Gaussian model appears thus more robust than the deterministic model as it allows

identi�cation of any channel, reducible or not, multi or monochannel, with only one non-zero

known symbol not located at the edges of the input burst.

Su�cient conditions [GausSB1] In the Gaussian model, the m-channel H(z) is semi{

blindly identi�able if

(i) Burst length M � N .

(ii) At least one non-zero known symbol a(k) not located at the edges (0 � k �M�N).

Identi�ability for an Irreducible Channel

Su�cient conditions [GausSB2] In the Gaussian model, the m-channel H(z) is semi{

blindly identi�able if

(i) H(z) is irreducible.

(ii) At least 1 non-zero known symbol (located anywhere) appears.

Proof: Let us assume that Y contains a block of at least M + 1 samples y(k) that contain

only unknown symbols (this implies a condition on the burst length which we do not specify

above because it depends on the number of known symbols and their position). Then h can

be identi�ed blindly up to a unitary constant from the corresponding covariance matrix as

indicated in section 2.2.2: h0 = ej'h. This unitary scale factor can then be identi�ed thanks

to the mean T +
K (h0)mY = e�j'AK : one non-zero element of this quantity su�ces to identify

'.
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2.4 Conclusions

Identi�ability conditions for the two main models studied in the thesis were given in terms of

channel characteristics, burst length, input symbol excitation modes and number of known

symbols for semi{blind estimation and in the case of grouped known symbols. The semi{

blind approach appears more robust than blind estimation, as it allows the estimation of

any channel with only a few known symbols. In the deterministic case, 1 known symbol

is required for an irreducible channel, 2Nc � 1 for a reducible channel and 2N � 1 known

symbols for a monochannel. We have also proved that semi{blind methods allow to solve

the deterministic non robustness to channel length overestimation. The Gaussian model only

requires 1 known symbol (not located at the edges of the burst) and is hence more robust than

the deterministic model. Identi�ability conditions for multi{user multichannel estimation are

given in [55].
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A Proof of Su�cient Conditions [DetB]

To show that conditions [DetB] are su�cient, it is su�cient to prove that h and A can be

uniquely identi�ed from the mean X = T (h)A by a blind method: we prove identi�ability

by the signal subspace �tting approach.

The signal subspace is de�ned as the column space of T (h), for T (h) tall, and the noise

subspace as its orthogonal complement. The signal subspace can be formed from X. Indeed,

let X of size m(M+1)� (M�M) and A of size (M+N)� (M�M) de�ned as:

X =

264 x(M�1) � � � x(M)
... . .

. ...

x(M�M�1) � � � x(0)

375 ; AM =

264 a(M�1) � � � a(M)
... . .

. ...

a(M�M�N) � � � a(�N+1)

375 :
(2.5)

and related as

X = TM+1(h)A : (2.6)

Conditions (ii) and (iii) are necessary and su�cient for A to have full row rank: (ii) indicates

that A should have at least as many columns as rows and (iii) that the rows are independent.

Given that A has full row rank, the column space of X equals the column space of TM+1(h),

so we can write in particular:

P?
X
= P?

TM+1(h)
(2.7)

where PX = X (XHX )+XH and P?
X
= I�PX are the projection operators on the column space

of X and its orthogonal complement. We are searching for a pair ĥ, bA so that X = TM(ĥ) bA
or X = TM+1(ĥ) bA. The matrices TM+1(ĥ) and bA have the same dimensions as TM+1(h) and

A. So the rank of X equals the column dimension of TM+1(ĥ) and also the row dimension ofbA which hence have full column rank and row rank respectively. Hence

P?
X
TM+1(ĥ) bA = 0 ) P?

TM+1(h)
TM+1(ĥ) = 0, range

n
TM+1(ĥ)

o
� range

�
TM+1(h)

	
:

(2.8)

Now, in appendix B2 (with M =M+1 here) it is shown that this implies ĥ = �h where � is

some complex scalar. Now also A can be estimated up to a scale factor: bA =�
T H(ĥ)T (ĥ)

�
�1

T H(ĥ)X = A=� (i.e. the output of the MMSE zero-forcing equalizer built

from ĥ).

B Channel Identi�ability from the Signal Subspace

Theorem 1 (Subspace Fitting) Let h and h0 be causal channel impulse responses of length

2The proof in B is a shorter alternative to the proof in Appendix A of [56], generalized to an extended

range of signal space dimension M .
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N and N 0 respectively. If h is irreducible, then for M > M

range
�
TM (h0)

	
� range fTM(h)g )

(
H0(z) = H(z)�(z) ; N 0 � N

h0 = 0 ; N 0 < N
(2.9)

where �(z) is a scalar polynomial of order N 0�N .

Proof: range fTM (h0)g � range fTM(h)g implies that there exists a transformation matrix T

of size (M+N�1)� (M+N 0�1) such that TM (h0) = TM(h)T . So TM (h)T is block Toeplitz

and hence

TM�1(h)T1:M+N�2;1:M+N�2 = TM�1(h)T2:M+N�1;2:M+N�1 (2.10)

which implies that T1:M+N�2;1:M+N�2 = T2:M+N�1;2:M+N�1 since TM�1(h) has full column

rank. Hence T is Toeplitz.

Now, TM (h) and TM(h0) are not only block Toeplitz but also banded. So in particular,

0 = [TM(h0)]m+1:mM;1 = TM�1(h)T2:M+N�1;1 (2.11)

which implies T2:M+N�1;1 = 0 since TM�1(h) has full column rank, and

0 = [TM(h0)]1:m(M�1);M+N 0�1 = TM�1(h)T1:M+N�2;M+N 0�1 (2.12)

which implies T1:M+N�2;M+N 0�1 = 0 since again TM�1(h) has full column rank. Since T is

also Toeplitz, this implies that T is zero if N 0 < N and is banded with N 0�N+1 nonzero

diagonals if N 0 � N . Hence in this last case, the coe�cients of T specify a scalar polynomial

�(z) of order N 0�N such that H0(z) = H(z)�(z).

To summarize the proof in words, a linear transformation that transforms a linear time-

invariant (LTI) �lter into a LTI �lter can only be a LTI �lter. If furthermore the �lters are

FIR and causal, then the transforming �lter can only be causal and FIR of order equal to

the di�erence of the orders of the �lters.

�

C Proof of Su�cient Conditions [DetSB]

The semi{blind problem can be decomposed into a blind problem and a TS problem. Condi-

tions for identifying the part of H(z) that can be identi�ed blindly up to a scale factor, i.e.

HI(z), and then conditions for identifying by TS the rest, i.e. the parameters in Hc(z) and

the scale factor, are derived.

Consider the m(M I+1) � (M�M I) data matrix X = TMI+1
(hI)TMI+NI

(hc)A. Then

PX = PTMI+1
(hI) if and only if TMI+NI

(hc)A has full row rank. Condition (i) expresses that

the number of columns of this last quantity should be greater than its number of rows, plus
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the fact that in general M �MK�N+1, which gets combined with condition (iii). Let p be

the number of modes of A (which are assumed to be unrepeated, the extension to the case

of higher multiplicity being straightforward [19]): a(k) =

pX
i=1

�iz
k
i . It can be shown that A

can be decomposed as

A =M1M2M3 =266666664

1 � � � 1

z�11 � � � z�1p
...

...
...

...

z
�(MI+N�1)
1 � � � z

�(MI+N�1)
p

377777775

266666664

�1 0 � � � � � � 0

0 �2
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 � � � � � � 0 �p

377777775

266666664

zM�1
1 zM�2

1 � � � z
MI

1

zM�1
2 zM�2

2 � � � z
MI

2
...

...
...

...
...

...

zM�1
p zM�2

p � � � z
MI
p

377777775
(2.13)

so that we can write

T (hc)A = B1B2M2M3 with (2.14)

T (hc)M1 = B1B2 =

266666664

1 � � � 1

z�11 � � � z�1p
...

...
...

...

z
�MI�NI+1

1 � � � z
�MI�NI+1
p

377777775

266666664

Hc(z1) 0 � � � � � � 0

0 Hc(z2)
.. .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0

0 � � � � � � 0 Hc(zp)

377777775
(2.15)

If p � M I +NI , the rank of T (hc)A is determined by the rank of B2 and has full row rank

if rank(B2) �M I +NI , i.e. A has at least M I +NI modes which are not zeros of Hc(z). So

under conditions (i) and (ii), we can identify ĥI = �hI by subspace �tting.

Now
�
T H(ĥI)T (ĥI)

�
�1

T H(ĥI)X = T (hc)A=�. Under conditions (i) and (iii) hc and

the scale factor � get identi�ed by TS estimation.

D Proof of Su�cient Conditions [DetSBR]

Assume a channel h0 of length N 0 and a symbol sequence A0 satisfy TM(h)A = X = TM(h0)A0.

The sequence A0 is of length M+N 0�1, with its training sequence part synchronized to that

of A (A0K = AK). The channel h
0 may be reducible so that it can be decomposed in general

as H0(z) = H0

I(z)H
0

c(z) with N
0

I+N
0

c�1 = N 0. To the irreducible h0I corresponds a minimum

ZF equalizer length M 0

I . Consider

X = TM 0
I+1

(hI)T (hc)A = TM 0
I+1

(h0I)T (h
0

c)A
0 : (2.16)
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Assume for a moment that the conditions are satis�ed for T (hc)A to have full row rank; we

shall see below what this entails. Then (2.16) implies

range fXg = range
n
TM 0

I+1
(hI)

o
� range

n
TM 0

I+1
(h0I)

o
: (2.17)

According to appendix B, this implies8><>:
hI = 0 ; N 0

I > NI

h0I = �hI ; N 0

I = NI

hI reducible ; N 0

I < NI

(2.18)

Hence necessarily h0I = �hI andM
0

I =M I so that T (hc)A has full row rank under conditions

(i) � (ii). Since TMI
(hI) has full column rank, (2.16) implies T (hc)A = �T (h0c)A

0. Let's

denote hd =
�
hTc 0 � � �0

�T
and Ad =

�
AT 0 � � �0

�T
, hd and Ad being of the same length as h0c

and A0 respectively. Then we can also write

T (hd)Ad = T (�h0c)A
0 (2.19)

where the LHS is known. From this we can identify �H0c(z) with 2N 0

c�1 = 2(N 0�NI)+1

grouped known symbols and we get �H0c(z) = Hd(z) = Hc(z). We conclude that H0(z) =

H(z).
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Chapter 3

CRAM�ER{RAO BOUNDS:

THEORETICAL ELEMENTS

In some estimation problems, not all the parameters can be identi�ed, which

results in singularity of the Fisher Information Matrix (FIM). The Cram�er{

Rao Bound, which is the inverse of the FIM, is then not de�ned. To regularize

the estimation problem, one can impose constraints on the parameters and de-

rive the corresponding CRBs. The correspondence between local identi�ability

and FIM regularity is studied here. Furthermore the number of FIM singular-

ities is shown to be equal to the number of independent constraints necessary

to have a well{de�ned constrained CRB and local identi�ability. In general,

many sets of constraints can render the parameters identi�able, giving di�er-

ent values for the CRB, that are not always relevant. When the constraints

can be chosen, we propose a constrained CRB, the pseudo-inverse of the FIM,

which gives, for a minimum number of constraints, the lowest bound on the

mean squared estimation error.
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3.1 Introduction

The Cram�er-Rao Bound (CRB) is a powerful tool in estimation theory as it gives a lower

performance bound for parameter estimation problems. It is computed as the inverse of the

Fisher Information Matrix (FIM). When the parameters cannot be completely identi�ed, the

FIM is singular, and the classical CRB results cannot be directly applied.

The main underlying motivation of this work is the study of the performance of blind

(deterministic and Gaussian) channel estimation problems where the parameters can indeed

be identi�ed only up to a scale or phase factor. Blind estimation is done under certain

parameter constraints to regularize the problem. The performance of blind methods is not

correctly evaluated in general or remains somewhat vague. A constraint often used [56] is to

consider one coe�cient of the channel as known (which is su�cient to render the estimation

problem regular): the resulting performance and its bound depend on the choice of this

coe�cient and appear arbitrary. One of the contributions of this work will be to give a less

arbitrary bound and the corresponding set of constraints. Another motivation comes the

comparison we will make later between blind and semi{blind methods through the CRBs.

To get a signi�cant comparison, semi{blind and blind CRBs have to be computed under the

same constraints. For that purpose, this study, which is valid for the regular or the non

regular estimation problem, was then necessary.

The �rst part of this chapter focuses �rst on the FIMs and especially the correspondence,

for a Gaussian data distribution, between the FIM regularity and the parameter identi�ability,

de�ned in terms of probability density function. For the blind channel estimation applications

considered here, FIM regularity and local identi�ability are equivalent.

In a second step, we study the CRBs for estimation under parameter constraints. A

similar study was done in [57] for the case where the unconstrained problem is identi�able,

i.e. the FIM is regular. We adapt here the results to the case where the unconstrained

problem leads to nonidenti�ability, i.e. the FIM is singular. We furthermore outline the

correspondence between the number and characteristics of FIM singularities and the number

and characteristics of independent constraints needed in order to regularize the estimation

problem and to be able to de�ne the constrained CRB. In a last step, assuming that we can

choose the set of constraints, we propose a particular CRB for the case of an unidenti�able

unconstrained estimation problem: this CRB is the Moore-Penrose pseudo-inverse of the

FIM. It corresponds to a minimum number of particular constraints and gives the lowest

bound on the mean squared estimation error, i.e. tr(CRB).

3.2 CRBs for Real and Complex Parameters

We assume here the FIMs to be regular.
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3.2.1 CRBs for Real Parameters

Let � be a deterministic real parameter vector and f(Y j�) the probability density function

of the vector of observations Y . The FIM associated with � is:

J�� = EY j�

�
@ ln f(Y j�)

@�

��
@ ln f(Y j�)

@�

�T
: (3.1)

Let �̂ be an unbiased estimate of � and ~� = �̂ � � the estimation error. Hence E~� = 0

and C~�~� = E~�~�T is the error covariance matrix. When J�� is nonsingular and under certain

regularity conditions [58], J�1
�� is the Cram�er{Rao Bound:

C~�~� � CRB = J�1
�� : (3.2)

Equality is achieved if and only if:

�̂ � � = J�1
��

@ ln f(Y j�)
@�

: (3.3)

3.2.2 CRB for Complex Parameters, Complex CRB.

When � is a complex deterministic parameter, the previous results can be applied to �R =�
Re(�T ) Im(�T )

�T
and Y R =

�
Re(Y T ) Im(Y T )

�T
, the associated real parameters and real

observations.

It is however possible to de�ne the FIM for �R w.r.t. complex FIM{like matrices. Let

J' be de�ned as:

J' = EY j�

�
@ ln f(Y j�)

@'�

��
@ ln f(Y j�)

@ �

�H
(3.4)

where f(Y j�) = f(Y Rj�) = f(Y Rj�R). Derivation w.r.t. the complex vector � = � + j�

is de�ned as:
@

@�
=

1

2

�
@

@�
� j

@

@�

�
(see [58] for some properties of complex derivation).

Remark that we denote real and complex FIMs by J and J respectively.

The parametrization in (Re(�); Im(�)) is equivalent to a parametrization in terms of

(�; ��) via:

�R =

"
Re(�)

Im(�)

#
=M

"
�

��

#
; M =

1

2

"
I I

�jI jI

#
(3.5)

whereM is non{singular. Knowing that J�� = J����� and J��� = J���� (true here as fY j�
(�; ��) =

fY j�
(��; �)), equation (3.5) implies:

J�R�R =M

"
J�� J���

J���� J���

#
MH : (3.6)
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J�R�R can be determined from J�� and J��� as follows:

J�R�R = 2

"
Re(J��) �Im(J��)

Im(J��) Re(J��)

#
+ 2

"
Re(J���) Im(J���)

Im(J���) �Re(J���)

#
: (3.7)

We denote CRBR = J �1
�R�R

. To quantify the estimation quality, the quantity of interest

will be tr(CRBR), i.e. the lower bound on the mean squared estimation error, which can be

expressed directly in terms of the quantities J�� and J��� . Since MMH =
1

2
I , (3.6) implies:

J�1
�R�R

= 4M

"
J�� J���

J���� J���

#
�1

MH : (3.8)

Then:

tr(CRBR) = tr(J�1
�R�R

) = 4 tr
�
J�� � J���J���� J

�

���

�
�1

: (3.9)

Theorem 2 When J��� = 0, J�R�R is completely determined by J��. In that case, J�� can

be considered as the complex FIM and the corresponding complex CRB is such that:

C~�~�
= E~�~�H � CRB = J�1�� : (3.10)

If J��� 6= 0, J�1�� is also a lower bound on C~�~�, but not as tight as the (real) CRB, CRBR.

In that case (J��� = 0), a single complex singularity of the complex FIM J�� corresponds

to two real singularities since if �s is a singular vector, then so is j�s.

3.3 CRBs for a Gaussian Data Distribution

3.3.1 Real Parameters

The CRB for a Gaussian data distribution:

Y � N (mY (�); CY Y (�)); mY (�) = EY j� (Y )

CY Y (�) = EY j� (Y �mY (�)) (Y �mY (�))
H (3.11)

is [58]:

J��(i; j) =
�
@mT

Y

@�i

�
C�1
Y Y

�
@mT

Y

@�j

�T
+
1

2
tr

�
C�1
Y Y

�
@CY Y

@�i

�
C�1
Y Y

�
@CY Y

@�j

��
; (3.12)

where, to simplify, the mean and the covariance matrix are denoted mY and CY Y .

The FIM can also be expressed in a closed form. Let's de�ne � to be a vector including

the elements of the mean and covariance of the data as:

� =

"
mY

vecfCY Y g

#
: (3.13)
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Using the properties: trfABg = vecTfATgvecfBg and vecfABCg = (CT 
 A)vecfBg, we
�nd:

FIM =

�
@mT

Y

@�

�
C�1
Y Y

�
@mT

Y

@�

�T
+

�
@vecTfCY Y g

@�

��
C�T
Y Y 
 C�1

Y Y

��@vecTfCY Y g
@�

�T
(3.14)

or

J�� =
�
@�T

@�

� "
C�1
Y Y 0

0 C�T
Y Y 
 C

�1
Y Y

#�
@�T

@�

�T
: (3.15)

From this expression, the following theorem, also given in [59], is deduced:

Theorem 3 The FIM for a Gaussian data distribution is regular if and only if

�
@�T

@�

�
has

full row rank.

3.3.2 Complex Parameters

In a properly formulated blind channel estimation problem, Y and � are simultaneously real

or complex. If Y is complex, we shall assume it is circular, i.e. EY Y T = 0. In that case, it

is possible to de�ne a complex Gaussian conditional probability density function for Y :

f(Y j�) =
1

�Mm detCY Y (�)
exp

h
� (Y �mY (�))

H C�1
Y Y (�) (Y �mY (�))

i
(3.16)

where mY (�) = EY j� (Y ) and CY Y (�) = EY j� (Y �mY (�)) (Y �mY (�))
H . Based on the

complex probability density function f(Y j�), the computation of the complex FIMs J�� and

J��� gives (straightforward extension of [58]):8>>>>><>>>>>:
J��(i; j) =

�
@mH

Y

@��i

�
C�1
Y Y

 
@mH

Y

@��j

!H
+ tr

8<:C�1
Y Y

�
@CY Y

@��i

�
C�1
Y Y

 
@CY Y

@��j

!H9=;
J��� (i; j) =

�
@mH

Y

@��i

�
C�1
Y Y

 
@mH

Y

@��j

!T
+ tr

(
C�1
Y Y

�
@CY Y

@��i

�
C�1
Y Y

 
@CY Y

@��j

!)
:

(3.17)

Proceeding as in the real case, the FIM for �R becomes:

J�R�R = 2M

264 @�T

@��
@�T

@�

375 I2 
 " C�1
Y Y 0

0 C�T
Y Y 
 C

�1
Y Y

#!264 @�T

@��
@�T

@�

375
H

MH : (3.18)

Theorem 4 The FIM for a complex Gaussian data distribution is regular if and only if264 @�T

@��
@�T

@�

375 has full row rank.
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3.4 Correspondence between Identi�ability and FIM Regularity for

a Gaussian Data Distribution

3.4.1 Regular Estimation

Recall that for a Gaussian distribution, identi�ability is based on the mean and covariance

of the data: � is said identi�able if

mY (�) = mY (�
0) and CY Y (�) = CY Y (�

0) ) � = �0 : (3.19)

We have local identi�ability at � if identi�ability holds for �0 being restricted to some open

neighborhood of �. In the Gaussian distribution case, there is a correspondence between FIM

regularity and local identi�ability.

Theorem 5 If � is not locally identi�able at �, then the FIM is singular at � [59].

If a parameter can only be identi�ed up a continuous ambiguity, for example a scale factor

for the deterministic model or a phase factor for the Gaussian complex model, it cannot be

locally identi�able and the corresponding FIM is singular. However, when the parameter is

identi�able up to a discrete ambiguity, like, in the Gaussian model, a sign factor in the real

case or the inability to determine if a zero is minimum or maximum phase, local identi�ability

holds, and the FIM can be non{singular. Under weak conditions, local identi�ability implies

FIM regularity [59]:

Theorem 6 Assume that the FIM is of constant rank in the neighborhood of �. If � is locally

identi�able, then the FIM is regular at �.

And so we have the following theorem:

Theorem 7 Assume that the FIM is locally of constant rank at point �, then � is locally

identi�able if and only if the FIM is regular at �.

For the deterministic and Gaussian models, we shall see (Chapter 5) that this equivalence

holds without the local rank assumption for the FIMs.

3.4.2 Blind Estimation

In the deterministic and Gaussian input cases, local blind identi�ability will be guaranteed if

and only if the FIM has as many singularities as the number of continuous blind ambiguities:

Number of Deterministic Gaussian

Continuous Ambiguities Input Input

real 1 0

complex 2 1

Furthermore, there will be as many independent constraints needed as the number of singu-

larities to regularize the estimation problem.
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3.5 CRBs for Estimation with Constraints

In this section, we consider real parameters (hence � stands for �R if � is complex). When

the estimation is (locally) unidenti�able, the FIM is singular and the classical CRB result

(3.2) cannot be applied; e.g. the channel cannot be estimated by blind estimation and the

CRB is then in fact trivially +1.

In order to characterize the non{regular estimation performance, we de�ne regularized

CRBs for which a certain a priori knowledge on the parameter �, under the form of a certain

set of equality constraints, is assumed: this set of constraints should allow to adjust the

parameters that cannot be identi�ed and then to regularize the estimation problem. The

introduction of a priori information on � requires knowledge of � in general, which is not

available in practice. However, the point here is to evaluate the estimation performance (e.g.

to compare di�erent estimation algorithms), which implies that we compare �̂ to the true

� which hence needs to be available. The sample estimation error covariance matrix will

furthermore be compared to the CRB which also depends on �.

We determine a CRB for estimation under constraints for both cases of regular and

singular unconstrained estimation problems. These results are also used in [60], to compare

blind and semi{blind channel estimation performance under the same constraints.

CRBs for parametric estimation under constraints were derived in [57] in the case where

the unconstrained estimation problem is regular. A simpler derivation of these results was

presented in [61]. The main ingredient of this simpler derivation was used in [62] to give an

alternative expression for the CRB in the case where the unconstrained problem is unidenti-

�able. We shall succinctly restate these results, which appeared already in [63] for the case

of linear constraints. In these references, and also here, we shall assume that the constraints

are su�cient to regularize the estimation problem, i.e. to render the CRB �nite. So, consider

a k{fold constraint of the form:

K� = 0 (3.20)

where K� : Rn ! Rk is continuously di�erentiable and k < n, n being the number of

parameters in the vector �. A constrained parameter estimator �̂ is called unbiased if it

satis�es the constraints (K
�̂
= 0) and if the parameter estimation bias is zero for all parameter

values that satisfy the constraints [61]. The constrained CRB depends on the constraints only

through the tangents to the constraint set at the true value of �:

M� =

�
Z 2 Rn ; ZT

@KT�
@�

= 0

�
: (3.21)

We note that dim(M�) can be larger than n�k; the results of [61] can be generalized to

the case in which the constraints are not independent. We can introduce a matrix V� of full
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column rank such that V� =
�
@KT�
@�

�?
, meaning

range fV�g =M� =

�
range

�
@KT�
@�

��?
: (3.22)

The key step now [61] is that the unbiasedness leads to a particular correlation between the

parameter estimation error and the loglikelihood gradient restricted toM�:

Lemma 1 Assume the estimator �̂ and the true parameter � satisfy the constraints, then

unbiasedness implies

E VT�
@ ln f(Y j�)

@�
(�̂ � �)T = VT� : (3.23)

Using this lemma, the CRB derivation becomes an application of the following theorem.

Theorem 8 (Cauchy-Schwartz inequality for correlation matrices) Let X1 and X2

be random vectors with correlation matrices Rij = EXiX
T
j ; i; j = 1; 2. Assume that R11 is

nonsingular. Then

E (X2 �R21R
�1
11X1)(X2 � R21R

�1
11X1)

T = R22 �R21R
�1
11 R12 � 0 (3.24)

with equality i� X2 = R21R
�1
11X1 in m.s.

With X2 = �̂ � � and X1 = VT�
@ ln f(Y j�)

@�
, this leads immediately to the following main

result.

Theorem 9 (Constrained CRB) Assume the constrained estimator �̂ to be unbiased (�̂

and � satisfy the constraints K� = 0), then

C~�~�
� CRBC = V�

�
VT� J��V�

��1 VT� ; (3.25)

with equality i�

�̂ � � = CRBC
@ ln f(Y j�)

@�
in m.s. (3.26)

A necessary and su�cient condition for the boundedness of CRBC is the nonsingularity of

VT� J��V�.

3.5.1 Interpretations and Remarks

The key points to understand how constrained CRBs work are:

� the constrained CRB depends on the constraints only locally (as the CRB is based on

derivatives),
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� + ��

Tangent to the

Constraint k�k = 1

Constraint Set

� + �0�

=M�

�

@KT

�

@�

Figure 3.1: Example with constraint k�k = 1.

� locally, the constraint set can be linearized.

To make things clearer, we distinguish between the variable � and its true value �o. Locally,

a point � belonging to the constraint set can be approximated as � = �o+ ~�, where ~� belongs

toM�, i.e. :

� = �o + V�o� : (3.27)

In �gure 3.1, we show an example with constraint k�k = 1 (for a complex � with n = 1).

From (3.27) and applying the chain rule, we get

J�� =
�
@�T

@�

�
J��

�
@�T

@�

�T
= VT�oJ��V�o : (3.28)

The estimation of � is regular provided that VT�oJ��V�o is nonsingular. If we now get back to

the initial parameter � = �o + V�o�, using the CRB for a transformation of parameters [58],

we �nd:

CRB�� =

�
@�T

@�

�T
J�1
��

�
@�T

@�

�
= V�o

�
VT�oJ��V�o

��1
VT�o = CRBC : (3.29)

We see that the constrained CRB can be interpreted in terms of regular estimation: VT� J��V�
can be considered as the FIM for a minimal parameterization � of �, and the results of

equivalence mentioned in section 3.4 between FIM and local identi�ability could also be

applied here.

The CRBC is independent of the choice of V� and can in fact also be written as:

CRBC = A�
�
AT� J��A�

�+
AT� (3.30)

where A� is a n � q matrix, q � dim(M�), such that M� = range fA�g. In particular,

denoting
@KT�
@�

= K0�, we can take A� = P?
K
0
�

= PV� and obtain

CRBC = PV� (PV�J��PV�)
+ PV� = (PV�J��PV�)

+ : (3.31)
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There is a direct correspondence between the number of FIM singularities and the num-

ber of constraints necessary to have a �nite constrained CRB, which is also the number of

constraints necessary to have local identi�ability.

Theorem 10 For the constrained CRB to be de�ned, it is necessary and su�cient to ful�ll

the following conditions.

� The number of independent constraints should be at least equal to n�r (r = rank(J��)).

� At least n � r independent columns of
@KT�
@�

should not be orthogonal to the null space

of J��.

A constraint of the form K� = 0 has only a local e�ect and can be locally linearized

Theorem 11 The constrained CRB (3.25) can also be interpreted as the CRB under the

linear constraint:

�T
@KT�
@�

����
�=�o

= �o T
@KT�
@�

����
�=�o

(3.32)

which means that the components of � in range

�
@KT�
@�

����
�=�o

�
are known.

3.5.2 Minimal Constrained CRB

Constraint on the Global Parameter

We assume here that J�� is singular. When range fV�g = range fJ��g and since V� has full
column rank, VT� J��V� is regular (minimal number of independent constraints in this case)

and the constrained CRB is:

CRBC = J+
�� : (3.33)

This is a particular constrained CRB: we prove in appendix A that, among all sets of a mini-

mal number of independent constraints, CRBC = J+
�� yields the lowest value for tr fCRBCg.

This means that if we want to introduce a priori information in the form of independent

constraints, enough to regularize the estimation problem, but not more (minimal number),

then all the constraints should concentrate on the unidenti�able part of the parameters

(range

�
@KT�
@�

�
= null fJ��g) to minimize tr fCRBCg.

Constraint on a Parameter Subset

Consider the case of the joint estimation of two parameter vectors �1 and �2 of length n1

and n2 (n1 + n2 = n). We are interested in the estimation of �1 with �2 being nuisance
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parameters. The overall parameter vector is � =
�
�T1 �T2

�T
.

J�� =

"
J�1�1 J�1�2
J�2�1 J�2�2

#
: (3.34)

We consider the case in which J�� is singular but J�2�2 is regular. To regularize the estimation
problem, we consider the introduction of (independent) constraints on �1 only: K�1 = 0,

K�1 : Rn1 ! Rk1.

@KT�1
@�

=

24 @KT�1
@�1
0n2;k1

35 (3.35)

(assumed full column rank). Let V�1 =
�
@K�1
@�1

�
?

be a n1 � (n1 � k1) matrix of full column

rank. We can choose

V� =

"
V�1 0n1;n2
0n2;n1 In2;n2

#
: (3.36)

The constrained CRB for � is:

CRBC = V�
�
VH� J��V�

��1
VH� = V�

"
VH�1J�1�1V�1 VH�1J�1�2
J�2�1V�1 J�2�2

#
�1

VH� (3.37)

and the constrained CRB for �1 separately is:

CRBC;�1 = V�1
�
VH�1
h
J�1�1 � J�1�2J

�1
�2�2

J�2�1
i
V�1
�
�1

VH�1 = V�1
�
VH�1J�1�1(�)V�1

��1 VH�1
(3.38)

where we introduced the notation J�1�1(�) for J�1�1 � J�1�2J
�1
�2�2

J�2�1 . This notation will be

reused below. J�1
�1�1

(�) would be the unconstrained CRB for �1 if J�� were regular. Note that
with J�2�2 being regular, J�1�1(�) has the same number of singularities as J�� in the singular

case. Now assume that the constraints are such that range fV�1g = range fJ�1�1(�)g. Then
it can be proven that such constraints give the minimal constrained CRB for �1,

CRBC;�1 = J+
�1�1

(�) (3.39)

over all sets of a minimal number of independent constraints on �1 only.

3.6 Conclusions

This chapter has emphasized on the study of FIMs and CRBs when the estimation problem

is not identi�able. There is equivalence between FIM regularity and local identi�ability, and

there is as many singularities in the FIM as number of continuous ambiguities left in the
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estimation of the parameters. The expression for the CRB under constraints has been given

and a particular constrained CRB has been derived corresponding to the pseudo{inverse of

the FIM. All these results are next applied to the study of blind deterministic and Gaussian

models.
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A Minimal CRB

For a minimal number of independent constraints, we prove that CRBC = J+
�� is the con-

strained CRB which gives the lowest value for tr fCRBCg and is attained when range
�
@K�
@�

�
=

null(J��).

Let K� = 0 be an arbitrary set of constraints on �; V� =
�
@KT

�

@�

�
?

has full column rank

and we assume that VT� J��V� is invertible. The corresponding constrained CRB is:

CRBC = V�
�
VT� J��V�

��1
VT� (3.40)

Introduce the eigendecomposition of J�� = S1�1S
T
1 +S2 0S

T
2 . In general, V� has components

along S1 and S2: V� = S1Q1 + S2Q2. The fact that the constraints K� are independent and
minimal in number implies that Q1 is square and invertible. Then we obtain

CRBC = V�
�
VT� S1�1S1

TV�
��1 VT�

= V�
�
QT1 �1Q1

�
�1 VT�

= V�Q�1
1 ��11 Q�T

1 VT�
=

�
S1 + S2Q2Q

�1
1

�
��11

�
S1 + S2Q2Q

�1
1

�T (3.41)

The di�erence between the CRBC and J +
�� = S1�

�1
1 S1

H may be inde�nite in general, how-

ever:

tr (CRBC) = tr
�
J+
��

�
+ tr

�
Q2Q

�1
1 ��11 Q�T

1 QT2

�
(3.42)

The second term is non{negative, so tr (CRBC) � tr
�
J+
��

�
, with equality i� Q2 = 0, i.e.

range

�
@KT�
@�

�
= null(J��) or range fV�g = range fJ��g. In that case CRBC = J +

�� .
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Chapter 4

CRAM�ER{RAO BOUND FOR BLIND

CHANNEL ESTIMATION

We study here the FIMs and CRBs for blind deterministic and Gaussian chan-

nel estimation. We distinguish between the real and complex parameter case

since they lead to di�erent FIMs, with di�erent singularities, and require di�er-

ent regularization constraints. The blind deterministic CRB is computed under

the commonly used norm constraint which imposes the norm of the channel

to be constant. This constraint is su�cient to regularize the problem when

the channel is real, but not when it is complex, in which case an additional

constraint is required to adjust the phase of the channel. This phase constraint

is chosen so that the resulting constrained CRB is the Moore{Penrose pseudo{

inverse of the FIM and corresponds to a minimal constrained CRB. When the

channel is real the Gaussian FIM is regular, when it is complex however, the

FIM is singular: a constraint on the phase is necessary as in the deterministic

case and the constrained CRB is again the pseudo{inverse of the FIM.
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4.1 Deterministic Model

The deterministic model considers the joint estimation of the unknown input symbols A and

the channel coe�cients h. The parameter vector is � =
�
AT hT

�T
.

4.1.1 FIMs

Circular Complex Input Constellation As Y is circular, we can work with the complex prob-

ability density function of the Gaussian random variable Y � N (T (h)A; �2vI) (see Chapter 3,
section 3.3.2). We denote by X = T (h)A the signal part of Y .

As J��� = 0, the complex FIM J�� is equivalent to the real one J�R�R and is equal to:

J�� =
1

�2v

�
@XH

@��

��
@XH

@��

�H
=

1

�2v

"
T H(h)
AH

#h
T (h) A

i
(4.1)

because
@XH

@A�
= T H(h) and

@XH

@h�
= AH :

Real Symbol Constellation The FIM is the same as in (4.1). This equality of the expressions

will allow us to treat the complex and real cases simultaneously.

4.1.2 Singularities of the FIMs

Under the blind deterministic identi�ability conditions [DetB], (h;A) are identi�able up to

a scale factor. This results in one (complex) singularity of the complex FIM (see theorem

below). We examine here the singularities in that case. The singularities of the FIM can be

considered at the level of � (joint estimation of A and h) or at the level of h (estimation of

h with A considered as nuisance parameter).

Singularities of J��. J�� =
1

�2v
[T (h) A]H [T (h) A] admits as null vector: �s =

�
�AT hT

�T
.

Indeed, [T (h) A]
�
�AT hT

�T
= �T (h)A+ Ah = 0, by exploiting (1.9). When T (h) and A

have full column rank, the nullity of J�� is the dimension of the intersection of the column

spaces of T (h) and A, which is one.

Singularities of Jhh(�)
4

=
1

�2v
AHP?

T (h)A. If Jhh(�) were regular, its inverse would be the

CRB for h. However, Jhh(�) is singular. Indeed, assume that h0 is a singular vector of

Jhh(�): AHP?
T (h)Ah

0 = 0. Then, as A has full column rank, this means that Ah0 2
rangefT (h)g: there exists an A0 such that Ah0 = T (h0)A = T (h)A0. This last relation

is satis�ed for (h0; A0) = (h;A). Hence, Jhh(�) has one singularity with h as its singular

vector (AHP?
T (h)

Ah = AHP?
T (h)

T (h)A = 0) and the singularity of Jhh(�) is due to the same
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mechanism that leads to the singularity of the global FIM J�� .

In the complex case, J�R�R will have 2 singularities spanned by:

hS1 =

"
Re(h)

Im(h)

#
= hR and hS2 =

"
�Im(h)

Re(h)

#
=

"
Re(jh)

Im(jh)

#
: (4.2)

The �rst null vector can be interpreted as corresponding to the ambiguity in the norm of the

channel and the second one to the ambiguity in the phase factor.

4.1.3 Equivalence between FIM Regularity and Local Identi�ability

The link between blind identi�ability and FIM singularities in the speci�c case of the blind

deterministic model was already studied in [19, 51]:

Theorem 12 ForM � 2(N�1), or M � N for 2 subchannels (m = 2), a channel is blindly

identi�able up to a scale factor if and only if the complex FIM J�� has exactly one singularity.

Proof: see [51].

�

In general, there is a correspondence between local identi�ability and FIM regularity.

Theorem 13 A channel is locally blindly identi�able up to a scale factor if and only if the

complex FIM J�� has exactly one singularity.

Proof: Assume that the FIM has a singular vector �0 =
h
h0
T
A0

T
iT

di�erent from
�
hT �AT

�T
:

T (h)A0 + T (h0)A = 0 : (4.3)

Then for � > 0 arbitrarily small:

mY (� + ��0)�mY (�) = T (h+ �h0) [A + �A0]� T (h)A
= � [T (h)A0 + T (h0)A] +O(�2)

= O(�2)

(4.4)

which implies that � is not locally blindly identi�able.

Now assume that � is not locally blindly identi�able. Then one can �nd �h and �A,

where k�hk and k�Ak are arbitrarily small, and not simultaneously colinear with h and A

resp. verifying T (h)A = T (h+ �h)(A+�A). Then:

T (h+ �h)(A+ �h)� T (h)A = A�h + T (h)�A+ O(k�hkk�Ak)
= 0 :

(4.5)
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This implies that
�
�hT �AT

�T
is a singular vector of the FIM, non colinear to

�
hT �AT

�T
.

�

Using a similar derivation, we can also show the equivalence between the regularity of

VH� J��V� and local identi�ability under the constraint K� (with de�nitions of section 3.5):

Theorem 14 The estimation problem under constraint K� is locally identi�able if and only

if the regularized FIM VH� J��V� is regular.

The same theorem will hold for the Gaussian model in section 4.2 also but will not be restated

there.

4.1.4 Regularized Blind CRB

To de�ne a regularized blind CRB, we assume some a priori knowledge. Di�erent forms of

a priori knowledge are possible. A technique often used consists in assuming a coe�cient of

the channel to be known. This is however not robust as performance depends heavily on the

choice of this known coe�cient (which can be arbitrarily small). The proposed regularized

CRB, the Moore{Penrose pseudo{inverse of the FIM, appears less arbitrary and is directly

related to the blind scale factor ambiguity.

Blind methods commonly consider the quadratic constraint: hHh = 1 (see [62]). This

constraint does not render the problem identi�able: it leaves a sign ambiguity when h is real

and a continuous phase ambiguity when h is complex. In the former case, the computation

of mean squared error (MSE) assumes the right sign (the right sign could be taken as the

sign giving the smallest error). In the complex case however, which phase factor should be

chosen? A frequent choice consists in imposing one element of h to be real and positive; again

the resulting CRB depends on the choice of this element.

The blind regularized CRB proposed here is computed under the following constraints:

(1) A quadratic constraint:

hHh = hoHho (4.6)

(equivalent to the usual constraint hHh = 1) which allows one to adjust the norm of the

channel.

(2) In the complex case, an additional constraint is necessary to adjust the phase factor:

ho TS2 hR = ho TS2 h
o
R = 0 : (4.7)

In both real and complex cases, these constraints leave a sign ambiguity which does not

lead to FIM singularity. For MSE evaluation, the ambiguity can be resolved by requiring

ho Th > 0.
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Result 1 Under constraint (4.6) (and (4.7) for the complex case) the CRB for h is the

Moore-Penrose pseudo-inverse of Jhh(�):

CRBC;h = J+hh(�) = �2v

�
AHP?

T (h)A
�+

: (4.8)

Proof: Following the notations of section 3.5, the constraint is:

KhR =

"
hTRhR � h

oT
Rh

o
R

ho TS2 hR

#
= 0 (4.9)

leading to
@KThR
@hR

=
�
2hoR hoS2

�
: (4.10)

As hR and hS2 are the singular vectors of JhRhR(�) (which corresponds to the previously de-

�ned complex Jhh(�)), the orthogonal complement of range

(
@KT�R
@hR

)
equals range fJhRhR(�)g.

According to section 3.5.2, the CRB under constraint (4.9) is:

CRBCR = J+
hRhR

(�) (4.11)

and the corresponding complex contrained CRB can be proven to be:

CRBC = J+hh(�) (4.12)

�

The choice of the �rst constraint is not only motivated by its common use. As mentioned

in section 3.5.2, this constraint (possibly combined with the linear constraint on the phase)

leads to the minimal constrained CRB.

In Figure 4.1, we illustrate the importance of the choice for a constraint by comparing the

proposed CRB trfJ+hh(�)g to a constrained CRB for which one of the channel coe�cients (of

varying position) is assumed known. Two channels are tested: a randomly chosen channel

and a channel with slowly decreasing coe�cients:

H1 =

"
0:9477 �1:1156 1:1748 1:6455

�0:5257 �1:5923 0:4851 �0:4542

#
(4.13)

H2 =

"
1:0000 0:5000 �0:1500 0:0695

1:5000 �0:9500 0:3050 0:0550

#
(4.14)

One observes that when the channel coe�cient which is assumed known is small, the corre-

sponding CRBC can get quite large (arbitrarily large as the coe�cient magnitude shrinks).
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trfCRBg for di�erent constraints

Figure 4.1: Comparison between CRBs with di�erent a priori knowledge. The coe�cients

designate the coe�cients of the vector h for the random channel H1 (left) and the decreasing

channel impulse response H2 (right).

Some Equivalent Constraints Another choice for the constraint, which leads to the same

range

(
@KThR
@hR

)
is the following linear constraint:

hoHh = ho Hho : (4.15)

This constraint, which leaves no sign ambiguity, corresponds to forcing the components of h

in the nullspace of Jhh to their true values.

Often, h is estimated under a unit norm constraint kĥk = 1, and the scale factor is

adjusted in di�erent ways. The following adjustments lead to the same minimal CRB.

� The norm of the channel is adjusted so that kĥk = khok and the phase using the phase

constraint (4.7). We denote the resulting estimate
^̂
hNO.

� The scale factor is adjusted in the least{square sense [64, 65]: min� kho � �ĥk2. To be
more precise, in this case the trace of the corresponding constrained CRB is tr fCRBCg
of equation (4.8).

Proof: The solution of the least-squares problem is
^̂
hLS = �̂ĥ = P

ĥ
ho. Then, �

^̂
h =

P
ĥ
ho � ho = �P?

ĥ
ho; C

�
^̂
h�

^̂
h
= EP?

ĥ
hoho HP?

ĥ
.

tr
n
C
�
^̂
h�

^̂
h

o
= tr

n
EP?

ĥ
Pho
o
khok2 = tr

n
EP?ho ĥĥ

H
o
khok2

= tr
n
EP?ho(ĥkh

ok)(ĥkhok)HP?ho
o

= tr
n
EP?ho(�

^̂
hNO)(�

^̂
hNO)

HP?ho

o
= tr

n
P?hoC�^̂hNO�

^̂
hNO

P?ho

o
� tr

�
P?hoCRBC;hP

?

ho

	
= tr fCRBC;hg
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kĥk = 1

^̂
hLIN

h

^̂
hNO

^̂
hLS

Figure 4.2: Deterministic case: asymptotically equivalent constraints.

�

Another way to adjust the scale factor consists of adjusting � by the following linear

constraint ho H
^̂
hLIN = ho H�ĥ = hoHho, leading to the following channel estimate:

^̂
hLIN =

ĥhoH

hoH ĥ
ho : (4.16)

When the estimation of h is consistent, then, asymptotically, the CRB for this constrained

channel estimate is the same CRBC;h of (4.8).

In �gure 4.2, we show the solutions
^̂
hNO,

^̂
hLS ,

^̂
hLIN for a real channel of length N = 1

and with 2 subchannels.

4.1.5 Reducible Channel Case

In this case, H(z) = HI(z)Hc(z) where Hc(z) is a monic (�rst coe�cient equal to 1) poly-

nomial in z�1. In the time domain, this becomes h = Tc hI where Tc = T TNI (hc)
 Im. This

decomposition leads us to introduce AI = T (hc)A, the input signal �ltered by Hc(z) and we

can write the noise-free received signal in the following ways

X = T (h)A = T (hI) T (hc)A = T (hI)AI = AI hI
= A h = ATc hI = AI hI

(4.17)

where AI = ATc. Since T (h) = T (hI) T (hc), we have P
T (h) = P

T (hI). In the reducible

case, the quantities that are blindly identi�able are hI , AI , up to one scalar indeterminacy

(assuming certain identi�ability conditions for the burst length M and the excitation modes

in A in [DetSB]).

To get h = Tc hI from hI , there are Nc�1 indeterminacies (the coe�cients of hc). To get
A from AI = T (hc)A, there are also Nc�1 indeterminacies (modes of A that are potentially

coinciding with zeros of Hc(z); alternatively, one needs Nc�1 "initial conditions" to get

A from AI , given hc (which was already needed to get h from hI)). So there are 2Nc�1
indeterminacies all in all and hence J�� has 2Nc�1 singularities. Now,

Jhh(�) =
1

�2v
AHP?

T (h)A =
1

�2v
AHP?

T (hI)
A (4.18)
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has Nc singularities. Indeed, an alternative decomposition for h is h = TI hc where TI is

block Toeplitz with [hTI 01�(Nc�1)m]
T as �rst column. Now consider h

0

= TI h
0

c where h
0

c

is arbitrary (not monic). Then A h0 = T (h0)A = T (hI)T (h
0

c)A. Hence Jhh(�)h
0

= 0 and

null fJhh(�)g = range fTIg. So we get:

Result 2 The CRB for estimating a reducible channel h under the constraint T oHI h =

T oHI ho is

CRBC;h = J+hh(�) = �2v(A
HP?

T (h)A)
+ : (4.19)

Note that this set of constraints implies in particular hoHh = hoHho. Note also that

under these constraints, an estimate bh will not necessarily be of the form bh = bTI bhc with bhc
equal to hc or not: bh is not necessarily reducible. Nevertheless, the constraints mentioned

are su�cient to make h identi�able. Indeed, identi�ability of h with deterministic symbols

implies being able to determine h from the noise{free signal. If we do that with for instance

the subspace �tting method, then the signal subspace will be range fT (hoI)g. Subspace �tting
will force range

n
T (bh)o � range fT (hoI)g which implies bH(z) = Ho

I(z)
bHc(z). The application

of the constraints now leads to bHc(z) = Hoc(z) and hence bh = ho.

If we want the estimated channel to be reducible, then we have to apply the explicit

constraint h = T oc hI , which can be reformulated as the following implicit constraint: K�1 =
P?T oc

h = 0 (�1 = h). It turns out that in this case of deterministic input symbols, we can

remain working in the complex domain, which we shall do. So we get
@KH�1
@��1

= P?T oc and we

can take V�1 = PT oc . Hence, the constrained CRB for h satisfying the constraints P?T oc
h = 0

(compare to (3.31)) and hoHh = hoHho is

CRBC;h = �2v(PTc A
HP?

T (h)APTc)
+ = (PTc Jhh(�)PTc)

+ (4.20)

which in general will be smaller than J+hh(�) since more a priori information is introduced (in

the form of m(Nc�1)+1 constraints, compared to the minimal number of Nc constraints to

ensure identi�ability).

4.2 Gaussian Model

In the Gaussian model, the estimation of h is not decoupled from the estimation of �2v and

the estimation parameter is � =
�
hT �2v

�T
. Unlike in the deterministic model, as J��� 6= 0,

we cannot treat the complex and real constellations together.
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4.2.1 FIMs

Circular Complex Symbol Constellation When the input constellation is complex, the FIM

computation is based on the complex probability density function of Y :

Y � N (mY ; CY Y ); with CY Y = �2aT (h)T H(h) + �2vI; mY = 0 : (4.21)

Let hR = [Re(hT ) Im(hT )]T and �R = [hTR �2v ]
T , the real parameter vector. As J��� is non

zero, we cannot consider the complex CRB anymore: the real FIM J�R�R is determined via

(3.7) thanks to the quantities:

J��(i; j) = tr

8<:C�1
Y Y

�
@CY Y

@��i

�
C�1
Y Y

 
@CY Y

@��j

!H9=; (4.22)

J���(i; j) = tr

(
C�1
Y Y

�
@CY Y

@��i

�
C�1
Y Y

 
@CY Y

@��j

!)
(4.23)

where:

8>><>>:
@CY Y

@h�i
= �2aT (h)T

H

�
@h

@h�i

�
@CY Y

@�2v
=

1

2
I :

(4.24)

Real Symbol Constellation When the input constellation is real, the FIM is:

J��(i; j) =
1

2
tr

(
C�1
Y Y

�
@CY Y

@�i

�
C�1
Y Y

�
@CY Y

@�j

�T)
(4.25)

8>><>>:
@CY Y

@hi
= �2aT (h)T

T

�
@h

@hi

�
+ �2aT

�
@h

@hi

�
T T (h)

@CY Y

@�2v
= I :

(4.26)

4.2.2 FIM singularities

Circular Complex Symbol Constellation Under the Gaussian blind identi�ability conditions

[GausB], a complex channel h is identi�able up to a phase factor. This corresponds to one

singularity of the global FIM J�R�R :

J�R�R =

"
JhRhR JhR�2v
J�2vhR J�2v�2v

#
(4.27)

as well as of:

JhRhR(�R) = JhRhR � JhR�2v
�
J�2v�2v

�
�1 J�2vhR : (4.28)
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J�1
hRhR

(�R) would be the unconstrained CRB for h if its estimation were regular. The null

space of JhRhR(�R) is spanned by

hS =
�
�Im(hT ) Re(hT )

�T
= hS2 : (4.29)

Real Symbol Constellation The real FIM J�� is regular under the identi�ability conditions,

as well as Jhh(�).

4.2.3 Equivalence between FIM Regularity and Local Identi�ability

Theorem 15 The (complex or real) FIM is singular if and only if there exist a vector h0

(complex or real) and a scalar �2
0

v such that:

�2aT (h)T
H(h0) + �2aT (h

0)T H(h) + �2
0

v I = 0 : (4.30)

Proof:

Complex case: The complex FIM is singular if there exists a �
0

R =
h
Re(h0

T
) Im(h0

T
) �2

0

v

iT
,

such that:

J�R�R�
0

R = 0 (4.31)

,

" �
@vecT fCY Y g

@h�

�T �
@vecTfCY Y g

@h

�T �
@vecTfCY Y g

@�2v

�T #264 h0

h
0
�

�2
0

v

375 = 0 (4.32)

,
X
j

 
@CY Y

@h�j

!H
h0j +

X
j

 
@CY Y

@h�j

!
h0j
�

+
1

2
�2

0

v I = 0 : (4.33)

We have:
@CY Y

@h�j
= �2aT (h)T

H

�
@h

@hi

�
and

X
j

T
�
@h

@hi

�
h0j = T (h0), then:

(4:31) , �2aT (h
0)T H(h) + �2aT (h)T

H(h0) +
1

2
�2

0

v I = 0 : (4.34)

This is equivalent to equation (4.30) (with 1
2
�2

0

v ! �2
0

v ).

�

Real case: The real FIM matrix is singular if there exists a �0 =
h
h0T �2

0

v

iT
, such that:

J���0 = 0 (4.35)

,

" �
@vecTfCY Y g

@h

�H �
@vecTfCY Y g

@�2v

�H #H "
h0

�2
0

v

#
= 0 (4.36)
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,
X
j

�
@CY Y

@hj

�H
h0j + �2

0

v I = 0 : (4.37)

We have
@CY Y

@hj
= �2aT (h)T

H

�
@h

@hi

�
+ �2aT

H

�
@h

@hi

�
T H(h). Then:

(4:35) , �2aT (h
0)T H(h) + �2aT (h)T

H(h0) + �2
0

v I = 0 : (4.38)

�

From (4.30), we can deduce the following theorem.

Theorem 16 The real/complex channel is locally blindly identi�able if and only if the FIM

is regular/1{singular.

Note that locally a complex channel is identi�able up to a continuous phase factor but a real

channel is locally identi�able strictly speaking.

Proof: Assume that the FIM has a null vector �0 = [h0T �2
0

v ]T which in the complex channel

case is non colinear to hS . Then theorem 15 says that �0 satisfy (4.30). Now, with � > 0

arbitrarily small,

CY Y (�+��
0)�CY Y (�) =

�
�2aT (h+�h0)T H(h+�h0)+

�
�2v+��

2 0

v

�
I
�
�
�
�2aT (h)T H(h)+�2vI

�
= �2aT (h)T H(�h0)+�2aT (�h0)T H(h)+� �2

0

v I+O(�
2) = O(�2) :

(4.39)

This means that the covariance matrix is locally constant in the direction of �0 around �.

Similarly to the proof of theorem 13, one can show that if the channel is identi�able, the FIM

is regular or 1{singular.

�

In appendix A, we study the conditions on the characteristics of the channel to have

local identi�ability. The results are contained in the theorem below. The channel is assumed

reducible: H(z) = HI(z)Hc(z).

Theorem 17 The Gaussian FIM for a real/complex multichannel is regular/1{singular and

the channel is locally blindly identi�able if:

(1) M � max(M I + 1; Nc � 1),

(2) the channel has no conjugate reciprocal zeros, i.e. there exists no zo 2 R=C such that

H(zo) = H(1=z�o) = 0.

Proof: appendix A.

�

The no conjugate reciprocal zeros condition was also given in [38], but for the real channel

case only, without mentioning that the complex case is singular in any case. Remark that,
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in particular, the Gaussian FIM is regular if there are arbitrary zeros (not in conjugate

reciprocal pairs) due to the fact that a minimum phase channel is identi�able (example of

local identi�ability).

The monochannel case is treated in appendix A: the results mentioned above for a mul-

tichannel are valid here also except that the noise variance �2v cannot be identi�ed, which

results in an additional singularity of the FIM when the channel has no conjugate reciprocal

zeros (when the channel has conjugate reciprocal zeros, there is no additional singularity).

4.2.4 Regularized Blind CRBs

Complex Symbol Constellation As in the deterministic case, we need to de�ne a regularized

CRB, by introducing some a priori knowledge on the parameters, allowing us to determine

the ambiguous phase factor. We assume that the channel is (blindly) identi�able: we do not

treat the monochannel or conjugate reciprocal zeros.

The estimation of hR is considered under the constraint:

ho TS2 hR = 0 (4.40)

which leads to the constrained CRB for hR:

CRBC;hR = J+
hRhR

(�) : (4.41)

This linear constraint does not allow to estimate the phase factor completely and a sign

ambiguity is left but not reected in the FIM singularities as it is a discrete ambiguity. For

MSE computation purposes, the sign ambiguity can be resolved by requiring ho TR hR > 0,

which together with (4.40) can be stated as hoHh > 0.

Real Symbol Constellation No regularization is necessary and the CRB is J�1
hh (�). To

compare the MSE for an estimator to this CRB, the knowledge of the right sign and right

phase of the zeros (e.g. minimum phase in the reducible case) should be used.

4.3 Conclusions

In this chapter, we have focused on the FIMs and CRBs for blind deterministic and Gaussian

estimation. The singularities of the FIM and local identi�ability conditions have been studied.

For deterministic estimation, a norm constraint on the channel have been imposed. A phase

constraint, often ignored, has also been chosen for the deterministic and Gaussian case, such

that the resulting CRBs are the pseudo{inverse of the FIMs for the channel and correspond

to the minimum CRBs for a minimum number of independent constraints.
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A Local Identi�ability Conditions for the Gaussian Model

In this appendix, we study the solutions (h0; �2
0

v ) of the equation:

T (h)T H(h0) + T (h0)T H(h) + �2
0

v I = 0 : (4.42)

We �rst treat the monochannel case for a complex or real channel, which allows us to then

treat the multichannel case.

A.1 Complex Monochannel

We assume that M � N � 1; in this case, equation (4.42) can be written in the z{domain as:

�2aH(z)H
0y(z) + �2aH

0(z)Hy(z) + �2
0

v = 0 (4.43)

where Hy(z) = HH(1=z�). Let's denote p(z) = H(z)H0
y

(z), then:

(4:43), p(z) + py(z) + �2
0

v = 0 : (4.44)

Solutions of the form [� � 0]T : �2
0

v = 0.

p(z) =

d0pX
i=�dp

�iz
�i and py(z) =

dpX
i=�d0p

��
�iz

�i (4.45)

p(z) + py(z) = 0) d0p = dp (and �i = ���
�i) : (4.46)

As H(z) and Hy(z) are respectively causal and anticausal, deg(H(z)) = deg(H0(z)) = N�1 =

dp. In the following, we assume that H(z) is monic. Equation (4.44) is also equivalent to:

p(z) = �py(z) : (4.47)

From this equation, we can deduce that if zo is a zero of p(z), so is 1=z
�

o , which implies that

p(z) is of the form:

p(z) = �

N1�1Y
i=0

(1� ziz
�1)(1� z�i z)

�
(1� z�1)(1 + z)

�N2
: (4.48)

where N1+N2 = N�1. We will di�erentiate the zeros that are equal to 1 or �1: fzigi=1:N1�1

are di�erent from 1 or �1. z equals 1 or �1.
The number of singularities depends on the characteristics of the channel H(z) and namely

the presence of conjugate reciprocal zeros.
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(1) H(z) has no conjugate reciprocal zeros:

The N � 1 zeros of H(z) are among the zeros of p(z), this implies that p(z) has no zeros

equal to 1 or �1:

p(z) = �

N�2Y
i=0

(1� ziz�1)
N�2Y
i=0

(1� z�i z) = H(z)H0
y

(z) (4.49)

furthermore, without loss of generality, we can assume that:

H(z) =

N�2Y
i=0

(1� ziz�1) : (4.50)

In that case:

H0
y

(z) = �

N�1Y
i=0

(1� z�i z) = �Hy(z) (4.51)

(4:44)) H0(z) = jH(z) : (4.52)

The FIM is 1-singular. Its null space is spanned by
�
�ImT (h) ReT (h)

�T
.

(2) H(z) has 1 pair of conjugate reciprocal zeros: (zo; 1=z
�

o), zo 6= 1, zo 6= �1.

Again, without loss of generality, we can assume that:

H(z) = (1� zoz
�1)(1� z�oz)z

�1z��o

N�3Y
i=1

(1� ziz
�1)| {z }

H1(z)

: (4.53)

There are 2 degrees of freedom in H0(z) coming from the fact that H0(z) can admit 1 and

�1 as zeros or not. Two possible choices for H0(z) are then:(
H0(z) = j(1� zN�1z

�1)(z�1 � z�N�1)zo H1(z) ;

H0(z) = (1� z�1)(z�1 � 1)zo H1(z):
(4.54)

The FIM has 2 singularities coming from the pair of conjugate reciprocal zeros, and 1

singularity corresponding to jH(z).

(3) H(z) has one zero equal to 1 or �1.

We assume that this zero is equal 1. H0(z) can be chosen as:

H(z) = (1� z�1)
N�3Y
i=0

(1� ziz�1)| {z }
H1(z)

; H0(z) = (1 + z�1)H1(z) : (4.55)
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(4) H(z) has several conjugate reciprocal zeros:

Then, to each pair of conjugate reciprocal zeros di�erent from 1 and �1, correspond 2

singularities, and to each zero equal to 1 or �1 corresponds 1 singularity.

Solutions of the form [� � �2
0

v ]T : �2
0

v 6= 0

(1) H(z) admits conjugate reciprocal zeros zo:

p(zo)| {z }
=0

+ py(zo)| {z }
=0

+�2
0

v = 0) �2
0

v = 0 : (4.56)

So there is no singular vector of the desired form in this case.

(2) H(z) has no conjugate reciprocal zeros:

H(z) is of the form H(z) =

N�2Y
i=0

(1� ziz�1). One can verify that

H0(z) =

N�2Y
i=0

(1 + ziz
�1) (4.57)

is such that:

�2aH(z)H
0(z) + �2aH

0(z)H(z) = �2a2
N�1

N�2Y
i=0

(1� kzik2) : (4.58)

And so H 0(z) and �2
0

v = ��2a2N�1
N�2Y
i=0

(1�kzik2) verify (4.43); and it can also be proved

that this is the only singular vector due to the unidenti�ability of �2v . It can also be

veri�ed that H0(z) is not a solution of (4.43) if H(z) has conjugate reciprocal zeros.

A.2 Real Monochannel

Solutions of the from [� � 0]T : �2
0

v = 0.

Similar reasonings apply here.

(1) H(z) has no pair of conjugate reciprocal zeros:

p(z) + py(z) = 0 can only be satis�ed by p(z) � 0. So the FIM is regular.

(2) H(z) has 1 pair conjugate reciprocal zeros: (zo; 1=z
�

o), zo 6= 1, zo 6= �1.

H(z) = (1� zoz�1)(1� zoz)z�1z�1o
N�3Y
i=1

(1� ziz�1)(1� ziz)| {z }
H1(z)

: (4.59)
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There is now only 1 H0(z) possible (the �rst solution in (4.54) is not valid here):

H0(z) = (1� z�1)(1� z)z�1zoH1(z) : (4.60)

The FIM has 1 singularity.

(3) H(z) has one zero equal to 1 or �1.

We assume that this zero is 1. H0(z) can be chosen as:

H(z) = (1� z�1)
N�2Y
i=0

(1� ziz�1)| {z }
H1(z)

; H0(z) = (1 + z�1)H1(z) : (4.61)

(4) H(z) has several conjugate reciprocal zeros:

Then, to each pair of conjugate reciprocal zeros di�erent from 1 and �1, and to each

zero equal to 1 or �1 corresponds 1 singularity.

Solutions of the form [� � �2
0

v ]H: �2
0

v 6= 0

The same singularity as in the complex case, due to the inidenti�ability of �2v , appears (except

again if the channel H(z) has conjugate reciprocal zeros).

A.3 Multichannel

Assume now that H(z) is a true multichannel, possibly reducible:

H(z) = HI(z)Hc(z) : (4.62)

As for the monochannel case, we search �rst the solutions of the form:
�
ReT (h0) ImT (h0) 0

�T
.

Then h0 veri�es:

T (h)T H(h0) + T (h0)T H(h) = 0 : (4.63)

The burst length is assumed to be M � M + 1 which can be lower than N � 1 (so the

transposition to the z-domain is not as convenient as in the monochannel case). The previous

equation implies that T (h0) should have for e�ect to reduce the previous quantity to at least

the same rank as T (h). So:

rangefT (h0)g � rangefT (h)g (4.64)

which implies, using theorem 1:

H0(z) = HI(z)H
0

c(z) (4.65)



A. Local Identi�ability Conditions for the Gaussian Model 71

(
H0(z) = HI(z)H

0

c(z)

H(z) = HI(z)Hc(z)
) T (hI)T (hc)T H(h0c)T

H(hI)+T (hI)T (h0c)T
H(hc)T H(hI) = 0 :

(4.66)

As T (hI) is full column-rank,

(4:66), T (hc)T H(h0c) + T (h
0

c)T
H(hc) = 0 : (4.67)

As T (hc) is of length at least Nc�1 according to the identi�ability conditions, (4.67) implies:

Hc(z)H
0y

c(z) + H0
y

c(z)Hc(z) = 0 (4.68)

which leads to the monochannel case treated previously.

As for the solutions of the form
h
� �2

0

v

iT
, �2

0

v 6= 0, there are none in this case (�2v is

identi�able in any case).
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Chapter 5

PERFORMANCE COMPARISON

BETWEEN SEMI{BLIND, BLIND

AND TS CHANNEL ESTIMATION

We study the performance of semi{blind FIR multichannel estimation com-

pared to blind and training sequence estimation through the analysis of the

associated Cram�er{Rao Bounds (CRBs). Deterministic and Gaussian models

are considered, but some words will be said about �nite alphabet methods. The

superiority of semi{blind methods over blind and training sequence methods

is demonstrated. Semi{blind estimation allows a signi�cant gain of perfor-

mance and for a given desired energy allows us to reduce the length of the

training sequence. It is also more robust, making possible the estimation of

channels that cannot be estimated by training sequence techniques, because the

training sequence is too short, or by blind techniques because the channel is

ill-conditioned. Furthermore, we show the inuence of the number of known

symbols on semi{blind performance, and mention some optimization results on

the characteristics of the training sequence. Numerical evaluations illustrate

all these aspects.
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5.1 Introduction

Apart from a performance study, an important issue indirectly treated in this chapter are

deterministic semi{blind identi�ability conditions for the non-trivial case of arbitrarily dis-

tributed known symbols. This case can be solved by examining the Fisher Information Matrix

(FIM) regularity as FIM regularity implies local identi�ability. If we call Nc � 1 the number

of zeros of the multichannel, then under certain conditions, 2Nc � 1 known symbols, with

arbitrary positions, are necessary and su�cient to allow identi�ability. The case of known

symbols all equal to 0 is also treated.

In the performance study of semi{blind estimation, the following points are treated:

� The inuence of the number of known symbols on the semi{blind performance is studied.

Speci�cally, we see how the knowledge of only a few symbols allows one to improve the

estimation performance signi�cantly.

� The case of monochannels and reducible channels (multichannels with zeros) is studied.

We underscore the ability of Gaussian blind methods to estimate (locally) the zeros of

a channel in general. In the deterministic case, monochannels can only be estimated by

the training symbols, while the blind part brings no information. For reducible channels,

blind information for the estimation of the zeros is asymptotically negligible. For the

Gaussian methods, blind information is useful in the estimation of monochannels and

of the zeros of reducible channels.

� We compare the CRBs for pure training sequence and semi{blind modes and illustrate

some of the most interesting properties of semi{blind estimation. The addition of the

blind information to the training sequence information results in a signi�cant gain w.r.t.

the training sequence mode; also, for a desired performance level, semi{blind allows one

to reduce the training sequence length. It is also more robust, allowing the estimation

of channels that cannot be estimated by training sequence techniques, if the training

sequence is too short.

� We compare the blind and semi{blind modes. Blind methods have to be applied cer-

tain constraints: we use the results on CRBs under contraints to compare blind and

semi{blind estimation modes under the same constraints. The addition of the training

sequence information allows a signi�cant gain of performance w.r.t. blind estimation.

This is particularly true for ill-conditioned channels.

� We furthermore compare the deterministic and Gaussian CRBs.

� Some optimization issues are also mentioned: the value of the known symbols, their

distribution in the burst and the position of a training sequence in the burst.
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5.2 Deterministic Model

In the semi{blind case, the estimation parameter is � = [hT ATU ]
T , where AU designate the

unknown symbols in the burst. As in the blind case, we work with the complex FIM J�� for

circular complex input constellation and treat the real and complex input symbols together.

5.2.1 Semi{Blind FIMs

J�� =
1

�2v

�
@XH

@��

��
@XH

@��

�H
=

1

�2v

"
T H
U (h)

AH

#h
TU(h) A

i
(5.1)

since
@XH

@A�U
=
@ (TK(h)AK + TU(h)AU)

H

@A�U
= T HU (h) and

@XH

@h�
= AH :

When the FIM is regular, the semi{blind CRB for complex and real symbols is:

CRBSB = �2v

h
AHP?

TU (h)
A
i
�1

: (5.2)

5.2.2 FIM Regularity

We treat here the general case of a reducible channel H(z) = HI(z)Hc(z). Su�cient condi-

tions for the semi{blind FIM to be regular are given. The conditions hold for grouped known

symbols, as well as arbitrarily dispersed known symbols. They will be very useful as FIM

regularity implies local identi�ability: for arbitrarily dispersed known symbols, identi�ability

appears indeed di�cult to show directly.

In fact the following general theorem holds for the semi{blind deterministic model.

Theorem 18 The channel h is locally identi�able if and only if the semi{blind FIM is regular.

Proof: Assume that the FIM has 1 singularity �0 = [A0
T
U h0

T
]T :

TU(h)A0U +Ah0 = 0 , TU(h)A0U + T (h0)A = 0 : (5.3)

For � > 0 arbitrarily small:

mY (� + ��0)�mY (�) = T (h+ �h0) [A + �A00U ]� T (h)A
= � [TU(h)A0U + T (h0)A] + O(�2) = O(�2)

(5.4)

where A00U has the same length as A, is equal to A0U at the position of the unknown symbols,

and has zero entries at the positions of the known symbols: T (h)A00U = TU(h)A0U . This

implies that (AU ; h) is not locally blindly identi�able.
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Now assume that (AU ; h) is not locally blindly identi�able, then one can �nd �h and

�A00U , where �A00U has zero entries at the positions of the known symbols and k�hk and

k�A00Uk are arbitrarily small verifying T (h)A = T (h+ �h)(A+�AU), then:

T (h+�h)(A+�AU )� T (h)A = TU (h)�AU +A�h +O(�h�AU)

= 0 :
(5.5)

This implies that
�
�hT �AU

T
�T

is a null vector of the FIM.

�

Furthermore, we make the following conjecture:

Conjecture 1 In the deterministic model, FIM regularity implies global identi�ability.

In the case of grouped known symbols it can be proved that local identi�ability implies global

identi�ability, so the conjecture can be proved in this case1.

In appendix A, we examine the singularities of the FIM: the conditions for the FIM to

be regular and then for the channel to be locally identi�able are studied. The results can be

summarized as follows.

Non-Zero Known Symbols

Theorem 19 The FIM is regular and the channel H(z) is identi�able with probability 1 if

(i) Burst length M � max(NI + 2MI ; Nc�NI+1).

(ii) Number of excitation modes � N +M I .

(iii) Number of known symbols � 2Nc � 1, which is also a necessary condition.

As far as the position of the known symbols in the burst is concerned:

� If the known symbols are grouped in a single sequence, with a number of independent

input symbol modes � Nc, the channel is identi�able.

� If the known symbols are arbitrarily distributed, the channel is identi�able with proba-

bility 1.

The notion of probability 1 here assumes a probability distribution for h with a support

that has positive measure (no deterministic relations between the coe�cients of h exist). For

grouped known symbols, the conditions are the same as the global identi�ability conditions

[DetSB].

1Finding h and AU from T (h)A corresponds to solving a set of polynomial equations: there may exist some

theoretical results from polynomial algebra which would allow to prove the conjecture for arbitrarily dispersed

symbols. We did not pursue this however.
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Zero Known Symbols

When the known symbols are all equal to 0, the channel can at best be identi�ed up to a

scale factor. Indeed, T (h)A = T (h0)A0, with h0 = �h, A0 = A=� and AK = A0K = 0. We can

prove the following:

Theorem 20 When the known symbols are all equal to 0, the channel is semi{blindly locally

identi�able up to a scale factor if and only if the FIM is 1-singular.

Strictly speaking we can prove only local identi�ability, but then apply Conjecture 1.

The position of the known symbols cannot be totally arbitrary. If the known symbols are

grouped for example, it can be shown that the FIM has Nc singularities. In Appendix B, we

prove the following theorem:

Theorem 21 The FIM is 1-singular and the channel H(z) is identi�able with probability 1

up to a scale factor if

(i) Burst length M � NI + 2M I .

(ii) Number of excitation modes � N +M I .

(iii) Number of known symbols � 2Nc � 2, which is also a necessary condition.

(iv) The known symbols are \su�ciently" dispersed: there are at least Nc � 1 symbols that

do not belong to a group of Nc or more known symbols.

If the known symbols are only partially equal to 0, Theorem 19 can be applied: if there

are more than Nc � 1 known symbols that are zero, then there should have at least Nc � 1

zero known symbols that are not in a group of Nc or more zero known symbols.

5.2.3 CRB for Training Sequence Based Channel Estimation

To compute the CRB for the TS case, we can use the semi{blind deterministic CRB for the

case in which all the input symbols are known:

CRBTS = �2v
�
AHA

��1
: (5.6)

The CRB depends on the value of the symbols present in the training sequence. It is mini-

mized for a given training sequence energy when AHA is a multiple of identity [66]. The CRB

is then equal to
�2v
M�2a

I. This indicates a condition on the choice of a deterministic training

sequence for good channel estimation. When on the other hand the training sequence is

drawn from a sequence of uncorrelated symbols and its length increases, it is interesting to

note that
1

M
AHA tends to �2aI (law of large numbers), which again leads to the minimal

value of the CRB.
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5.2.4 Semi{Blind CRB: Monochannel and Reducible Channel Cases

Monochannel

Assume theMK known symbols are grouped in a single sequence, and, for simplicity reasons,

are located at the beginning of the burst. It can be shown that:

P?
TU (h)

=

"
0 0

0 IMK�N+1

#
(5.7)

so that the FIM is:

FIMSB =
1

�2v
AHTSATS = FIMTS : (5.8)

ATS is such that Y TS = TTS(h)AK = TTS(h)ATS = ATSh where Y TS includes the �rst

MK�N+1 �rst observations containing only known symbols.

Result 3 In the case of grouped known symbols, the blind information is useless in the esti-

mation of a monochannel, which is done by the training sequence only. The semi-blind CRB

is:

CRBSB = �2v
�
AHTSATS

��1
= CRBTS : (5.9)

When the known symbols are grouped in several training sequences, we observed that blind

information plays some transient e�ect, but the CRB tends to a constant when the number

of unknown symbols increases.

Reducible Channel

The CRB (5.2) does not exploit the structure of the channel, i.e. the fact that the true

channel has zeros or not. Here we assume that the channel is reducible and that we have

detected the number of zeros. We compute the CRB for the irreducible and the reducible

part of the channel. The estimation parameter is: � =
�
ATU hTI

�hTc
�T
, �hc is deduced from hc

by removing the 1st (known) coe�cient. We have:

@XH

@A�U
= T HU (h)

@XH

@h�I
= AHI

@XH

@h�c
= A0c

H
(5.10)

where AI is such that T (hI) [T (hc)A] = AIhI ; T (hc)A = Achc and A0c = T (hI) �Ac, �Ac is
deduced from Ac by removing its 1st column. After some calculations, the FIMs for hI and
�hc are:

(CRB)�1hIhI = �2v

�
AHI P

?

TU (h)
AI
�
� �2v

�
AHI P

?

TU (h)
A0c
��
A0c

H
P?
TU (h)

A0c
�
�1 �

A0c
H
P?
TU (h)

AI
�

(5.11)
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(CRB)�1�hc�hc = �2v

�
A0c

H
P?
TU (h)

A0c
�
� �2v

�
A0c

H
P?
TU (h)

AI
��
AHI P

?

TU (h)
AI
�
�1 �

AHI P
?

TU (h)
A0c
�
:

(5.12)

It can be explicitly shown that for grouped known symbols, the CRB for hI decreases as in
1

MU

and
1

MK

, as MU and MK increase: blind information is useful in the estimation of hI .

In general, MU � MK , so that the blind information dominates in the estimation of hI . As

the number of unknown symbols grows to in�nity, the CRB for hc becomes constant, so we

have the following result.

Result 4 In the case of grouped known symbols, the blind information is asymptotically (in

the number of unknown symbols) useless in the estimation of the zeros of the channel, which

is asymptotically done by the training sequence only.

For dispersed known symbols, the same behavior was observed. A similar study (as for

the estimation of the zeros) can be done for the estimation of the ambiguous scale factor: the

blind information plays asymptotically no role either in the estimation of this factor.

Remark For a number of grouped known symbols at the beginning of the burst of at least

2Nc� 1, it can be veri�ed that P
TU (h) = P

T
0
U (hI)

, where T 0U(hI) is T (hI) truncated of the �rst
M 0

K =MK�Nc+1 columns. The semi{blind CRB for h is then:

CRBSB = �2v

h
AHP?

T
0
U (hI)

A
i
�1

: (5.13)

The CRB does not depend on the values of the zeros (if any) but only on their number.

5.2.5 Semi{blind CRB with constraints

The regularized blind CRB in (4.8) corresponds to the estimation of the channel but with

constraints (4.6), (4.7). The regular semi{blind CRB (5.2) does not use these constraints.

This is why a direct comparison between blind and semi{blind modes through these CRBs

is not possible. To allow a comparison, we use a semi{blind CRB computed under the blind

constraints:

CRBSB;C = �2v

�
P?h A

HP?
T (h)AP

?

h

�+
: (5.14)

5.2.6 Comparisons and Numerical Evaluations

We compare here the di�erent estimation modes through their CRBs. These comparisons are

illustrated by curves showing the trace of the CRBs w.r.t. the number of known (or unknown)

symbols in the input burst for a complex input constellation, QPSK, and a real one, BPSK.

In the case of a BPSK, the number of channels gets doubled as in (1.2). The known input

symbols are randomly chosen and grouped at the beginning of the burst. The SNR, de�ned
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as
�2a khk

2

m�2v
(average SNR per subchannel), is 10dB; M = 100. The di�erent channels tested

were chosen randomly, our purpose being not to study speci�c channel cases but rather to

see the general mechanism of semi{blind estimation. Four di�erent types of channels were

tested: an irreducible channel Hwell, an ill{conditioned channel with a nearly common zero

Hill, a monochannel Hmono and a reducible channel with irreducible part HI and reducible

part Hc. The di�erent channels are given in Appendix D.

Semi{Blind

Figure 5.2 shows the semi{blind CRB w.r.t. the number of known symbols using a BPSK, for

the well{conditioned channel Hwell (left) and the ill{conditioned channel Hill (right). When

very few symbols are known, performance is bad: this is due to the di�culty of estimating the

scale factor of the channel or the nearly common zero with few known symbols. However, we

observe that after the introduction of (very) few more known symbols, performance increases

dramatically, especially in the case of the ill{conditioned channel. After this threshold of

improvement, the estimation of the channel being already su�ciently good, it is necessary

to introduce a large number of known symbols to get a signi�cant further improvement.

These numerical evaluations indicate that semi{blind techniques could improve performance

drastically w.r.t. blind techniques with only few known symbols.

Figure 5.11 (left) shows the CRBs using a QPSK for the monochannel Hmono. We plot

the CRB for a �xed number of 10 known symbols grouped at the beginning of the burst

w.r.t. the number of unknown symbols in the burst: it can be seen that the blind part brings

strictly no information to the estimation of the monochannel. We present also the case of

a reducible channel H(z) = HI(z)Hc(z) in Figure 5.11 (right). The di�erence in the slope

between the CRBs for hI and hc is visible as
MK

MU
! 0 and it can be seen that the CRB for

hc becomes constant.

Semi{Blind vs Training Sequence (TS)

The known symbols used in the TS mode are the same (same symbols and same number)

as the symbols known in the semi{blind mode, as indicated in Figure 5.4. A comparison

between the FIMs gives:

AHTSATS � A
HP?

TU (h)
A : (5.15)

Hence, the CRB for the TS mode is greater than that for the semi{blind mode.

Figure 5.5 is one of the most important �gures of this study. We can see that semi{blind

estimation represents an important gain w.r.t. the TS mode, especially when few symbols

are known. In Figure 5.5 (left), we have a gain of factor 20 for 10 known symbols and of

3 for 25 symbols. Besides, for the same performance, fewer known symbols for semi{blind
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estimation are needed compared to TS based estimation. To get the performance of semi{

blind estimation with 10 or 25 known symbols, one needs respectively 50 and 70 TS symbols.

The CRB when all the M+N�1 input symbols are known is given as a reference.

Semi{Blind vs Blind

In this comparison, the input bursts are the same (same symbols and same length) but part

of the symbols is known in the semi{blind mode, as indicated in Figure 5.7. We use the

constrained CRBs (4.8) for blind estimation and (5.14) for semi{blind estimation. Figure 5.8

shows the CRBs (MK = 0 corresponds to the blind case) forHwell andHill. The introduction

of very few known symbols is su�cient to improve performance signi�cantly w.r.t. blind

estimation, again especially in the case of the ill-conditioned channel.

5.3 Gaussian Input Model

5.3.1 Semi{Blind FIMs

Circular Complex Symbol Constellation The FIM computation is based on the complex

density probability function of Y :

Y � N (mY ; CY Y ) with CY Y = �2aTU(h)T HU (h) + �2vI; mY = TK(h)AK : (5.16)

Let hR = [ReT (h) ImT (h)]T and �R = [hTR �2v ]
T , the real parameter vector. J��� being non

zero, we cannot consider the complex CRB anymore: the real CRB J�R�R is determined via

(3.7) thanks to the quantities:

J��(i; j) =
�
AHKC

�1
Y YAK

�
(i; j)+ tr

8<:C�1
Y Y

�
@CY Y

@��i

�
C�1
Y Y

 
@CY Y

@��j

!H9=; (5.17)

J���(i; j) = tr

(
C�1
Y Y

�
@CY Y

@��i

�
C�1
Y Y

 
@CY Y

@��j

!)
(5.18)

where:

8>><>>:
@CY Y

@h�i
= �2aTU(h)T

H
U

�
@h

@h�i

�
@CY Y

@�2v
=

1

2
I :

(5.19)

We have introduced AK from TK(h)AK = AKh.
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Real Symbol Constellation When the input constellation is real, the FIM is:

J��(i; j) =
�
ATKC

�1
Y YAK

�
(i; j)+

1

2
tr

(
C�1
Y Y

�
@CY Y

@�i

�
C�1
Y Y

�
@CY Y

@�j

�T)
(5.20)

8>><>>:
@CY Y

@hi
= �2aTU(h)T

T
U

�
@h

@hi

�
+ �2aTU

�
@h

@hi

�
T TU (h)

@CY Y

@�2v
= I :

(5.21)

In (5.17) and (5.20),
�
ATKC

�1
Y YAK

�
(i; j) = 0 when i and/or j equal mN+1 (corresponding

to �2v).

Here also, we have the equivalence between local semi{blind identi�ability and FIM reg-

ularity:

Theorem 22 The channel h is locally identi�able if and only if the semi{blind FIM is regular.

Proof: It can be shown that the semi{blind FIM is singular if and only if there exits a vectorh
h0
T
�2

0

v

iT
such that:

AKh0 = 0 and �2aTU (h)T
H
U (h0) + TU(h0)T HU (h) + �2

0

v I = 0 : (5.22)

The equivalence now follows using the same method as for theorem 18.

�

As derived in [67], for 1 non{zero known symbol not located at the edges of the burst, we

have (global) identi�ability and then also FIM regularity:

5.3.2 Semi{Blind CRBs: Reducible Channel

We now treat the case of a reducible channel: � =
�
hTI

�hTc �2v
�T
.

Circular Complex Symbol Constellation Let hR = [Re(hTI ) Im(h
T
I ) Re(

�hTc ) Im(
�hTc )]

T and

�R = [hTR �
2
v ]
T be the parameter vector. The quantities of interest are:

J��(i; j) =
��
AIK �AcK

�H
C�1
Y Y

�
AIK �AcK

��
(i; j)+ tr

8<:C�1
Y Y

�
@CY Y

@��i

�
C�1
Y Y

 
@CY Y

@��j

!H9=;
(5.23)

J���(i; j) = tr

(
C�1
Y Y

�
@CY Y

@��i

�
C�1
Y Y

 
@CY Y

@��j

!)
(5.24)
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with:

8>>>>>><>>>>>>:

@CY Y

@h�Ii
= �2aT (h)T

H(hc)T H
�
@hI

@hIi

�
@CY Y

@�h�ci
= �2aT (h)T

H

�
@hc

@�hci

�
T H(hI)

@CY Y

@�2v
=

1

2
I :

(5.25)

AIK and AcK are such that: (
T (hI) [TK(hc)AK ] = AIKhI ;
TK(hc)AK = AcKhc :

(5.26)

�AcK is AcK truncated of its �rst column.

Real Symbol Constellation When the input constellation is real, the FIM is:

J��(i; j) =
��
AIK �AcK

�T
C�1
Y Y

�
AIK �AcK

��
(i; j) +

1

2
tr

(
C�1
Y Y

�
@CY Y

@�i

�
C�1
Y Y

�
@CY Y

@�j

�T)
(5.27)8>>>>>><>>>>>>:

@CY Y

@h�Ii
= �2aT (h)T

T (hc)T T
�
@hI

@hIi

�
+ �2aT

�
@hI

@hIi

�
T (hc)T T (h)

@CY Y

@�hci
= �2aT (h)T

T

�
@hc

@�hci

�
T T (hI) + �2aT (hI)T

�
@hc

@�hci

�
T T (h)

@CY Y

@�2v
= I :

(5.28)

The blind and training sequence information are both useful to the estimation of both hI

and �hc. The CRBs for hI and hc evolve as
1

MU
when MU !1 and as

1

MK
when MK !1.

Some numerical evaluations of the corresponding CRBs will be given in the next section.

Result 5 Unlike in the deterministic model, in the Gaussian model, blind information is

useful in the estimation of the zeros of the channel.

Semi{Blind CRBs for a monochannel can also be derived in the same way.

5.4 Comparison between Deterministic and Gaussian Models

5.4.1 Comparison between CRBs

This comparison is not obvious in general. If we consider the simple case of an instantaneous

channel, N = 1: for the real and complex constellation cases, it can be veri�ed that the

di�erence between the Gaussian and the deterministic FIM is inde�nite and that the sign of

the di�erence between the trace of the FIMs depends on the value of the parameters. The

results here are then di�erent from those obtained in DOA [42] for which blind deterministic

CRBs are below blind Gaussian CRBs.
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5.4.2 High SNR

We assume that
�2v
�2a
! 0. For simplicity reasons, we will consider the irreducible channel case

only. For the Gaussian model, at high SNR and largeMU , the terms J�2v�2v , Jh�2v and Jhh� are

of order
MU

�4v
; the term Jhh is of order

MU

�2v
. So, at high SNR, the inuence of the estimation

�2v on the estimation of h becomes negligible, and the term J��� can be neglected. The FIM

for h is then the complex FIM Jhh(�) (as in the deterministic case). In Appendix C, we

prove the following result:

Result 6 Asymptotically in the number of unknown symbols and in SNR, the deterministic

and Gaussian semi{blind FIMs are equal.

5.4.3 Comparisons and Numerical Evaluations

The parameter values are the same as in the deterministic case. In our numerical evaluations,

the estimation of �2v had nearly no inuence on the estimation of h. The semi{blind curve

(Figure 5.3) shows again a signi�cant improvement when more and more symbols in the burst

are known, especially for few known symbols. The CRB for the monochannel in (5.45) for 10

known symbols with a variable number of unknown symbols is plotted in Figure 5.11: it can

be seen that the blind part brings information to the estimation of the monochannel. The

case of a reducible channel (see (5.46)) is shown in Figure 5.12 for QPSK: we remark the

same asymptotic behavior of the CRBs for hI and �hc w.r.t. the number of unknown symbols.

In Figure 5.6 semi{blind appears again better than the training sequence mode. Direct

comparison between blind and semi{blind estimation is possible when the input constellation

is real because the FIM is invertible: see Figure 5.6. We do not show here the complex case.

In Figure 5.3, both deterministic and Gaussian semi{blind curves can be compared. In

the various examples we evaluated we observed that the Gaussian model allows better per-

formance than the deterministic model.

5.5 Methods Exploiting the Finite Alphabet of the Input Symbols

In [67], a classi�cation of blind methods in terms of the a priori knowledge of the input

symbols exploited was proposed. The methods exploiting the Finite Alphabet (FA) nature of

the input symbols perform joint symbol sequence detection and channel estimation and seem

particularly interesting from a performance point of view. What is the CRB for the channel in

this case? Assume the symbol detections to have a low probability of error. Then all symbols

present in the problem act as training sequence for the channel estimation (with possibly

some erroneous symbols). Hence the CRB for (error-free) training-sequence based channel

estimation (with the training sequence being all input symbols) constitutes a lower bound
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for the channel estimation error covariance matrix. The tightness of this bound depends on

the probability of error. Nevertheless the error covariance matrix can be expected to be very

small.

The disadvantage of the FA algorithms is that their cost function is highly multimodal:

they require a very good initialization which could be provided by semi{blind deterministic

or Gaussian algorithms [67].

5.6 Optimization Issues

Values of the Known Symbols (Deterministically) white input symbol sequences, in the

sense that AHA =M�2aI , optimizes the performance of training sequence based estimation.

Optimization of the semi{blind CRB w.r.t. the known symbols depends on the channel; we

expect however that such white sequences, even if they do not strictly optimize the semi{blind

performance, would be among the best choices.

Distribution of the Known Symbols over the Burst Should the known symbols be grouped

or separated? The answer seems again to depend on the channel. In this section we will call

\minimum{phase" multichannel, a multichannel for which all the subchannels are minimum{

phase, the energy is then concentrated in the �rst coe�cients of the multichannel; a \maxi-

mum" phase multichannel will have maximum{phase subchannels.

We did some test to compare the deterministic CRBs for a minimum and maximum

phase channel Hmin and Hmax and a randomly chosen channel Hrand. In the tables below,

we show the trace of the CRBs for the three channels for a �xed sequence of 10 known

symbols, randomly chosen from a QPSK constellation (top table) or equal to 0 (buttom

table), grouped in the middle of the burst or uniformly dispersed all over the burst. The

burst length is M = 100. The CRBs are averaged over 1000 realizations of the unknown

symbols in the case of QPSK.

Known Symbols Hmin Hmax Hrand

grouped 0.36 0.79 0.22

separated 1.33 2.38 0.24

Known Symbols Hmin Hmax Hrand

grouped 3.23 9.99 0.78

separated 0.53 1.36 0.16

When the known symbols are chosen randomly, for the minimum and maximum{phase

channels, performances are better when the known symbols are grouped than uniformly

separated in the burst. For the random channel, both choices seem equivalent. When the
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known symbols are all equal to 0, it is however better to have them dispersed all over the

burst in all cases.

Position of the Training Sequence in the Burst Again, the answer depends on the char-

acteristics of the channel. What could be done is study the CRBs w.r.t. the position of the

training sequence for a stochastic channel model.

Besides performance, other considerations such as algorithm complexity have to be taken

into account. When the known symbols are grouped, a semi{blind criterion can be formed as

the linear combination of a training sequence criterion and a blind criterion. This combination

looses some information, but o�ers the advantage to keep the structural properties of the

blind estimation problem which is the most costly part and allows to build fast semi{blind

algorithms.

5.7 Conclusions

We have proposed a study on Cram�er{Rao Bounds for blind and semi{blind FIR multichannel

estimation. Semi{blind methods appear more robust and powerful than blind and training

sequence methods, especially for a small number of known symbols. In the following part of

the thesis, we concentrate on semi{blind methods based on DML and GML.
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A Semi{Blind Identi�ability Conditions for Non{Zero Arbitrarily

Dispersed Known Symbols

We examine the conditions for the semi{blind FIM to be regular in the case where the known

symbols are all non{zero. The channel is assumed reducible H(z) = HI(z)Hc(z).

The semi{blind global FIM is [TU(h) A]H [TU (h) A]. [TU(h) A] is tall under condition
(i) of theorem 19, so the FIM is singular if and only if one can �nd h0 and A0U verifying:h

TU(h) A
i h
A0U

T �h0T
iT

= 0 or TU(h)A0U = Ah0 = T (h0)A : (5.29)

This is also equivalent to:

T (h)A0 = T (h0)A; with SKA0 = A0K = 0 (5.30)

which is the blind problem except that the constraint A0K = 0 is imposed:

(5:30), T (hI)T (hc)A0 = T (h0)A; with A0K = 0 (5.31)

Equivalent Monochannel Problem

Result 7 (5.31) is equivalent to �nding A0 and h0c such that:

T (hc)A0 = T (h0c)A; with A0K = 0 (5.32)

which corresponds to a blind monochannel problem.

Assume that H0(z) = H0

I(z)H
0

c(z), H
0

I(z) is of length N
0

I and H0

c(z) of length N
0

c, N
0

I +

N 0

c � 1 = N . M I and M
0

I are de�ned as:(
M I = min fM : TM(hI) has full column rankg
M 0

I = min fM : TM(h0I) has full column rankg
(5.33)

Let X be a matrix of length (M 00

I+1)� (M 00

I+N
00

I ), with M
00

I = max(M I ;M
0

I) and N
00

I =

max(NI ; N
0

I): X is �lled with the element of X = T (h)A0 = T (h0)A. A is a (M 00

I +N 00

I ) �
(M�M 00

I ) matrix.

X =

264 x(M�1) � � � x(M 00

I )
... . .

. ...

x(M+M 00

I�1) � � � x(0)

375 ;A =

264 a(M�1) � � � a(M 00

I )
... . .

. ...

a(M�M 00

I�N
0

I) � � � a(�N 0

I+1)

375

A0 =

264 a0(M�1) � � � a0(M 00

I )
... . .

. ...

a0(M�M 00

I�NI) � � � a0(�NI+1)

375 :
(5.34)
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X = TM 00
I
+1(hI)TM 00

I
+NI

(hc)A0 = TM 00
I
+1(h

0

I)TM 00
I
+N 0

I
(h0c)A (5.35)

If M � 2M 00

I + N 0

I and A has at least L00I + N 0

I modes that are not zeros of H0c(z), then

TM 00
I+N

0
I
�1(h

0

c)A has full row rank and:

(5:35), range
n
TM 00

I
+1(h

0

I)
o
� range

n
TM 00

I
+1(hI)

o
(5.36)

Using theorem 1, we have then H0

I(z) = �HI(z). We conclude that H0(z) = HI(z)H
0

c(z)

(N 0

c = Nc), M
00

I = M 0

I = MI , so the previous condition M � 2M 00

I + N 0

I is equivalent to

condition (i). The condition that A should have at least L00I +N 0

I = LI +NI modes that are

not zeros of H0

c(z) is veri�ed if there are at least LI + NI + Nc � 1 = LI + N � 1 which is

condition (ii).

(5:31), T (hc)A0 = T (h0c)A; with A0K = 0 (5.37)

as T (hI) is full column rank.

Next, we study the singularities of the matrix: [T (hc) Ac], with T (hc)A = Achc.

FIM regularity and necessary number of known symbols

Result 8 The FIM has exactly 2Nc � 1 singularities

Result 9 For the FIM to be regular, it is necessary to have 2Nc � 1 known symbols. This

result is valid whatever the distribution of the known symbols over the burst.

[T (hc) A] is a M � (M + 2Nc � 1) matrix, which has at least 2Nc � 1 singularities: the

M �M submatrix T2N�1(hc), where T2N�1(hc) is the version of T (hc) with the 2Nc�1 �rst
columns removed, is a triangular matrix with non-zero elements on the diagonal and hence

is invertible. The matrix has then exactly 2Nc � 1 singularities, and 2Nc � 1 known symbols

are necessary for the matrix to be regular and also for identi�ability. The condition (i) states

that M �MK�N+1 � 2Nc�1N+1.

Result 10 Let
�
ATs � hTs

�T
be a singular vector of the blind FIM. The semi{blind FIM is

regular if and only if As is not equal to 0 at the position of the known symbols:

SKAs = AsK 6= 0 (5.38)

This happens with probability one.

The explicit description of these singular vectors has been omitted due to lack of space.

The vector
�
AT � hTc

�T
is a singular vector of the blind FIM. If TK(hc)AK = 0, the FIM

is singular. This happens if AK = 0, which case is not considered here, or if hc is a singular

vector of AK , with TK(hc)AK = AKhc. This latter case will occur with probability 0 in

general. However, if one assumes the AK to have at least Nc modes then AK is of full rank

and AKhc cannot be equal to 0.
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Grouped Known Symbols Assume that the known symbols are grouped and, for simplicity

reasons, are situated at the beginning of the burst. Considering the Nc �rst equations of

(5.31), with A0K = 0 we get:

0 = TTS(h)AK = ATSh (5.39)

which is impossible if the known symbols have at least 2Nc � 1 modes In this case, the FIM

is always regular.

B Semi{Blind Identi�ability Conditions for All{Zero Arbitrarily Dis-

persed Known Symbols

We examine the conditions for the semi{blind FIM to be 1-singular in the case where the

known symbols are all equal to 0. We examine only the monochannel case which is su�cient

to solve the general multichannel case. The conditions on burst length and number of modes

are then the same as for the case treated in Appendix A.

We assume that we have 2Nc�2 zero known symbols in the burst. If among these known

symbols, Nc are grouped, then the matrix [TU(hc) A] will have one row equal to zero. Its

rank is at most M � 1: the FIM is at least 2-singular and there is no identi�ability.

If there are no N grouped known symbols, there will be no row equal to zero and there

is at least 1 singularity. Now, we eliminate one of the columns of TU (hc) to get TU 0(hc):
this columns is chosen in order not to have N consecutive columns removed from T (hc).
Then, with probability 1, the column space of A does not belong to TU 0(hc), according to

Appendix A and the FIM is exactly 1-singular.

C Asymptotical Equivalence of DML and GML

Up to 1st order in
�2v
�2a

:

�2vC
�1
Y Y = P?

TU (h)
+
�2v
�2a
TU(h)

�
T HU (h)TU(h)

��2
T HU (h) (5.40)

Then for the Gaussian FIM, we have:

JGaushh (�)[i; j] =
1

�2v

�
AHKP

?

TU (h)
AK
�
[i; j]+

�2a
�2v

tr

�
T HU

�
@h

@hi

�
P?
TU (h)

TU

�
@h

@hj

��
: (5.41)

For MU ! 1, by the law of large numbers, the deterministic semi{blind FIM is equivalent

to its expected value w.r.t. AU :

JDethh (�)[i; j] =
1

�2v
EAU

�
AHP?

TU (h)
A
�
[i; j] =

1

�2v
tr

�
T H

�
@h

@hi

�
P?
TU (h)

T
�
@h

@hj

�
EAU (AA

H)

�
:

(5.42)
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Now since EAU (AA
H) =

"
AKA

H
K 0

0 �2aI

#
, we get:

JDethh (�)[i; j] =
1

�2v
tr

�
AHKT

H
K

�
@h

@hi

�
P?
TU (h)

TK

�
@h

@hj

�
AK

�
| {z }�

AHKP
?

TU (h)
AK
�
[i; j]

+
�2a
�2v

tr

�
T HU

�
@h

@hi

�
P?
TU (h)

TU

�
@h

@hj

��
:

(5.43)

D Channels used in the Simulations

� Irreducible Channel:

Hwell =

"
�0:4326�0:0280j 0:1253�0:1584j �1:1465+0:3366j
�1:6656�1:5420j 0:2877+0:0911j 1:1909+0:9190j

1:1892�1:1715j 0:3273+2:0161j

�0:0376�1:2130j 0:1746+2:7042j

#
:

(5.44)

� Monochannel:

Hmono =
h
0:3899�0:9499j 0:0880+0:7812j �0:6355+0:5690j

�0:5596+0:8217j 0:4437�0:2656j
i
(5.45)

� Reducible Channel:

HI =

26664
�0:8051+0:5913j 0:2193+0:3803j

0:5287�0:6436j �0:9219�1:0091j
�0:1461�0:3745j �0:0766+1:7513j
0:2481�0:4709j 1:7382+0:7532j

37775 ; Hc =
h
1 �0:1567+1:0565j

i
:

(5.46)

� Nearly reducible channel:

Hill(z) =

"
1:1909z�3(0:3� z)(�0:8� z)(0:21� z)
1:1892z�3(0:32� z)(�0:53� z)(1:02� z)

#
(5.47)
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E Numerical Evaluations of the CRBs
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Figure 5.1: Input burst for the semi{blind mode.

0 10 20 30 40 50 60 70 80 90 100
10

−1

10
0

10
1

Number of known symbols

Semi-Blind 

all symbols known

Deterministic CRBs for BPSK and Hwell

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of known symbols

Semi-Blind 

all symbols known

Deterministic CRBs for BPSK and H ill

Figure 5.2: CRBs for deterministic semi{blind channel estimation w.r.t. the number of known

symbols for Hwell and H ill.
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Figure 5.3: CRBs for Gaussian semi{blind channel estimation w.r.t. the number of known

symbols for Hwell and H ill.
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Figure 5.4: Input burst for the comparison between semi{blind and TS mode.
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Figure 5.5: Comparison between deterministic semi{blind and TS channel estimation for

Hwell and H ill.
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Figure 5.6: Comparison between Gaussian semi{blind and TS channel estimation for Hwell

and H ill.
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Figure 5.7: Input burst for the comparison between semi{blind and blind model.

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

Number of known symbols

Semi-Blind 

Constrained Semi-Blind

Blind 

Deterministic CRBs for BPSK and Hwell

0 10 20 30 40 50 60 70 80 90 100
10

−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Number of known symbols

Semi-Blind 

Constrained Semi-Blind

Blind 

Deterministic CRBs for BPSK and H ill

Figure 5.8: Comparison between deterministic blind and semi{blind channel estimation for

Hwell and H ill.
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Figure 5.9: Comparison between Gaussian blind and semi{blind channel estimation forHwell

and Hill.
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of Constant Length
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Figure 5.10: Input burst for the semi{blind mode.
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Figure 5.11: CRBs for deterministic and Gaussian semi{blind monochannel estimation (left)

and deterministic CRBs for a reducible channel w.r.t. the number of unknown symbols. 10

symbols are known.
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Figure 5.12: CRBs for Gaussian semi{blind channel estimation for a reducible channel w.r.t.

the number of unknown symbols. 10 symbols are known.
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Chapter 6

ASYMPTOTIC PERFORMANCE OF

DETERMINISTIC ML AND

GAUSSIAN ML

Blind and semi{blind Deterministic ML (DML) and Gaussian ML (GML) are

formulated. Their performance are derived for an asymptotic number of un-

known symbols for blind estimation as well as an asymptotic number of known

symbols for semi{blind estimation. The case of high SNR is also mentioned.

The known symbols are considered as grouped. We express the performance

w.r.t. the CRB: we prove that DML performance is above the deterministic

CRB whereas GML performance is below the Gaussian CRB (computed based

on the Gaussian distribution for the input symbols); both DML and GML at-

tain the CRB at high SNR. We analyze how the information brought by the

training sequence combines with the blind information and how both informa-

tion are partioned between the di�erent parameters to estimate: in particular,

we study the role of blind and training sequence information in the estima-

tion of the zeros of a reducible channel. Furthermore, the superiority of the

Gaussian model is demonstrated.
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6.1 ML Methods

6.1.1 Deterministic ML (DML)

In the deterministic model, Y � N (T (h)A; �2vI), then the DML criterion for � = [ATU hT ]T

is:

max
AU ;h

f(Y jh) , min
AU ;h

kY � T (h)Ak2 : (6.1)

f(Y jh) is the complex probability density function when A is complex and the real one when

A is real. T (h)A = TK(h)AK + TU(h)AU , and optimizing w.r.t. the unknown symbols, we

get:

AU =
�
T HU (h)TU(h)

��1 T HU (h) (Y � TK(h)AK) (6.2)

which is the output of the non-causal MMSE zero-forcing decision feedback equalizer with

feedback of the known symbols. Substituting (6.2) in (6.1) we get the following minimization

criterion for h:

min
h

(Y � TK(h)AK)H P?TU (h) (Y � TK(h)AK) (6.3)

where P?
TU (h)

= I � TU(h)
�
T H
U (h)TU(h)

�
�1 T HU (h). We denote F(�) the cost function, with

� = h. For commodity reasons, when A is complex, it is taken equal to
1

�2v
times the

expression in (6.1), when A is real it is
2

�2v
times this expression.

6.1.2 Gaussian ML (GML)

In the Gaussian model, Y � N (TK(h)AK; CY Y ), CY Y = �2aTU(h)T HU (h)+�2vI and the GML

criterion is max
h;�2v

f(Y jh), or:

min
h;�2v

n
ln detCY Y +(Y �TK(h)AK)H C�1

Y Y (Y �TK(h)AK)
o
: (6.4)

We denote F(�) the cost function, with � =
�
hT �2v

�T
. When A is complex, it is taken equal

to the expression in (6.4), when A is real, it is 2 times this expression.

6.2 Asymptotic Performance

The asymptotic semi{blind conditions will be:

(i) MK !1 and MU ! 1

(ii)

p
MU

MK
! 0.
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In the blind case, the condition is only M =MU ! 1. The second condition indicates that

the training sequence part of the semi{blind criterion is not negligible w.r.t. the blind part

as will be seen later.

The fact of considering a large number of known symbols may appear arti�cial as this

number will be in general small. In chapters 8 and 9, we compare the simulated performance

of ML semi{blind criteria to the theoretical performance we obtain by considering a large

number of known symbols: the theoretical performance are found to make sense.

We will assume that the known symbols are located at the beginning of the burst.

6.2.1 Regular Estimation Case

We assume that the parameters are identi�able. Let � be the complex parameter vector,

�R = [Re(�T ) Im(�T )]T , the real associated parameter vector (�R = � for real parameters),

�o and �oR the true values, �̂ and �̂R the ML estimates and �� = �̂ � �o, ��R = �̂R � �oR, the
errors. We denote:

F 0(�) =
@F(�)
@�R

and F 0(�) =
@

@�R

�
@F(�)
@�R

�T
: (6.5)

We assume that the parameter estimation is consistent and that the �rst and second

derivative of F(�) exist and are continuous. We can then proceed to the following Taylor

development of F 0(�) around �o.

F 0(�̂) = 0 = F 0(�o) + F 00(�o)��R + o(�R) : (6.6)

We call F 00

1
(�o) the limit value of F 00(�o):

F 00

1
(�o) = lim

MU !1

MK !1

F 00(�o) : (6.7)

Asymptotically F 00(�o) = F 00

1
(�o)+o(F 00(�o)), then, neglecting the �rst order terms, equation

(6.6) becomes:

0 = F 0(�o)+F 00

1
(�o)��R )

(
��R = � [F 00

1
(�o)]

�1 F 0(�o)

C��R��R = [F 00

1
(�o)]

�1
E [F 0(�o)F 0(�o)] [F 00

1
(�o)]

�1
:

(6.8)

Let us de�ne the matrices:

J (1)

�R�R
= E

�
@F(�)
@�R

��
@F(�)
@�R

�H
and J (2)

�R�R
= �E

@

@�R

�
@F(�)
@�R

�H
: (6.9)

These two matrices are Fisher-like information matrices. Indeed, if F(�) = ln f(Y ; �), the

distribution of the observations, J (1)

�R�R
= J (2)

�R�R
and is equal to the Fisher Information Matrix.
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In our speci�c cases, asymptotically, by the law of large numbers, the di�erent quantities

involved will be asymptotically equivalent to their expected value, and particularly:

F 00

1
(�o) = J (2)

�R�R

���
�=�o

: (6.10)

(To simplify, we give up the subscript � = �o in the following). Furthermore, F 0(�o) will be

a centered Gaussian random variable, so:8<: ��R � N (0; C��R��R)

C��R��R =
�
J (2)

�R�R

�
�1 �

J (1)

�R�R

� �
J (2)

�R�R

�
�1

:
(6.11)

When � is complex, J�R�R can be expressed w.r.t. the complex IMs:

J
(1)

' = E

�
@F(�)
@'�

��
@F(�)
@ �

�H
and J

(2)

' = �E
@

@'�

�
@F(�)
@ �

�H
: (6.12)

J (1)

�R�R
and J (2)

�R�R
can be expressed in terms of J�� and J��� :

J (1)

�R�R
= 2

"
Re(J

(1)

�� ) �Im(J
(1)

�� )

Im(J
(1)

�� ) Re(J
(1)

�� )

#
+ 2

"
Re(J

(1)

���) Im(J
(1)

���)

Im(J
(1)

���) �Re(J(1)���)

#
(6.13)

and the same for J (2)

�R�R
.

In the DML case, we will have J
(1)

��� = J
(2)

��� = 0, so when the input symbols are complex,

we can work directly with complex quantities, and (6.13) can be compactly written as:

C���� =
�
J
(2)

��

�
�1

J
(1)

��

�
J
(2)

��

�
�1

: (6.14)

It is also possible to compute the performance at high SNR conditions. In this case,

equation (6.14) is still valid, but the random part of the received signal coming from the

noise only, no expectation is necessary in the expression of the IMs.

6.2.2 ML Performance under Constraints

The expression of the performance is well de�ned if the IM J
(2)

�� is regular; we will see that

J
(2)

�� is equal to the FIM so in the blind DML or GML cases, equation (6.14) cannot be applied

because the IM is singular.

We determine here performance under constraints, with results very similar to those

seen for CRBs under constraints. Again, we assume that � is real and consider the general

constraint:

K� = 0 (6.15)
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where K� : Rn ! Rk is continuously di�erentiable. As for the constrained CRBs, the con-

strained performance only depends on the local properties of the constraint set. Let us recall

the de�nition of M�, the tangent to the constraint set at point �:

M� =

(
Z 2 Rn ;

�
@KT�
@�

�T
Z = 0

)
: (6.16)

Theorem 23 The performance of ML methods under constraint (6.15) is:

C���� = V�
�
VT� J

(2)

�� V�
�
�1

VT� J
(1)

�� V�
�
VT� J

(2)

�� V�
�
�1

VT� (6.17)

where V� is an n � r matrix (where r = rank(M�)) whose columns form a basis of M�.

A necessary and su�cient condition for the constrained performance to be de�ned is that

VT� J
(2)

�� V� be regular. Furthermore, �� � N (0; C����).

Proof: The main idea, as explained in Chapter 3, is that locally a point � verifying the

constraint (6.15) in the neighborhood of �o can be approximated as belonging to M�o .

� = �o + Vo� � : (6.18)

By the chain rule, keeping only the �rst order terms in �h:

J (1)=(2)

�� = VT�oJ
(1)=(2)

�� V�o : (6.19)

The estimation of � is regular and consistent and by (6.14):

C�� =
�
VT�oJ

(2)

�� V�o
�
�1

VT�oJ
(1)

�� V�o
�
VT�oJ

(2)

�� V�o
�
�1

: (6.20)

Now �� = V�o�� ) C���� = V�oC����VT�o and we get (6.25).

�

As for the constrained CRB, the general constrained problem (6.15) is equivalent to the

linearly constrained problem:�
@KT�
@�

�T �����
�=�o

� =

�
@KT�
@�

�T �����
�=�o

�o : (6.21)

If J (1)

�� = J (2)

�� = FIM , C���� is the constrained CRB (3.25):

C���� = CRBC = V�
�
VT� FIMV�

��1
VT� : (6.22)
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Theorem 24 Assume that J (1)

�� and J (2)

�� have the same null space (which will be the case

for blind DML and GML) and assume that the constraint is such that V� =
�
@KT�
@�

�?
spans

this null space, then the corresponding performance are:

C���� =
�
J (2)

��

�+
J (1)

��

�
J (2)

��

�+
: (6.23)

This gives, for a minimal number of independent constraints, the minimal value for

trfC����g: a proof is given in appendix A.

The rest of this study consists mainly of applying the results of this section to DML and

GML.

6.3 Deterministic ML (DML)

6.3.1 Blind DML

We assume that the channel is irreducible: � = h. The two information matrices are:8>>>>><>>>>>:

J
(1)

hh = J
(2)

hh + J 0hh

J
(2)

hh =
1

�2v
AHP?

T (h)A = FIM

J 0hh(i; j) = tr

�
T H

�
@h

@hi

�
P?
T (h)T

�
@h

@hj

��
T H(h)T (h)

�
�1

�
:

(6.24)

J
(1)

hh and J
(2)

hh have the same singularity spanned by h corresponding to the deterministic scale

factor ambiguity. The associated real IMs J (1)

hRhR
and J (2)

hRhR
have the two same singularities

as the FIM:

hS1 =

"
Re(h)

Im(h)

#
and hS2 =

"
�Im(h)

Re(h)

#
: (6.25)

Blind performance are computed under the following constraints already used for the

regularized blind CRBs that we recall here:

(1) The quadratic norm constraint:

hHh = hoHho (6.26)

(2) In the complex case, the linear phase constraint:

ho TS2 h = ho TS2 h
o = 0 : (6.27)
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As for the FIM, the ambiguous sign factor left by the constraints, is adjusted using the

constraint ho Hh > 0 (this sign factor does not inuence performance computation).

We prove consistency of the channel estimate under these constraints in appendix B.

Following the notations of section 3.5, the constraint is:

K�R =

"
hTRhR � hoTRh

o
R

ho TS2 hR

#
= 0 : (6.28)

At the true parameter value:

@KT�R
@�R

�����
�=�o

=
�
2hoR hoS2

�
; (6.29)

which spans the noise subspace of J
(1)=(2)

hRhR
. So, according to theorem 24:

C�hR�hR = J (2)+

hRhR
J (1)

hRhR
J (2)+

hRhR
: (6.30)

The compact complex error correlation matrix is then:

C�h�h = J
(2)+

hh J
(1)

hh J
(2)+

hh : (6.31)

As seen in Chapter 4, the asymptotic CRB associated to the estimation of h with A as

nuisance parameter with constraints (6.26), (6.27) is J
(2)

hh

+
:

CRBhh = J
(2)

hh

+
: (6.32)

Asymptotically, �h � N (0; C�h�h) with:

C�h�h = CRBhh + J
(2)

hh

+
J 0hhJ

(2)

hh

+
: (6.33)

The second term in (6.32) is positive: DML for h does not reach the CRB. The estimation of

the channel is indeed coupled with the estimation of the unknown symbols which cannot be

estimated consistently at low SNR. The coupling prevents the channel estimate from being

e�cient. At high SNR however, the CRB is attained (as mentioned in [19] also).

6.3.2 Semi-Blind DML

Under condition (i), the N�1 observations containing both known and unknown symbols

can be neglected and the training sequence and blind contributions can be separated in the

criterion (6.3) as:

kY TS � TTS(h)AKk
2 + Y H

BP
?

TB(h)
Y B (6.34)

with TTS(h) = TMK�N+1(h) and TB(h) = TM�MK
(h), Y TS and Y B designate resp. the

observations with known and unknown symbols only (see �gure 6.1). Condition (ii) allows
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Unknown Symbols

OnlyOnly
Known Symbols
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Y TS Y B

Figure 6.1: Output burst: overlap zone containing known and unknown symbols is neglected

the training sequence part to be non negligible w.r.t. the blind part. Indeed by the law of

large number (that we can apply here because the known symbols are assumed grouped), the

DML cost function (6.3) is equivalent to:

MK

�
E kY TS � TTS(h)AKk2 +O

�
1

p
MK

��
+MU

�
E
�
Y H
BP

?

TB(hI)
Y B

�
+ O

�
1

p
MU

��
:

(6.35)

The training sequence term is not negligible w.r.t. the blind part if

p
MU

MK
! 0. Consistency

of the estimation of h is proved in appendix B, and result (6.11) can be applied to DML. The

information matrices decompose as a training sequence and a blind part:(
J
(1)

hh = J
(1)

hh;TS + J
(1)

hh;B

J
(2)

hh = J
(2)

hh;TS + J
(2)

hh;B

(6.36)

8>>>>>>>><>>>>>>>>:

J
(1)

hh;TS = J
(2)

hh;TS =
1

�2v
AHTSATS

J
(1)

hh;B = J
(2)

hh;B + J 0hh;B

J
(2)

hh;B =
1

�2v
AHBP

?

TB(h)
AB

J 0hh;B(i; j) = tr

�
T HB

�
@h

@hi

�
P?
TB(h)

TB

�
@h

@hj

�
(T HB (h)TB(h))�1

� (6.37)

The CRB for h is:

CRBhh =
�
J
(2)

hh

�
�1

: (6.38)

Using equation (6.14), �h � N (0; C�h) with:

C�h�h = CRBhh +
�
J
(2)

hh

�
�1

J 0hh

�
J
(2)

hh

�
�1

: (6.39)

The second term in (6.39) is positive: semi{blind DML for h does not reach the CRB.

At high SNR however, we can prove that the CRB is attained and:

C�h�h = �2v

h
AHTSATS + A

H
BP

?

TB(h)
AB
i
�1

: (6.40)



6.3. Deterministic ML (DML) 105

Monochannel

Assume that H(z) is a monochannel, P?
TU (h)

=

"
0 0

0 IMK�N+1

#
. The DML criterion is

reduced to the training sequence criterion:

min
h
kY TS � TTS(h)AKk2 : (6.41)

The monochannel gets then estimated by training and the blind part of the criterion brings

no information.

Reducible Channel

We study the general case of a reducible channel. We assume that we have detected the

structure of the channel (the number of zeros): H(z) = HI(z)Hc(z) and study the role of the

blind and training sequence parts in the estimation ofHI(z) and of the zeros. The estimation

parameter is here: � = [hTI
�hTc ]

T , where �hc is deduced from hc by eliminating its �rst element

equal to 1.

It can be veri�ed that P?
TU (h)

= P?
TU 0 (hI)

where TU 0(hI) is T (hI) with the last MK�Nc+1

columns removed. The semi{blind cost function becomes then:

kY TS � TTS(h)AKk2 + Y H
BP

?

TB(hI)
Y B : (6.42)

The information matrices are: 8><>:
J
(1)

hIhI
= J

(1)

hIhI ;TS
+ J

(1)

hIhI ;B

J
(2)

hIhI
= J

(2)

hIhI ;TS
+ J

(2)

hIhI ;B

J
(1)

hchc
= J

(2)

hchc
= Jhchc;TS

(6.43)

8>>>>>>>>>>>><>>>>>>>>>>>>:

J
(1)

hIhI ;TS
= J

(2)

hIhI ;TS
=

1

�2v
AHITSP

?

�ATS
AITS

J
(1)

hIhI ;B
= J

(2)

hIhI ;B
+ J 0hIhI ;B

J
(2)

hIhI ;B
=

1

�2v
AHIBP

?

TB(hI)
AIB

J 0hIhI ;B(i; j) = tr

�
T HB

�
@hI

@hI i

�
P?
TB(hI)

TB

�
@hI

@hI j

�
(T HB (hI)TB(hI))�1

�
Jhchc;TS =

1

�2v
AHcTST

H
TS(hI)

�
I � AHITS

�
AHIBP

?

TB(hI)
AIB

�
�1

AITS

�
TTS(hI)AcTS

(6.44)

with notations de�ned by:(
�ATS = TTS(hI) �AcTS and TTS(�hc)AK = �AcTS�hc

TTS(hI)TTS(hc)AK = AITShI and TB(hI)TB(hc)AU = AIBhI :
(6.45)
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The CRB for hI and �hc are asymptotically:

CRBhIhI =
�
J
(2)

hIhI

�
�1

and CRB�hc�hc
=
�
J
(1)
�hc�hc

�
�1

: (6.46)

Using equation (6.14), �hI � N (0; C�hI�hI ) and:

C�hI�hI = CRBhIhI +
�
J
(2)

hIhI

�
�1

J 0hIhI

�
J
(2)

hIhI

�
�1

: (6.47)

��hc � N (0; C��hc��hc), hence �
�hc = Op

�
1

p
MK

�
and

C��hc��hc=CRB�hc�hc
+
�
�AHTS �ATS

��1 �AHTSAITS �J(2)hIhI

�
�1

J 0hIhI

�
J
(2)

hIhI

�
�1

AHITS
�ATS

�
�AHTS �ATS

��1
:

(6.48)

Again, the CRB for both hI and �hc is not attained. The training part and the blind part of

semi{blind DML brings information to the estimation hI , and �hI evolves asymptotically in
1

p
MK

as MK grows to in�nity, and in
1

p
MU

as MU grows to in�nity.

Blind information asymptotically plays no role in the estimation of the zeros of the chan-

nel. When MU ! 1, C��hc��hc tends to a constant: asymptotically the zeros of the channel

are only estimated by training. At high SNR again, the di�erent CRBs are attained.

A thiner analysis could have been done in considering separately the estimation of the

scale factor that cannot be blindly identi�ed and a \normalized" version of the irreducible

part of the channel: hI = �I�hI : The general results described below for the estimation of

the coe�cients of �hc are also valid for the estimation of the scale factor.

6.4 Gaussian ML (GML)

We will treat directly the case of a reducible channel. � =
�
hTI

�hTc �2v
�T
. The GML cost func-

tion is the probability density function of Y with the input symbols considered as Gaussian

random variables, but not with the right distribution, so J (1)

�R�R
6= J (2)

�R�R
6= FIM .

In appendix B, we prove the consistency of the parameter estimate by blind or semi{blind

GML. As J
(1)=(2)

��� 6= 0, the complex CRB cannot be used here and we will distinguish between

complex and real parameters, i.e. complex and real input constellations.

6.4.1 Blind GML

When the input symbols are complex, let hR = [Re(hTI ) Im(hTI ) Re(�hTc ) Im(�hTc )]
T and

�R = [hTR �2v ]
T , the estimation parameter. J (1)

�R�R
and J (2)

�R�R
can be computed thanks to

the quantities: (
J
(2)

�� = J��

J
(1)

�� = J
(2)

�� � J
0

�� = J�� � J 0�� :
(6.49)
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8>>>>>>>>>>>><>>>>>>>>>>>>:

J
(2)

�� (i; j) = tr

8<:C�1
Y Y

�
@CY Y

@��i

�
C�1
Y Y

 
@CY Y

@��j

!H9=;
J 0��(i; j) =

�
(Ea2k)

2�Ea4k
�
tr

8<:T H(h)C�1
Y Y

�
@CY Y

@��i

�
C�1
Y Y T (h)T

H(h)C�1
Y Y

 
@CY Y

@��j

!H
T (h)

9=;
+(Ea2k)

2diagT
�
T H(h)C�1

Y Y

�
@CY Y

@��i

�
C�1
Y Y T (h)

�
diag

8<:T H(h)C�1
Y Y

 
@CY Y

@��j

!H
C�1
Y Y T (h)

9=;
(6.50)

where:

8>>>>>>><>>>>>>>:

@CY Y

@h�Ii
= �2aT (hI)T

H(hc)T H
 
@h�I
@h�Ii

!
@CY Y

@�h�ci
= �2aT (hI)T

H

�
@h�c
@�h�ci

�
T H(hI)

@CY Y

@�2v
=

1

2
I :

(6.51)

diag(:) designate here the vector of the diagonal elements of its argument. The same kind of

relations as (6.49) and (6.50) hold also for J
(1)=(2)
��� :

Due to the continuous phase factor ambiguity, J (2)

�R�R
is singular with one singularity

spanned by �S = [hTS2 0T
(Nc�1)�1

0]T . Blind estimation performance are computed under the

linear constraint:

�oHS �R = 0 , ho HS2 hR = 0 (6.52)

which allows to determine the phase factor up to a sign factor.

This constraint gives the minimal value for the performance of the estimation on �R.

C�hIR�hIR and C��hcR��hcR
are the appropriate submatrix of:

C�R�R =
�
J (2)

�R�R

�+
J (1)

�R�R

�
J (2)

�R�R

�+
= CRBhh +

�
J (2)

�R�R

�+
J 0

�R�R

�
J (2)

�R�R

�+
:

(6.53)

�hIR � N (0; C�hI�hI ) and evolves in
1

p
MU

as MU ! 1; �hcR � N (0; C��hc��hc) and

evolves in
1

p
MU

asMU !1 which is due to the fact that blind GML can estimate the zeros

of the channel.

At high SNR, the inuence of the estimation of �2v on the estimation of the channel be-

comes negligible, and performance for the estimation of hI is the same as in the deterministic

case.

We will not detail the computations for the case of real input symbols. The same kind

of results holds also. As we have local identi�ability, J (2)

�R�R
is regular and the error correlation

matrices of hI and �hc are the appropriate submatrices ofJ�R�R =
�
J (2)

�R�R

�
�1

J (1)

�R�R

�
J (2)

�R�R

�
�1

.



108 Asymptotic Performance of Deterministic ML and Gaussian ML Chapter 6

6.4.2 Semi-Blind GML

As DML, under conditions (i) and (ii) and neglecting the observations containing known and

unknown symbols at the same time, the GML criterion can be decomposed into a training

sequence and blind contribution as:

1

�2v
kY TS � TTS(h)AKk

2 +MK ln �2v + ln detCYBYB + Y H
BC

�1
YBYB

Y B : (6.54)

The IMs are: (
J
(2)

�� = J��;TS + J
(2)

��;B = J��;TS + J��;B

J
(1)

�� = J
(2)

�� � J
0

��;B :
(6.55)

with same kind of relations for J
(2)

��� and J
(1)

��� ; the blind IMs can be written as as in (6.50)

and the TS based IMs are:

J��;TS =

264
1

�2v

�
AITS �AcTS ]

H [AITS �AcTS
�

0

0
MK

4�4v

375 and J��� ;TS =

24 0 0

0
MK

4�4v
:

35 (6.56)

We have:

C�R�R = CRB +
�
J
(2)

�R�R

�
�1

J
(1)

�R�R

�
J
(2)

�R�R

�
�1

: (6.57)

Both �hI and ��hc evolves in
1

MU
and

1

MK
as MU !1 and MK !1 respectively.

6.5 Numerical Evaluations

We tested three di�erent kinds of channels (the notations are independent of the ones in

Chapter 5):

� an irreducible channel Hwell,

� a channel with a nearly common zero Hill

� a reducible channel H(z) = HI(z)Hc(z).

The channel coe�cients were chosen randomly and can be found in appendix D. The SNR

is at 10dB, the input symbols belong to a QPSK constellation and are i.i.d.. We plot the

quantity:
p
tr(C�hR�hR)=khk.

In �gure 6.2, the blind performance are plotted for Hwell and Hill for a burst length

of 150 (blind performance corresponds to 0 known symbols in the curves). Performance of

blind GML are computed under constraint (6.52) but also under the same constraints as

blind DML to allow signi�cant comparison between DML and GML. We see that blind GML
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outperforms blind DML and especially for Hill. We can also note that DML does not reach

the CRB.

On the same plot, the semi-blind GML and DML performance computed under constraint

(6.26) and (6.27) are also plotted w.r.t. the number of known symbols, starting from 30 known

symbols in the burst: we can see the gain brought by the known symbols compared to the

blind mode.

The semi{blind DML and GML curves are shown in �gure 6.3 and compared to the

training sequence based estimation performance. The performance when all the input symbols

are known is also shown as a reference. We see a certain gain of semi-blind techniques w.r.t.

the training sequence technique, which cannot be signi�cant as the number of known symbols

is large. Here again GML appears better than DML. The same comments as those already

done in the CRB study are basically also valid here.

In �gure 6.4, the reducible case is shown. For a �xed number of 30 known symbols, we

plot the performance w.r.t. the number of unknown symbols in the burst. The performance

for the estimation of Hc by DML will tend to be constant as the number of unknown symbols

grows. GML pro�ts from the blind information, and the slope of the curve will eventually

evolve in
1

MU
.

As already stated, our performance expressions, valid for an asymptotic number of known

symbols, make also sense for this number is small. It is also possible to give expressions taking

into account dispersed known symbols or the overlap zone (�gure 6.1), as CRBs do (using

TK(h) and TU(h)): these expressions were also found to have sense.

6.6 Conclusions

We have derived the asymptotic performance of the blind and semi{blind deterministic ML

and Gaussian ML for an asymptotic amount of known and unknown symbols but also for a

high SNR. The performance have been compared to the CRBs: both DML and GML attain

the CRB at high SNR only. This performance study is of particular importance as DML and

GML o�er lower performance bound on resp. all the deterministic and Gaussian methods.
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A Minimal Performance

We prove that
�
J (2)

��

�+
J (1)

��

�
J (2)

��

�+
corresponds to the constrained performance which

gives, for a minimal number of independent constraints, the lowest value for tr fC����g.

Let K� = 0 be a set of constraints on �; rangefV�g =

�
range

�
@KT�
@�

��?
. We assume

that VT� J��V� is invertible. The corresponding constrained performance is:

C���� = V�
�
VT� J��V�

��1 VT� J (1)

�� V�
�
VT� J��V�

��1 VT� (6.58)

Let the eigendecomposition of J (2)

�� = S
(2)
1 �

(2)
1 S

(2)
1

T
= S1�1S1

T and J (1)

�� = S
(1)
1 �

(1)
1 S

(1)
1

T
.

V� has components on S1 and S2 (the columns of S2 form a basis of the null space of J (1)

��

and J (2)

�� ): V� = S1Q1 + S2Q2.

V�
�
VT� S1�1S1

TV�
�
�1 VT� = V�

�
S1

TV�
�
�1

��11
�
VT� S1

�
�1 VT� = V�Q�1

1 ��11 Q�H
1 VT� (6.59)

C���� =
�
S1 + S2Q2Q

�1
1

�
��11

�
S1 + S2Q2Q

�1
1

�T
S
(1)
1 �

(1)
1 S

(1)
1

T �
S1 + S2Q2Q

�1
1

�
��11

�
S1 + S2Q2Q

�1
1

�T (6.60)

C���� =
�
S1 + S2Q2Q

�1
1

�
��11 ST1 S

(1)
1 �

(1)
1 S

(1)
1

T
S1�

�1
1

�
S1 + S2Q2Q

�1
1

�T
(6.61)

tr fC����g = tr

��
J (2)

��

�+
J (1)

��

�
J (2)

��

�+�
+ tr

n
Q2Q

�1
1 ��11 ST1 J

(1)

�� S1�
�1
1 Q�T

1 QT2

o
(6.62)

The second term is positive, so tr fC����g � tr

��
J (2)

��

�+
J (1)

��

�
J (2)

��

�+�
, with equality if

Q2 = 0, i.e. range

�
@K�
@�

�
= null

�
J (1)

��

�
= null

�
J (2)

��

�
.

B Consistency of Blind and Semi{Blind DML and GML

B.1 Blind DML

As M !1, the DML cost function tends uniformly to its expected value:

Y HP?
T (h)Y ! tr

n
P?
T (h)E

�
Y Y H

�o
(6.63)

with E
�
Y Y H

�
= T (ho)AoAoHT H(ho) + �2vI .

Y HP?
T (h)Y ! tr

n
AoHT H(ho)P?

T (h)T (h
o)Ao

o
+ �2vtr

n
P?
T (h)

o
I (6.64)

The term �2vtr
n
P?
T (h)

o
I is constant, so the DML criterion is equivalent to:

min
constrained h

n
AoHT H(ho)P?

T (h)T (h
o)Ao

o
(6.65)
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which is the noiseless DML criterion. ho nulls the criterion and is the unique solution of

the minimization problem under the blind identi�ability conditions. ho veri�es also both

constraints (6.26) and (6.27) which give then consistent estimate.

B.2 Semi{blind DML

Asymptotically, the semi-blind DML criterion (6.34) is equivalent to:

min
h

n
AoH

�
T H(ho)� T (h)

�H �T H(ho)� T (h)
�
Ao + AoHT H(ho)P?

T (h)T (h
o)Ao

o
(6.66)

which is nulled by ho.

B.3 GML

As M !1, the GML cost function tends to its expected value:

FGML(�)! ln detfCY Y g+ tr
n
C�1
Y Y E(Y �AKh) (Y �AKh)H

o
(6.67)

The gradient of E (F(�)) w.r.t. ��i is:

tr

�
C�1
Y Y

@CY Y

@��i

�
�tr

�
C�1
Y Y

@CY Y

@��i
C�1
Y Y E(Y �AKh) (Y �AKh)

H

�
�
@hH

@��i
AHKC

�1
Y YE (Y �AKh)

= tr

�
C�1
Y Y

@CY Y

@��i

�
I � C�1

Y Y CY Y (h; �
2
v)
��

(6.68)

with CY Y (h; �
2
v) = E (Y �AKh) (Y � AKh)H . The gradient is nulled by (ho; �o2v ), and as

the Hessian of EF(�), i.e. the FIM is positive semi{de�nite, this is the unique minimum of

the cost function.

C Equivalence between DML and GML

The semi{blind GML criterion is:

min
h;�2v

�
ln detCY Y + Y HC�1

Y Y Y
	

(6.69)

C�1
Y Y =

�
�2aTU (h)T

H
U (h) + �2vI

��1
=

1

�2v

"
I � TU(h)

�
T HU (h)TU(h) +

�2v
�2a
I

��1
T HU (h)

#
(6.70)

by the matrix inversion lemma and as
�2v
�2a
! 0:

C�1
Y Y =

1

�2v
P?
TU (h)

(6.71)
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So the second term in (6.69) is equivalent to
1

�2v
Y HP?

TU (h)
Y , which is the DML cost function.

CY Y has Mm �M � N + 1 eigenvalues equal to �2v and M + N � 1 eigenvalues equal

to �2a�i(h) where �i(h) is an eigenvalue of T (h)T H(h) depending an h only. The only con-

tribution of h in ln detCY Y comes from the �i(h)'s and can be proved to be negligible w.r.t.

Y HC�1
Y Y Y . The estimation of h is decoupled from that of �2v and the GML cost function is

equivalent to the DML one.

D Channels used in the Simulations

� Irreducible Channel Hwell:

The complex channel is randomly chosen and is irreducible:

Hwell =

"
�0:4326�0:0280j 0:1253�0:1584j �1:1465+0:3366j
�1:6656�1:5420j 0:2877+0:0911j 1:1909+0:9190j

1:1892�1:1715j 0:3273+2:0161j

�0:0376�1:2130j 0:1746+2:7042j

#
:

(6.72)

� Nearly reducible channel H ill:

H ill =

"
z�3 (0:5711� 0:3999j)(0:5 + 0:3j � z) (0:6� 1:2j � z) (�0:2� z)

z�3 (0:6900 + 0:8156j)(0:45+ 0:32j � z) (�0:8� 0:2j � z) (�1:2� z)

#
(6.73)

� Reducible Channel:

HI =

26664
�0:8051+0:5913j 0:2193+0:3803j

0:5287�0:6436j �0:9219�1:0091j
�0:1461�0:3745j �0:0766+1:7513j
0:2481�0:4709j 1:7382+0:7532j

37775 ; Hc =
h
1 �0:1567+1:0565j

i
:

(6.74)

E Numerical Evaluations of the Performance
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Chapter 7

BLIND DETERMINISTIC

MAXIMUM{LIKELIHOOD

METHODS

As we will develop semi{blind DML criterion that contain a blind part and

a training sequence part, it is important that the blind part be solved by a

powerful method, this is why we concentrate on �nding low{computational,

quasi{optimal solutions to solve DML. As stated in Chapter 1, deterministic

methods have the property of giving the exact channel for a �nite amount of

data in the absence of noise. This is the property that is exploited in this chap-

ter. Two DML{based algorithms are presented. The �rst one is a modi�cation

of the Iterative Quadratic ML (IQML) algorithm which gives biased estimates

of the channel and performs poorly at low SNR due to the presence of noise.

We \denoise" the IQML cost function by eliminating the noise contribution:

the resulting algorithm Denoised IQML (DIQML) gives consistent estimates

and outperforms IQML. Furthermore DIQML is asymptotically globally con-

vergent and insensitive to the initialization. Its asymptotic performance does

not match the ML performance, though. The second strategy, called Pseudo-

Quadratic ML (PQML), is naturally denoised. The denoising is however more

e�cient than in DIQML: PQML gives the same asymptotic performance as

DML, not DIQML though, but requires a consistent initialization which can be

given by SRM or DIQML. We will furthermore compare DIQML and PQML

to the alternating minimization technique w.r.t. the symbols and the channel

used to solve DML. A performance study and simulations are presented.
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7.1 Blind Deterministic ML

Let us recall the blind DML criterion for joint estimation of A and h:

max
A;h

f(Y jh) , min
A;h

kY � T (h)Ak2 : (7.1)

We assume here that the blind deterministic conditions [DetB] are veri�ed. The channel is

then identi�able up to a scale factor. We impose the non-triviality constraint khk = 1. This

constraint is not su�cient to completely identify the channel as it leaves a phase ambiguity:

the phase constraint (6.27) will be imposed later, in the performance study of the proposed

algorithms.

We solve here the DML criterion in h (with A as nuisance parameter):

min
khk=1

Y HP?
T (h)Y : (7.2)

P?
T (h)

= I � T (h)
�
T H(h)T (h)

�
�1 T H(h).

7.2 Linear Parameterization of the Noise Subspace

The DML criterion is highly non linear and its optimization would require costly solutions

in the form (7.2). The key to a computationally attractive solution of the DML problem is a

linear parameterization of the noise subspace. We consider here a linear parameterization in

terms of channel coe�cients (a parameterization in terms of prediction quantities was also

presented in [13]). Let H?(z) be such a parameterization: it veri�es H?(z)H(z) = 0 and

T (h?)T (h) = 0; T (h?) is the convolution matrix of H?(z) and the columns of T H(h?) span
the entire noise subspace. In the case m = 2 in which the multichannel has 2 subchannels,

the obvious choice for H?(z) is:

H?(z) = [�H2(z) H1(z)] : (7.3)

For a larger number of subchannels, di�erent choices are available [19], [20]. An example is

[20]:

H?(z) =

266664
�H2(z) H1(z) 0 � � � 0

0 �H3(z) H2(z) � � �
...

...
. . .

. . . 0

Hm(z) 0 � � � 0 �H1(z)

377775 : (7.4)
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7.3 Subchannel Response Matching (SRM)

The Subchannel Response Matching (SRM) algorithm is based on this linear parameterization

of the noise subspace. Using the commutativity of convolution and the linearity of T (h?) in
h, we can write T (h?)Y as:

T (h?)Y = Yh (7.5)

where Y is a matrix �lled with the elements of the observation vector Y . In the noiseless

case, Y = T (h)A and we have T (h?)Y = Yh = 0: from this relation, the channel can be

uniquely determined up to a scale factor. SRM requires the channel to be irreducible; the

burst length requirements are higher than in [DetB] [19].

When there is noise, Yh 6= 0 and the SRM criterion is solved in the least{squares sense

under the constraint khk = 1:

min
khk=1

hH YHY h : (7.6)

The resulting h is the minimal eigenvector of YHY . Di�erent choices for the linear param-
eterization of the noise subspace give di�erent channel estimates: certain parameterizations

give indeed biased estimates [20]. The parameterization described in (7.4) gives consistent

estimates.

SRM appears as a non-weighted version of the Iterative Quadratic ML (IQML) algorithm,

and is used in [19] to initialize IQML. We will use it to initialize our algorithms also.

7.4 Iterative Quadratic ML (IQML)

Since P?
T (h) = P

T
H(h?), (7.2) can be written as:

min
khk=1

Y HT H(h?)
�
T (h?)T H(h?)

�+
T (h?)Y : (7.7)

T (h?)T H(h?) is singular for m > 2, which is why the Moore-Penrose pseudo{inverse needs

to be introduced.

The Iterative Quadratic ML (IQML) algorithm solves (7.7) iteratively in such a way that

at each step a quadratic problem appears. Let R(h) 4= T (h?)T H(h?), then (7.7) becomes:

min
khk=1

Y HT H(h?)R+(h)T (h?)Y : (7.8)

At iteration (i) of IQML, the denominator R(h) is computed based on the estimate from the

previous iteration h(i�1) and is considered as constant for the current iteration. Hence, as

T (h?) is linear in h, the criterion (7.7) becomes quadratic. Denoting the constant denomi-

nator R(h) = R, the IQML criterion can be rewritten as:

min
khk=1

hHYHR+Y h : (7.9)
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Under the constraint khk = 1, h is estimated as the minimal eigenvector of the matrix

YHR+Y .
In the noise{free case, the IQML algorithm behaves very well; it the criterion becomes

indeed equivalent to:

min
khk=1

XHT H(h?)R+T (h?)X (7.10)

where X = T (ho)A is the noise-free received signal. As T (ho?)X = Xho = 0, ho nulls

exactly the criterion regardless of the initialization. At high SNR, a �rst iteration of IQML

gives a consistent estimate of the channel whatever the initialization of R(h) (provided that

Null(R+) \ Range(X ) = 0, which is guaranteed in general). And it can be proven [19] that

a second iteration gives the exact ML estimate.

At low SNR however, this method is biased. Indeed, consider the asymptotic situation

in which the number of data M grows to in�nity. By the law of large numbers, the IQML

criterion becomes equivalent to its expected value which is:

min
khk=1

trfT H(h?)R+T (h?)E(Y Y H)g =

min
khk=1

n
trfT H(h?)R+T (h?)XXHg+ �2vtrfT

H(h?)R+T (h?)g
o (7.11)

since E(Y Y H) = XXH+�2vI . h
o nulls exactly the �rst term, but is not in general a minimal

eigenvector of the second term and hence of the sum. Then, due to the presence of noise, ho

is not asymptotically a stationary point of the algorithm and IQML performs poorly even if

initialized by a consistent channel estimate.

We propose here a method to \denoise" the IQML criterion: this denoised criterion

minimized in the IQML way will compensate the IQML bias and gives a consistent channel

estimate.

7.5 Denoised Iterative Quadratic ML (DIQML)

7.5.1 Asymptotic Amount of Data

The asymptotic noise contribution to the DML criterion is �2v tr
n
P
T
H(h?)

o
. The denoising

strategy consists simply in removing this asymptotic noise term, or more exactly an estimate

of it c�2vtrPT H(h?) (where c�2v will be a consistent estimate of the noise variance), from the

DML criterion which becomes:

min
khk=1

tr
n
P
T
H(h?)

�
Y Y H �c�2vI�o ,

min
khk=1

n
hHYHR+(h)Yh�c�2vtrfT (h?)R+(h)T H(h?)g

o
:

(7.12)
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Note that this operation does not change the solution of the DML criterion asc�2v trfPT H(h?)g =c�2v(M(m�1)�N+1)I is constant w.r.t. h.

(7.12) is solved in the IQML way: considering R(h) = R as constant, the optimization

problem is quadratic:

min
khk=1

hH
n
YHR+Y �c�2v Do h (7.13)

where hHDh = trfT H(h?)R+T (h?)g.
Asymptotically in the number of data, DIQML is globally convergent. Indeed, asymptot-

ically it is equivalent to the denoised criterion:

min
khk=1

XHT H(h?)R+T (h?)X : (7.14)

We �nd again the main features of the high SNR IQML algorithm:

� The �rst iteration gives a consistent estimate of the channel.

� The second iteration gives asymptotically the global minimizer of DIQML. Unlike in

the high SNR case, this global minimizer is not the ML minimizer though, as will be

seen in appendix A.

� This behavior holds whatever the initialization

At high SNR global convergence is also guaranteed as it is for the original IQML algorithm

but this time DIQML gives the ML solution.

7.5.2 Finite Amount of Data

The choice of c�2v turns out to be crucial. In practice, with large but �nite amount of data

M , and the true noise variance value, the central matrix in (7.13) is inde�nite, and the mini-

mization problem is no longer well posed. The solution in this case would be the eigenvector

corresponding to the smallest eigenvalue, which is negative. Simulations have shown that per-

formance does not improve upon IQML in this case. The central matrix Q = YHR+Y � �D
should be constrained to be positive semi-de�nite.

As a consistent estimate of �2v , we choose here a certain � that renders Q = YHR+Y��D
exactly positive semi-de�nite with one singularity. The DIQML criterion becomes:

min
khk=1;�

hH
�
YHR+Y � �D

	
h (7.15)

with constraint that Q be positive semi-de�nite. � the generalized minimal eigenvalue of

YHR+Y and D and h is the associated generalized eigenvector. Asymptotically, �! �2v , and

the criterion becomes equivalent to (7.14), and asymptotic global convergence applies for h

and for �2v , with the same properties as mentioned earlier.
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Other attempts have been undertaken to denoise the IQML strategy. Kristensson [68]

applies the same strategy in the DOA (Direction Of Arrival) context: as estimate of the

noise variance, he chooses the one which in the context of blind channel estimation would

correspond to the minimum value of the SRM criterion. It can indeed be veri�ed that

asymptotically:

ĥHSRM
�
YHY

�
ĥSRM = �2v(M �N + 1) for m = 2

ĥHSRM
�
YHY

�
ĥSRM = 2�2v(M �N + 1) for m > 2

(7.16)

with kĥSRMk2 = 1. For a �nite amount of data, the noise variance estimate given by SRM

underestimates the true �2v on the average: indeed, as ĥSRM minimizes the SRM criterion,

ĥHSRM
�
YHY

�
ĥSRM � hoH

�
YHY

�
ho=khok2, taking the expected value on both sides, we get

Ec�2vSRM � �2v .

So for the realizations in which c�2v is smaller than �2v , Q can be positive (but not al-

ways) and in that case, the DIQML principle works. However, there will be realizations in

which c�2vSRM overestimates �2v : in that case Q is not positive and DIQML does not improve

upon IQML. After the submission of our generalized eigenvalue approach in [69], we came

accross [70] in which IQML is presented with di�erent constraints, one of which corresponds

to our generalized eigenvalue strategy.

7.6 Pseudo-Quadratic ML (PQML)

The principle of PQML introduced in the context of sinusoids in noise estimation [71] and

then applied to DML in [72]. The gradient of the DML cost function may be arranged as

P(h)h, where P(h) is ideally a positive semi-de�nite matrix. The ML solution satis�es

P(h)h = 0; (7.17)

which is solved under the constraint khk = 1 by the PQML strategy as follows. At itera-

tion (i), P(h) is considered constant, computed thanks to the result of the previous itera-

tion/initialization h(i�1); as P(h) is positive semi-de�nite, the problem becomes quadratic

and h is the minimal eigenvector of P(h). This solution is used to reevaluate P(h) and further
iterations may be performed.

The di�culty consists in de�ning the right P(h), and especially with the positive semi-

de�niteness constraint. Denoting T
�
@h?

@hi

�
= �T ?

i , the gradient of the DML cost function

consists of two terms:

(P(h)h) (i) =

Y H�T ?Hi R+(h)T (h?)Y � Y HT H(h?)R+(h)
�
T (h?)�T ?Hi

�
R+(h)T (h?)Y :

(7.18)



7.7. Asymptotic Performance 121

Here, we consider that h is complex and complex derivation w.r.t. h� is applied; for a real

h, the results are similar. We assume that the pseudo{inverse is computed by regularization,

as recommended in [73]. In that case, for the purpose of taking derivations, we just need to

consider the derivative of a regular inverse.

In each iteration, P(h) will be considered as constant: h designates the instances of h that

we consider as variable (on which minimization will be done) and h designates the instances of

h that are considered as part of the constant P(h). The �rst term of P(h)h is YHR+(h)Yh,
and the second term is BH(h)B(h)h, with Y HT H(h?)R+(h)T (h?) = hTBT (h). Then, P(h)
has the following form:

P(h) = YHR+(h)Y � BH(h)B(h) : (7.19)

As M ! 1, the second term of P(h) tends to its expected value by the law of large

numbers. In appendix A, we prove that E
�
BH(h)B(h)

�
has a noise component equal to

�2vD, the asymptotic noise component of the IQML Hessian, but it also has a non{zero signal

component for h 6= ho. This prevents PQML from being asymptotically insensitive to the

initialization, unlike DIQML. However, when P(h) is evaluated at a consistent estimate of h,

the previously mentioned signal component becomes negligible and the global convergence

applies here also. PQML gives furthermore better performance than DIQML, and in fact,

o�ers asymptotically the same performance as ML.

The matrix P(h) is inde�nite for a �nite data lengthM , and applying the PQML strategy

directly will not work. In [72], h is chosen as the eigenvector corresponding to the smallest

absolute eigenvalue of P(h); it gives poor performance except at very high SNR.

PQML is closely related to DIQML as the �rst term of (7.13) and (7.19) are the same and

E(BH(ho)B(ho)) = �2vD(ho). By analogy with DIQML for which Q(h) was also inde�nite

for �nite M , we introduce an arbitrary � such that YHR+Y � �BHB is exactly positive

semi-de�nite. PQML then becomes the following minimization problem:

min
khk=1;�

hH
�
YHR+Y � �BHB

	
h (7.20)

with a semi-de�nite positivity constraint on the central matrix. The minimizing h is the min-

imal generalized eigenvector of YHR+Y and BHB, and � the minimal generalized eigenvalue.

Asymptotically for a consistent initialization, there is global convergence for h, as described

previously, and as well as � (! 1).

The identi�ability conditions for both DIQML and PQML are the same as for SRM.

7.7 Asymptotic Performance

In appendix A, we compute the performance of DIQML and PQML under our usual deter-

ministic constraints for h: hHh = hoHho and hHS2h = 0. We prove the following results:

� PQML has better performance than DIQML.
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� PQML has the same asymptotic performance as ML. The PQML global minimizer is

di�erent however from the ML global minimizer.

At high SNR, DIQML, PQML and DIQML exhibit the same performance.

7.8 Alternating Quadratic ML (AQML)

In addition to comparing the performance of DIQML and PQML to the optimal ML perfor-

mance, we will compare them to an algorithm we call Alternating Quadratic ML (AQML).

7.8.1 Alternating Minimization

AQML proceeds by alternating minimizations w.r.t. A and w.r.t h of the DML criterion:

min
h;A

kY � T (h)Ak2 (7.21)

(1) Initialization: ĥ(0).

(2) Iteration (i+ 1):

� Minimization w.r.t. A, h = ĥ(i): min
A
kY � T (ĥ(i))Ak2

bA(i+1) =
�
T H(ĥ(i))T (ĥ(i))

�
�1

T H(ĥ(i))Y (7.22)

� Minimization w.r.t. h, A = bA(i+1): min
h
kY � T (h) bA(i+1)k2 = min

h
kY � Â(i+1)hk2

ĥ(i+1) =
�
Â(i+1)HÂ(i+1)

�
�1

Â(i+1)HY (7.23)

(3) Repeat (2) until ( bA(i+1); ĥ(i+1)) � ( bA(i); ĥ(i)).

At any iteration (i+ 1), we assume that the algorithm gives a unique solution: T (ĥ(i)) has
full-column rank (i.e. Ĥ(z) is irreducible), as well as Â(i+1), otherwise as suggested in [74], we

take the minimum-norm solution (i.e. the regular inverse is replaced by the pseudo-inverse).

That case is unlikely though if ho and Ao are well-conditioned.

7.8.2 Convergence Study

In appendix B, a convergence study of AQML is proposed. Any AQML iteration is shown to

strictly decrease the cost function until a �xed point is attained. And the global minimizer

of DML (not necessarily its local minimizers though) is a �xed point of AQML. Convergence

is reached after an in�nite number of iterations.
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An interesting consequence of this algorithm is that even with a short data burst and

appropriate initialization, the algorithm will converge to the global ML minimizer, which is

not the case for PQML. However the great disadvantage of AQML is its slow convergence

which prohibits its use.

7.8.3 Asymptotic Behavior of AQML

The ML criterion for (A; h) is asymptotically (in the number of data) equivalent to :

min
h;A

�
kX � T (h)Ak2 + kV k2

	
, min

h;A
kX � T (h)Ak2 : (7.24)

So the asymptotic behavior of AQML is equivalent to its behavior in the noise{free case.

In [29], it has been shown that in the noise{free case, the true quantities are the only �xed

point of AQML for which h is irreducible and A is su�ciently exciting. Hence asymptotically,

AQML is essentially globally convergent.

7.9 Simulation Results

We consider an irreducible channel H of length N = 4 with m = 2 subchannels, complex

and randomly generated. The input symbols are drawn from an i.i.d. QPSK constellation.

The initialization of the DIQML/PQML algorithms is done by SRM.

In �gure 7.1, we plot the Normalized MSE (NMSE): NMSE= kh � ĥk2=khk2, the DML

cost function, the generalized eigenvalue for PQML and the ratio between the generalized

eigenvalue and �2v for DIQML, averaged over 500 Monte-Carlo runs of the noise. The burst

length is M = 100 and SNR=10dB. We notice that the averaged minimal generalized eigen-

value of DIQML tends to the noise variance �2v and that of PQML to 1, while remaining

smaller than these values in both cases. After 1 or 2 iterations, DIQML and PQML reach

their steady state.

In Figure 7.1 and 7.2, the NMSEs are shown for burst length 100 and 200 and SNR values

of 10dB and 20 dB. They are compared to the theoretical performance of DIQML and PQML,

the last one being also the DML performance. The CRB is also shown. An improvement

w.r.t. the SRM initialization can be observed for both algorithms, especially for PQML which

outperforms DIQML. Performance can be seen to be closed to the theoretical performance.

We do not plot IQML results which are much worse than SRM, DIQML and PQML.

At last, in �gure 7.3, we compare PQML and DIQML to AQML, where the slow conver-

gence of AQML can be noticed.
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7.10 Conclusion

We have presented two methods, DIQML and PQML, to solve the DML problem. DIQML is

asymptotically globally convergent but does not reach the ML performance. PQML reaches

asymptotically the ML performance with a consistent initialization, which can be given by

SRM or DIQML. Semi{blind extensions of PQML is presented in the next chapter and will be

shown to give better performance than their blind counterparts. Furthermore, a (blind and

semi{blind) extension of PQML has been proposed in a multiuser context (Spatial Division

Multiple Access (SDMA)) [23].
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A Performance Study of DIQML and PQML

A.1 Asymptotic behavior of PQML

For an Inconsistent Initialization

The element (i; j) of the Hessian P(h) of the PQML cost function can be written as:

P(h)(i; j) = Y H�T ?Hi R+(h)�T ?j Y| {z }
P1(h)(i; j)

�Y HT H(h?)R+(h)[�T ?j �T ?Hi ]R+(h)T (h?)Y| {z }
P2(h)(i; j)

:

(7.25)

EY Y H = �2aT (h
o)T H(ho) + �2vI implies:

EP1(h)(i; j) = �2atr
n
�T ?Hi R+(h)�T ?j T (h

o)T H(ho)
o
+�2vtr

n
�T ?Hi R+(h)�T ?j

o
(7.26)

EP2(h)(i; j) = �2atr
n
T H(h?)R+(h)

h
�T ?

j �T ?Hi

i
R+(h)T (h?)T (ho)T H(ho)

o
+�2vtr

n
�T ?Hi R+(h)�T ?j

o (7.27)

Then for h 6= ho, EP(h)(i; j) 6= �2atr
n
�T ?Hi R+(h)�T ?j T (h

o)T H(ho)
o
(i.e. the noise{free

IQML central matrix) because of the signal contribution in EP2(h)(i; j).

For a Consistent Initialization

Assume h is a consistent estimate of ho, i.e. h = ho + �h. We denote by P21(h) the �rst

term of P2(h):

EP21(ho + �h) = �2atr
n
T H(ho)T H(�h?)R+(ho)�T ?j �T ?H

i R+(ho)T (�h?)T (ho)
o

= O(k�hk2)
(7.28)

which is of order 2 in �h and the other terms in EP(h) can be veri�ed to be of order 1. So

P21(h) is negligible and, asymptotically, the role of P2 is to remove the noise contribution in

P1.

A.2 Generalized Eigenvector Problem: Av = �Bv

Let A and B be n-by-n matrices. Here are some useful properties of the generalized eigen-

vectors and eigenvalues of A and B.

� There are n eigenvalues if and only if rank(B)=n.

� If A and B are symmetric:

{ The �i's are real.
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{ Let Avi = �iBvi and Avk = �kBvk , �i 6= �k.

vHi Avk = vHi Bvk = 0 (7.29)

{ If rank(B)=n, fvigi=1;���;n form a basis.

{ If A and B are symmetric and positive semi{de�nite: �i � 0.

A.3 Performance of DIQML and PQML

We consider the following general blind channel estimation problem:

min
h;�

hH
n bA(Y ; hc)� � bB(Y ; hc)oh (7.30)

where hc is a consistent estimate of h, and compute its asymptotic performance under our

usual constraints: hHh = hoHho and ho TS2 hR = ho TS2 h
o
R = 0

As the data length tends to 1, bA(Y ; hc) M!1�! Ao(hc) and bB(Y ; hc) M!1�! Bo(hc).bA(Y ; hc) = 1
M Y

HR+(hc)Y for DIQML and PQML, and bB(Y ; hc) = 1
MD(h

c) for DIQML

and bB(Y ; ĥ) = 1
M
BH(hc)B(hc) for DIQML.

It can be shown that the channel estimation performance given by (7.30) is the same

when one uses bA(Y ; ho) = bA(Y ) and bB(Y ; ho) = bB(Y ) instead of bA(Y ; hc) and bB(Y ; hc).
Asymptotically, we have: ( bA(Y ) = Ao + eA(Y )bB(Y ) = Bo + eB(Y )

(7.31)

Asymptotic Expressions of ��

The solution of (7.30) for � and h is the minimal generalized eigenvalue and corresponding

eigenvector of bA(Y ) and bB(Y ).

bA(Y )ĥ� �̂ bB(Y )h = 0 ) �̂ =
ĥH bA(Y ) ĥ

ĥH bB(Y ) ĥ
: (7.32)

We denote ĥ = ho +�h and �̂ = �o +��. Then keeping only the �rst order terms, we get:

�� =
hoH [ bA(Y )� �o bB(Y )] ho

hoH Bo ho
(7.33)

Asymptotic Expressions of �h and C�h�h

After substitution of the solution for �, the estimation problem for h becomes:

min
h

n
hH
n bA(Y )� �̂(Y ) bB(Y )

o
h = F(h)

o
(7.34)
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Let Vo be a matrix the columns of which form a basis of the orthogonal complement of ho.

Proceeding as in [75] for the asymptotic analysis of the DML performance, keeping only the

�rst order terms in �h, we get the following asymptotic expressions for �h and C�h�h with

constraints: 8><>: �h = Vo
�
VoHJ(2)hh V

o
�
�1

VoH
@F(h)
@h�

C�h = Vo
�
VoHJ(2)hh V

o
�
�1

VoHJ(1)hh V
o
�
VoHJ(2)hh V

o
�
�1

VoH
(7.35)

where: 8>><>>:
J
(1)

hh = E

�
@F(h)
@h�

��
@F(h)
@h�

�H
J
(2)

hh = E
@

@h�

�
@F(h)
@h�

�H (7.36)

and F(h) is the cost function in (7.34).

J
(2)

hh = E
� bA(Y )� �̂(Y ) bB(Y )

�
= Ao � �oBo (7.37)

As Ao � �oBo admits ho has (unique) singular eigenvector,

Vo
�
VoHJ(2)hh V

o
�
�1

VoH = (Ao � �oBo)+ : (7.38)

Hence:

�h = (Ao � �oBo)+
� bA(Y )� �̂ bB(Y )

�
ho : (7.39)

Application to DIQML and PQML

Specializing (7.39) to DIQML and PQML, we get asymptotically:

�h =
�
XHR+X

�+ � bA(Y )� �̂ bB(Y )
�
ho

=
�
XHR+X

�+ � bA(Y )� �o bB(Y )���Bo(Y )
�
ho

(7.40)

For ML, the same kind of analysis gives [75]:

�hML =
�
XHR+X

�+ � bA(Y )� �o bB(Y )
�
ho (7.41)

where bA(Y ) and bB(Y ) are the same as in the PQML case. And so the estimate given by

DIQML and PQML is di�erent from the ML estimate.

We introduce:8>><>>:
W�o = E

��
Â(Y )� �oB̂(Y )

�
hoho

H
�
Â(Y )� �oB̂(Y )

�H�
W
�̂

= E

��
Â(Y )� �̂B̂(Y )

�
hoho

H
�
Â(Y )� �̂B̂(Y )

�H� (7.42)
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We get:

W
�̂
=W�o +

hoHW�oh
o

(hoHBoho)2
BohohoHBo H �

BohohoHW�o

hoHBoho
�
W�oh

ohoHBo H

hoHBoho
(7.43)

� Performance of DIQML

For DIQML, we have:

W�o(i; j) = �2v
�
XHR+X

�
(i; j) + �4vtr

n
�T ?Hi R+�T ?j

o
(7.44)

(Bo = D in equation (7.13)), and:

C
DIQML
�h = �2v

�
XHR+X

�+
+ �4v

�
XHR+X

�+ �
Bo �

BohohoHBo

hoHBoho

��
XHR+X

�+
(7.45)

� Performance of PQML

For PQML, we get:

W�o(i; j) = �2v
�
XHR+X

�
(i; j)+ �4vtr

n
�T ?H

i R+�T ?j PT (h)
o

(7.46)

W�o has one singular vector: h
o. Hence, W�oh

o = 0, so the last three terms in (7.43),

due to ��, disappear and W
�̂
= W�o . W�o is the same as the one for DML [75]. In

fact, for PQML, �� is of order
1

M
, whereas eA(Y )ho and eB(Y )ho are of order

1
p
M

, so

that in (7.30) �̂(Y ) can be replaced by �o.

C
DIQML
�h = �2v

�
XHR+X

�+
+ �4v

�
XHR+X

�+ ��
tr
n
�T ?Hi R+�T ?j PT (h)

o�� �
XHR+X

�+
(7.47)

C
PQML
�h = C

DIQML
�h � �4v

�
XHR+X

�+ ��
tr
n
�T ?Hi R+�T ?

j PT H(h?)

o�� �
XHR+X

�+
(7.48)

where ((Ai;j)) is another notation for matrix A. PQML has better performance than DIQML

and C
PQML
�h = CDML

�h .

B Convergence Study of AQML

The study proposed here uses results pointed out in [74] for the convergence study of ILSE

(Iterative Least-Squares with Enumeration).

De�nition 1 Let F : U ! U a mapping from a point of U to a point in U . A �xed point

uf 2 V of F veri�es F(u(f)) = u(f).

De�nition 2 A function f is a descent function for the mapping F if:
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1. f : V ! R is non-negative and continuous.

2. f(�u) < f(u) for �u = F(u) and u is not a �xed point of F .

3. f(�u) � f(u) for �u = F(u) and u is a �xed point of F .

Let un = (A(n); h(n)). AQML can be seen as an iterative process that generates the

sequence fung, de�ned as un+1 = F(un). Let f be the DML cost function; we prove that f

is a descent function: AQML decreases the DML cost function at each iteration.

kY � T (h(i+1))A(i+1)k = min
h
kY � T (h)A(i+1)k � kY � T (h(i))A(i+1)k (7.49)

There is strict inequality if h(i+1) 6= h(i), and equality if h(i+1) = h(i).

kY � T (h(i))A(i+1)k = min
A
kY � T (h(i))Ak � kY � T (h(i))A(i)k (7.50)

There is strict inequality if A(i+1) 6= A(i), and equality if A(i+1) = A(i). AQML decreases

strictly the cost function until a �xed point is attained: the points of convergence of AQML

are �xed points. Convergence is reached after an in�nite number of steps, unlike ILSE which

needs only a �nite number of steps.

We prove that the global minimizer of DML is a �xed point of AQML. The DML global

minimizer ĥML veri�es:

ĥML = argmin
h
kY H � T (h)

�
T H(h)T (h)

��1 T H(h)Y k2 (7.51)

The minimal value of the ML cost function is:

kY � T (ĥML)
�
T H(ĥML)T (ĥML)

�
�1

T H(ĥML)Y| {z }
= bA

k2 : (7.52)

If we now initialize AQML by bA to compute an estimate ĥ of the channel, then:

kY � T (ĥ) bAk2 < kY � T (h)
�
T H(h)T (h)

�
�1 T H(h)Y k2 (7.53)

which contradicts the fact that ĥML is the global minimizer.
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C Simulations
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Figure 7.1: NMSE, cost function, generalized eigenvalue for DIQML and PQML at 10dB, for

a burst length of 100.
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Figure 7.2: NMSE for DIQML and PQML at 10dB and 20dB for a burst length of 100 and

200.
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Figure 7.3: Comparison between DIQML, PQML and AQML at 10dB and 20 dB.



Chapter 8

SEMI-BLIND METHODS BASED ON

DETERMINISTIC

MAXIMUM{LIKELIHOOD

In this chapter, we propose semi{blind methods based on DML. Optimal semi{

blind methods are �rst presented that can take into account the information

coming from known symbols arbitrarily dispersed over the burst: these methods

use the AQML principle. In a second step, the known symbols are assumed

grouped: this allows to build suboptimal semi{blind criteria that are formed of

a linear combination of a training sequence based criterion and a blind cri-

terion: the weights of this combination are optimal in the ML sense. Three

criteria including three di�erent training sequence based estimation methods

are optimized using the semi{blind PQML as well as the AQML strategy. We

also construct a semi{blind criterion based on SRM which is used as initial-

ization of the DML based semi{blind algorithms. Simulations are presented to

illustrate the performance of these algorithms, and comparisons between them

are discussed. At last, we suggest a way to build semi{blind criteria combin-

ing some blind criterion and a training sequence based criterion. The subspace

�tting based semi{blind criterion is given as an example.
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8.1 Semi{Blind Methods

8.1.1 Optimal Semi{Blind Approaches

In a �rst step, we consider optimal solutions to the semi{blind estimation problem. Optimal

semi{blind algorithms should ful�ll a certain number of conditions:

� They should exploit all the information coming from the known and the unknown

symbols in the burst, and especially the observations containing known and unknown

symbols at the same time. This could be a di�cult task, as the classical training se-

quence based estimation cannot do it and blind estimation does not do it (and considers

the known symbols as unknown).

� They should work when the known symbols are arbitrarily dispersed.

� Semi{blind identi�ability conditions should also be respected: for example, the methods

should work for only one known symbol for irreducible channels, which is not system-

atically veri�ed by the suboptimal methods.

� With a su�cient number of known symbols, the optimal semi{blind methods should be

able to identify any channel, and especially monochannels.

Optimal semi{blind methods are methods that naturally incorporate the knowledge of

symbols. Maximum{Likelihood methods ful�ll this condition: DML, GML, FA-ML, SML

criteria incorporate the known symbols (and for some of them also the unknown symbols).

Methods estimating directly the input symbols like [76] are also good semi{blind candidates.

8.1.2 Suboptimal Semi{Blind Approaches

When the choice is possible, it is better to have grouped known symbols in general. Indeed,

in the contrary case, one looses the blind problem structure on which low computational

algorithms can be built. Also, as already seen in chapter 4, it is preferable for performance

reasons.

So, in a second step, we considered suboptimal semi{blind approaches which exist when

the known symbols are grouped. The proposed semi{blind methods are again based on ML.

In that case, a ML based semi{blind criterion can be written as:

Semi{blind criterion = �1 Training sequence criterion + �2 Blind criterion.

The weights �1 and �2 are the optimal weights in the ML sense: they are not arbitrary and

are deduced from the semi{blind ML problem. Such methods were initiated in [77] and [69].
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8.1.3 Linear Combination of a Blind and a TS criterion

We will see that it is possible to build semi{blind algorithms by simply linearly combining a

training sequence based criterion and a blind criterion (which does not allow to incorporate

the knowledge of symbols as ML criteria do). All the di�culty consists then in �nding the

right weights �1 and �2. One solution would be to determine the weights that optimize the

semi{blind performance: an analytical solution is di�cult to �nd and could necessitate a

computationally demanding search method. In some of the proposed semi{blind algorithms,

the weights take into account the number of data on which the training sequence based

criterion and the blind criterion are based. Other possibilities are user-de�ned weights based

on SNR conditions for example. These kinds of choices may appear however arbitrary and not

always appropriate. And, in fact, we may even wonder why the linear combination semi{blind

solution would be legitimate.

We propose to combine a blind and a training sequence based criterion by optimally

weighting the 2 criteria (when the blind criterion is based on least{squares). We treat exam-

ples where the optimal weighting matrix is approximated by a diagonal matrix. The resulting

criterion becomes then indeed a linear combination of the two criteria. Semi{blind SRM and

subspace �tting based criteria built that way will be proposed.

8.2 Semi-Blind AQML: a Semi{Blind Optimal Algorithm

Our purpose is to solve the semi{blind DML criterion:

min
h;AU

kY � T (h)Ak2 = min
h;AU

kY � TK(h)AK � TU(h)AUk2 : (8.1)

The alternating minimization strategy already used to solve blind DML can be adapted to

semi{blind estimation:

(1) Initialization ĥ(0):

(2) Iteration (i+ 1):

� Minimization w.r.t. A, h = ĥ(i):

min
AU

kY � T (ĥ(i))Ak2 , min
AU

kY � TK(ĥ(i))AK � TU(ĥ(i))AUk2 (8.2)

) bA(i+1)
U =

�
T HU (ĥ(i))TU(ĥ(i))

�
�1

T H
U (ĥ(i))

�
Y � TK(ĥ(i))AK

�
(8.3)

� Minimization w.r.t. h, A = bA(i+1): min
h
kY �T (h) bA(i+1)k2 , min

h
kY �T (h) bA(i+1)k2

) ĥ(i+1) =
�
Â(i+1)HÂ(i+1)

�
�1

Â(i+1)HY (8.4)

Â(i+1) is constructed from A
(i+1)

U and from AK .
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(3) Repeat 1 until ( bA(i+1); ĥ(i+1)) � ( bA(i); ĥ(i)).

Semi{blind AQML inherits the advantages and disadvantages of its blind counterpart. We

can prove as in the blind case that at each iteration of semi{blind AQML, the cost function

decreases until a �xed point is reached; and again with good initialization, AQML converges

to the global minimum. In the case where the known symbols are dispersed, we can see how

the blind problem part looses its structure as TU(h) has no particular structure properties.
The AQML strategy can also be used to solve semi{blind DML with the Finite Alphabet

(FA) constraint in the input symbols: (8.3) is just followed by a decision step.

Semi{blind AQML and the FA-AQML are semi{blind optimal as described previously.

8.3 Three Suboptimal Algorithms based on PQML

In this section, we assume that the known symbols are grouped and for simplicity reasons that

they are located at the beginning of the burst. We present here three semi{blind algorithms

based on the PQML: similar algorithms could have been constructed based on DIQML also,

which we will not consider here as it does not perform as well as PQML.

8.3.1 PQML Principle for Semi{Blind Estimation

The general semi-blind PQML strategy applies as follows: the gradient of the cost function

may be written as P(h)h+S(h) where P(h) is ideally positive de�nite. At each iteration, we

consider P(h) and S(h) as constant, and h is the solution of a linear system, which is used

to reevaluate P(h) and S(h) to perform other iterations.

8.3.2 Splitting the Data

The output burst can be decomposed into 3 parts, see �gure 8.1 (top):

1. The observations containing only known symbols.

2. The N � 1 overlap observations containing known and unknown symbols.

3. The observations containing only unknown symbols.

The proposed semi{blind criteria will consider a decomposition of the data into 2 parts, with

the overlap zone assimilated to the training part or the to the blind part of the semi{blind

criteria.
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Unknown Symbols
Only

Known Symbols Unknown Symbols

Only
Symbols

Symbols
Known

+
Unknown

Known

Overlap Zone

Y BY TS

Figure 8.1: Output Burst: split of the data for LS{PQML.

8.3.3 Least Squares{PQML (LS{PQML)

Split of the Data

In the �rst semi{blind approach, the overlap zone is assimilated to the blind part of the

semi{blind criterion. The data is split as Y =
�
Y T
TS Y T

B

�T
, see �gure 8.1:

� Y TS = TTS(h)ATS + V TS groups all the observations containing only known symbols:

the input symbols ATS are naturally modeled as known deterministic quantities.

� Y B = TB(h)AB + V B groups all the observations containing unknown symbols and

especially the overlap observations, where we do not exploit the knowledge of the sym-

bols, which will be treated as unknown. Some information is then lost. This loss of

information can be critical especially when the training sequence is very short, of less

than N symbols (see the identi�ability section).

We apply the DML principle to:

Y =

"
Y TS

Y B

#
� N

 "
TTS(h)ATS
TB(h)AB

#
; �2vI

!
(8.5)

As Y TS and Y B are decoupled in term of noise, the DML criterion for Y is the sum of the

DML criterion for Y TS and Y B :

min
h;AB

�
kY TS � TTS(h)ATSk2 + kY B � TB(h)ABk2

	
: (8.6)

This criterion can be optimized by alternating minimizations between h or AB. We can also

solve w.r.t. AB and substitute the solution to get the semi{blind DML criterion for h:

min
h

n
kY TS � TTS(h)ATSk2 + Y H

BPT HB (h?)Y B

o
: (8.7)
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In the following section, we minimize this criterion by semi{blind PQML and prove that it

is simply equivalent to optimizing the blind part of the criterion by PQML and the training

sequence part by Least-Squares.

Semi{blind PQML

The gradient of the cost function is:

PB(h)h� AHTS (Y TS � ATSh) = 0

,
�
PB(h) +AHTSATS

�
h = AHTSY TS

(8.8)

where: TTS(h)ATS = ATSh. PB(h)h corresponds to the blind decomposition of equation

(7.19). Our quantities of interest are:(
P(h) = PB(h) +AHTSATS = YHBR

+
BYB � B

H
BBB +AHTSATS

S(h) = �AHTSYTS :
(8.9)

For �nite M , YHBR
+
BYB �B

H
BBB is inde�nite: in general, the presence of the training se-

quence term AHTSATS allows P(h) to be positive de�nite. The generalized eigenvalue strategy

could then be avoided; we observed however a better behavior of the algorithm when using

it, the convergence speed particularly is higher. Our semi{blind criterion then becomes:

min
h;�

�
kY TS � TTS(h)ATSk2 + hH

�
YHBR

+
BYB � � BHBBB

	
h
	

(8.10)

with the semi{de�nite positivity constraint of PB(h). When introducing this generalized

eigenvalue, the �rst blind term of PB(h) becomes positive semi{de�nite and the presence of

the second training sequence term allows P(h) to be positive. At a given iteration, h has for

expression:

h =
�
AHTSATS + Y

H
BR

+
BYB � �BHBBB

��1AHTSYTS (8.11)

where the di�erent quantities are computed thanks to the previous iteration.

Identi�ability

LS{PQML is a suboptimal way of solving the semi{blind problem and the semi{blind iden-

ti�ability conditions about the number of known symbols necessary no longer hold exactly.

For irreducible channels, the previous criterion (8.10) needs at least N known symbols to

be well{de�ned: PB(h) is indeed positive semi{de�nite with 1 singularity, with N known

symbols AHTSATS has rank 1, which is su�cient to allow P(h) to be positive de�nite. For a

reducible channel with Nc�1 zeros, asymptotically PB(h)! XH
B R

+
BXB has Nc singularities,

and N +Nc known symbols are necessary to have a well{conditioned problem. Furthermore,

monochannels cannot be identi�ed, because the blind criterion is not de�ned for monochan-

nels.
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8.3.4 Alternating Quadratic PQML (AQ{PQML)

Here, the overlap zone will be assimilated to the training part of the criterion. The data is

split as Y = [Y T
AQ Y

T
B]
T , see �gure 8.2:

� Y AQ = TAQ(h)AAQ + VAQ = T 0

K(h)ATS + T 0U(h)A
0

U + VAQ groups all the observa-

tions containing the known symbols ATS and especially the overlap observations. The

unknown symbols in Y AQ, A
0

U , are considered as deterministic.

� Y B = TB(h)AU + V B groups all the observations containing only unknown symbols:

all the input symbols are considered as deterministic unknown quantities

DML is applied to [Y T
AQ Y

T
B]
T :

min
h;AB ;A

0
U

�
kY TS � TAQAAQk2 + kY B � TB(h)ABk2

	
: (8.12)

Semi{blind AQML proceeds as:

1. Initialization ĥ(0)

2. Iteration (i+1):

� AQML on Y AQ, initialized by ĥ(i).

Criterion min
h;A0U

kY AQ�TAQ(h)AAQk2 = min
h;A0U

kY AQ�T 0K(h)ATS�T
0

U(h)A
0

Uk
2 solved

by alternating minimization on A0U and h. We keep only the estimate of A0U , to

form the new estimate of bAAQ: bA(i+1)
AQ = [A0

(i+1)
U

T
ATK ]

T .

� Solve the semi{blind criterion to get ĥ(i+1):

We can minimize alternatively between AB and h starting from ĥ(i) based on the

criterion :

min
h;AB

n
kY AQ�TAQ(h)A

(i+1)
AQ k2+kY B � T (h)ABk

o
: (8.13)

We can also solve the PQML based criterion:

min
h;�

n
kY AQ�TAQ(h)A

(i+1)
AQ k2+hH

�
YHBR

+
B(ĥ

(i))YB��BHB (ĥ
(i))BB(ĥ(i))

�
h
o
:

(8.14)
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Figure 8.2: Output Burst: split of the data for AQ{PQML and PQML-LS.

8.3.5 Weighted{Least{Squares{PQML (WLS{PQML)

Split of the Data

WLS{PQML is based on the same decomposition as AQ{PQML. It mixes a deterministic and

a Gaussian point of view: the unknown symbols A0U in the overlap zone are modeled as i.i.d.

Gaussian random variables of mean 0 and variance �2a. We denote Y WLS = TWLS(h)AWLS+

V WLS = T 0K(h)ATS + T
0

U (h)A
0

U + V WLS . GML is applied to Y WLS and DML to Y B:

8>><>>:
Y =

"
Y WLS

Y B

#
� N

 "
T 0K(h)ATS
TB(h)AB

#
;

"
CYWLSYWLS

0

0 �2vI

#!
;

CYWLSYWLS
= �2aT 0

U (h)T
0

U(h) + �2vI

(8.15)

The mixed ML criterion is:

min
h;�2v

n
ln detCYWLSYWLS

+
�
Y WLS � T 0K(h)ATS

�H
C�1
YWLSYWLS

�
Y WLS � T 0K(h)ATS

�
+ ln det �2vI +

1

�2v

Y H
B � TB(h)AB

2� :

(8.16)

Again, we optimize this criterion by semi{blind PQML, considering �2v as known: in

practice, it will be estimated apart. We prove that it is simply equivalent to solving the

blind part of the criterion in the PQML way and the training sequence part by weighted

least-squares, i.e. we neglect the term in det and in the second term, consider CYWLSYWLS
as

constant (computed from the previous iteration).
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Semi{Blind PQML

If we apply the PQML strategy to the training part of the cost function:

ln detCYWLSYWLS
+
�
Y WLS � T 0K(h)ATS

�H
C�1
YWLSYWLS

�
Y WLS � T 0K(h)ATS

�
(8.17)

we can prove that it can be approximated by the optimally WLS criterion. The mixed

criterion becomes:

min
h

�
kY WLS � TWLS(h)AWLSk2C�1

YWLSYWLS

+
1

�2v
Y H
BPT H

B
(h?)Y B

�
: (8.18)

The PQML quantities are:8<: P(h) =
1

�2v
PB(h) +AHWLSC

�1
YWLSYWLS

AWLS

S(h) = �AHWLSC
�1
YWLSYWLS

Y WLS

(8.19)

with T 0

K(h)ATS = AWLSh. At each iteration, the solution for h is:

h =

�
1

�2v

�
YHBR

+
BYB � �B

H
BBB

�
+ AHWLSC

�1
YWLSYWLS

AWLS

�
�1

AHWLSC
�1
YWLSYWLS

YWLS :

(8.20)

where � is the minimal generalized eigenvalue of YHBR
+
BYB and BHBBB.

Now, alternating minimizations between h and AB can be done on the criterion:

min
h;AB

�
kY WLS � TWLS(h)AWLSk2C�1YWLSYWLS

+
1

�2v
kY B � TB(h)ABk2

�
: (8.21)

AQ{PQML and WLS{PQML outperforms LS{PQML because the information coming

from the known symbols in the overlap zone is used.

Identi�ability

For an irreducible channel, AQ{PQML and WLS{PQML are de�ned with only 1 known

symbol. For a reducible channel with Nc � 1 zeros, Nc known symbols are su�cient to have

a well{conditioned problem.

8.3.6 Performance

The semi{blind performance can be seen from 2 points of view.

� Asymptotic number of unknown and known symbols.

In this case, the overlap received data containing known and unknown symbols at

the same time can be neglected: LS-PQML, WLS-PQML and AQ-PQML becomes
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equivalent and reach the semi{blind DML performance. Assume we have a consistent

estimate of the channel, an iteration gives the global minimizer (results that can be

obtained by the same asymptotic reasonings as for the blind PQML in Chapter 7).

� Asymptotic number of unknown symbols, �nite number of known symbols.

We prove in [78] that the performance expressions we have in the previous asymptotic

conditions are also valid when the number of known symbols is small. This fact is

veri�ed by simulations.

8.4 Initialization of the Semi{Blind ML Algorithms

The PQML based semi{blind algorithms needs an initialization. A natural initialization is

by a semi{blind algorithm based on SRM, which will not need any initialization (we will see

that we will need in fact only an estimate of the norm of the channel).

8.4.1 Semi{Blind SRM as a Linear Combination of Blind SRM and TS Criterion

Semi{Blind SRM illustrates the fact that it may be di�cult to build a semi{blind criterion

as a linear combination of a blind and a TS criterion. Indeed, consider the following cost

function:

kY TS � TTS(h)ATSk2 + � hHYHB YBh : (8.22)

(used the decomposition of �gure 8.1). The blind SRM criterion minhh
HYHYh gives unbi-

ased estimates only under the constant norm constraint for the channel. As the semi{blind

criterion is optimized without constraints, the blind SRM part gives biased estimates which

renders the performance of the semi{blind algorithm poor.

For the criterion to be unbiased, the term YHB YB needs to be denoised. We remove

�min(YHB YB) (the minimum eigenvalue of YHB YB), the resulting matrix Y
H
B YB��min(Y

H
B YB)I

has exactly one singularity.

Once the criterion is denoised, the choice for the constant � remains unsolved. A way

to determine this factor would be to minimize the asymptotic performance of the semi{blind

SRM channel estimate (computed with MU and MK considered as in�nite). In our case, it

is impossible analytically, and search techniques would represent an increase in complexity.

In the next section, we construct semi{blind SRM as an approximation of DIQML: the

blind SRM part will be automatically denoised.
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8.4.2 Semi{Blind SRM as an Approximation of DIQML

We know that the semi{blind ML criterion gives the optimal weights between the blind and

training sequence part:

kY TS � TTS(h)ATSk2 + hHYHBR
+(h)YBh : (8.23)

We neglect the o�-diagonal terms of R(h): R(h) = D(h). For m = 2, the diagonal is

constant with elements equal to khk2. For m > 2, the diagonal contains the squared norm

of each set of 2 subchannels. For example, for m = 3, the �rst three diagonal elements are:

kH1k2F + kH2]k2F , kH2k2F + kH3k2F , kH1k2F + kH3k2F and are repeated along the diagonal M

times.

With this approximation, (8.23) becomes:

kY TS � TTS(h)ATSk2 + hHYHBD
+(h)YBh (8.24)

and we optimize it in the DIQML way in order to denoise it; D(h) = D is considered as

constant. The semi{blind criterion becomes:

min
h

n
kY TS � TTS(h)ATSk2 + hH

�
YHB D

�1YB �c�2vDv� ho (8.25)

where hHDvh = tr
�
T H(h?)D�1T (h?)

	
, andc�2v will be the generalized eigenvalue ofYHB D�1YB

and Dv .
The norm of the di�erent subchannels, used to compute D, can be recovered by an

estimate of the denoised second{order moment of a data sample ryy(0) = �2aHH
H : r̂yy(0)�c�2vI =PM�1

i=0 y(k)yH(k)�c�2vI . As will be seen in the simulations, at low SNR, the weight on

the blind part should be in fact lower than the true value of D, Do. So instead of estimating

the energy of each channel by the denoised rY Y (0), we determine it by the noisy one: the

resulting D will be lower than Do.
In general, the di�erent channels will have the same energy, so thatD can be considered as

a constant diagonal matrix with element[khk2m2 . When m = 2, this is not an approximation.

With D as constant diagonal, c�2v is the minimal eigenvalue of YHB YB , and the semi{blind

criterion becomes:

min
h

(
kY TS � TTS(h)ATSk2 +

2

m

1

[khk2
hH
�
YHB YB � �min(Y

H
B YB)

�
h

)
: (8.26)

An alternative to this semi{blind SRM criterion, is to use the decomposition of �gure 8.6 and

use WLS or AQML to solve its training sequence part as for PQML. We will call criterion

(8.26) LS-SRM and the alternatives WLS-SRM and AQ-SRM.

To make a link with section 8.6, we can note that (8.23) can be seen as an optimally

weighted combination of blind SRM and TS based criterion. The semi{blind SRM is deduced

by treating correctly the IQML strategy (the denoising) and approximating the weighting.
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8.5 Simulations

We illustrate here by simulations the behavior of the di�erent semi{blind algorithms. Most

of the simulations are based on 1000 Monte{Carlo runs of noise and the input symbols, as

well as of the channels. We tested channels with randomly chosen coe�cients, and GSM

channels according to two typical GSM propagation environments: Typical Urban (TU) and

Hilly Terrain (HI) as speci�ed in the ETSI standard [79].

8.5.1 Simulations for semi{blind SRM

Non Weighted, Non Denoised Semi{Blind SRM In �gure 8.5, we see the e�ect of not

denoising the semi{blind SRM criterion: the NMSE is plotted w.r.t. � in equation (8.22).

For � = 1 (which corresponds to a simple concatenation of the blind and the TS criterion

equations), performance is worse than with TS channel estimation. We furthermore notice

that this incorrectly built semi{blind criterion is very sensitive to the value of �.

Weighted and Denoised Semi{Blind SRM In �gure 8.6, we plot the NMSE w.r.t. �kHk2.
At relatively high SNRs, we can see that the optimal � is closed to 1=kHk2. At lower SNRs,
however, the optimal � is lower than 1=kHk2. We call �n the � in (8.26) obtained from the

noisy received signal covariance matrix and �d, the one obtained from the denoised covariance

matrix. We show the case of 7 known symbols for which TS estimation is not de�ned. From

this simulations, we can conclude that the approximation of the weighting matrix is valid;

furthermore, we see that the criterion is relatively insensitive to the value of �.

Underestimation of the Channel Order In �gure 8.7, we see the e�ect of underestimating

the channel order and how semi{blind estimation allows to overcome this problem which

blind deterministic methods cannot do.

Channel with a Common Zero In �gure 8.8, a channel with a common zero is tested.

Channel with more than 2 Subchannels In Figure 8.9, the case of a channel with 6 sub-

channels is shown. Semi{blind SRM as in (8.25) and as in (8.26) is tested. For subchannels

with di�erent energies, (8.25) gives slightly better results than (8.26), but the gain is not

signi�cant. So, approximation (8.26), for m > 2, is valid.

Semi{Blind SRM vs SNR At last, in �gure 8.11 and 8.12, we plot LS-SRM, WLS-SRM and

AQ-SRM and compare it to TS estimation as well as blind estimation (with the scale factor

adjusted using the training sequence). Two kinds of channels are tested: random channels

and GSM channels (model TU). Ten Monte{Carlo realizations of the channels are done and

for each realization, 100 realizations of the noise and the input symbols. We see the gain
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brought by semi{blind techniques w.r.t. to blind and TS methods. Blind SRM performs

particularly poorly: this is due to the fact that among all the realizations of the channel

several ones completely failed (we did not reject the worst realizations), but this did not

happen for semi{blind SRM. WLS-SRM appears as the best method (especially for the GSM

channels). Semi{blind performance is very closed to the optimal theoretical performance of

semi{blind ML, except for di�cult experimental conditions: GSM channels and 6 known

symbols (for which TS estimation is not de�ned).

8.5.2 Simulations for Semi{Blind PQML

Simulations for the PQML based semi{blind algorithms are presented in �gures 8.13{8.18 for

severe experimental conditions. The semi{blind algorithms are compared to the semi{blind

FA method (see section 8.2).

We show the NMSE given by all the semi{blind algorithms in (8.13) for a randomly

chosen channel (N = 4, m = 2) and 1000 Monte-Carlo runs of the noise and input symbols;

7 symbols are known (which is the limit for TS identi�ability). The PQML based semi{blind

criterion and AQML are initialized either by TS or LS{SRM. The semi{blind algorithms

improve dramatically TS performance and give better results that blind PQML. LS{SRM

gives performance very closed to the optimal ML performance so that semi{blind PQML

cannot really bring a signi�cant improvement. The FA algorithm outperforms the semi{

blind criteria, but we notice a certain sensitivity to the initialization at 5dB.

To illustrate the lack of robustness of blind methods, we show in �gure 8.14 simulations

with Monte{Carlo runs on random channels also: the particularly poor performance of blind

estimation can be noticed.

GSM channels are also tested. For TU channels (N = 4, m = 2), 7 known symbols

and M = 100 (�gure 8.15), semi{blind PQML becomes more sensitive to bad experimental

conditions, especially at 5dB. For a very short burst of M = 50, the semi{blind algorithms

performs as well as the FA method at 5dB and 10dB. This remark is also valid for the

experiments at 5 known symbols (�gure 8.17) for which TS estimation does not work. HI

channels (N = 7, m = 2) are at last tested (�gure 8.18) for which again, except at 20dB, FA

methods do not improve signi�cantly semi{blind methods.

8.5.3 Conclusions Drawn from the Simulations

From the simulations, we can draw the following important conclusions:

� The proposed semi{blind methods outperforms the TS based methods but also blind

methods which lack robustness to poor experimental conditions.

� Semi{blind methods are very good candidates to initialize the FA algorithm, especially

when the training sequence is too short to estimate the channel. For severe experimental
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conditions, it is even more prudent to use semi{blind criteria because FA methods tend

to converge to local minima.

� Among all the criteria proposed, the best one appears to be WLS-PQML.

� Semi{Blind SRM, a particularly simple semi{blind algorithm, appears also as very

attractive as its performance is closed to WLS{PQML.

8.6 Semi{Blind Criteria as a Combination of a Blind and a TS

Based Criteria

8.6.1 Linear Combination

Some algorithms have been proposed that linearly combine a TS and a blind criteria: in [80] a

semi{blind criterion is proposed based on the (non{weighted) Subspace Fitting (SF) criterion;

in [81, 82], another one is based on the blind CMA criterion.

Finding the right weights is not an easy task. Take the example of SF based semi{blind

cost function:

� k bP?
T
(B)

L (ĥ)
T (B)
L (h)k2 + kY TS � TTS(h)ATSk2 , � hHSHS h+ kY TS � TTS(h)ATSk2 :

(8.27)

We adopt here the decomposition of �gure 8.1; L is the size of the convolution matrix con-

sidered. In [80], � was chosen equal to the number of data on which the blind criterion is

based, i.e. MU .

In �gures 8.3, we plot the NMSE of channel estimation w.r.t. � for di�erent size L, for

20dB, 20 known symbols and 10dB, 10 known symbols. For L = N , the semi{blind criterion

is relatively insensitive to the value of �. For L larger than N , however, it is visibly very

sensitive to its value, especially for a small SNR and small number of known symbols. The

choice � =MU can give performance worse than that for training sequence based estimation.

These simulations suggest that the linearly combined semi{blind algorithm is sensitive to the

dimension of the noise subspace which varies when L varies.

As explained for the semi{blind SRM example, trying to determine the value of � that

minimizes the (theoretical) semi{blind performance expression is not a viable solution, espe-

cially for computational reasons.

8.6.2 Weighted Combination

One solution to build a criteria combining a blind and a TS criteria is to optimally weight the

2 criteria. The semi{blind SRM criterion is built this way, and the proposed simpli�cation,

which appears in a linear combination form, is based on the weighting matrix of the blind

criterion.
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Figure 8.3: Semi{blind subspace �tting built as a linear combination of blind SF and training

sequence based criteria.

Although we did not test it yet (for lack of time), the proper semi-blind SF cost function

would be :

min
h

�
hHSHW+Sh+

1

�2v
kY TS � TTS(h)ATSk2

�
(8.28)

where W = E
�
S hhHSH

�
is the optimal weighting matrix, whose expression can be found

in [83]. W is of the form W =
1

MU

�
�2vW

(o) + �4vW
(1)
�
and is computed thanks to a con-

sistent channel estimate, as for the blind WSF criterion. W gives naturally the term MU as

component of the weighting of blind SF part.

Considering that the weighting matrix contains the information about the dimension N

of the noise subspace in the criterion, we propose to replace W by
1

MU

�2vN I , the semi{blind

SF criterion is then

min
h

�
MU

N
hHSHSh+ kY TS � TTS(h)ATSk2

�
: (8.29)

Let us specify that this is just a �rst try, and that we will be looking for a better justi�cation

(and maybe improvement) for this semi{blind criterion. In fact, this weighting turns out to

give satisfactory results, as illustrated in �gure 8.4 (Semi{blind SF (1) is the criterion (8.27)

and Semi{blind SF (2) is the criterion (8.29)), with � as coe�cient of the blind part.

8.7 Conclusion

In this chapter we have derived semi{blind algorithms all based on DML. We have seen

through simulations that semi{blind algorithms perform better than their blind counterpart,



148 Semi-Blind Methods based on Deterministic Maximum{Likelihood Chapter 8

0 50 100 150 200 250
10

−3

10
−2

10
−1

α

Semi−Blind Subspace Fitting w.r.t. α − M=200 − 20 known symbols − 20 dB
N

M
S

E

α=M
U

Semi−blind SF (1)
Semi−blind SF (2)

L=3N
L=2N
L=N

L=3N

L=2N

L=N

L=4N

0 50 100 150 200 250
10

−2

10
−1

10
0

α

Semi−Blind Subspace Fitting w.r.t. α − M=200 − 10 known symbols − 10 dB

N
M

S
E

α=M
U

Semi−blind SF (1)
Semi−blind SF (2)

L=N

L=4N

L=3N

L=2N

Figure 8.4: Semi{blind subspace �tting built as a linear combination of blind SF and training

sequence based criteria.

especially for ill{conditioned channels like GSM channels. We have seen that semi{blind

algorithms perform well when TS methods cannot work because the training sequence is too

short. In this case they appear as particularly appropriate to initialize methods that exploit

the �nite alphabet of the input symbols. The best method appears to be WLS{PQML, based

on optimally weighted least squares for the TS part of the criterion. Being able to take this

overlap observations was one the challenges of semi{blind for it to work very well with few

known symbols, i.e. fewer symbols that what is required to estimate the channel by training

sequence, and also bad experimental conditions. The example of semi{blind SRM and SF

have shown us that semi{blind criteria combining a certain blind criterion and a TS criterion

are not trivial to construct and we have proposed a way to manage to proceed to a successful

combination.
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A Simulations for the Semi{Blind Algorithms
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Figure 8.5: Performance of the non{weighted, non{denoised Semi{Blind SRM (SB{SRM)

w.r.t the scalar � for a random channel (left) and a GSM channel (right). For � = 1, semi{

blind SRM performs worse than TS estimation (� = 0).
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Figure 8.6: Performance of the weighted and denoised SRM with right channel order: semi{

blind SRM is quite insensitive to the value of � (around 1) especially at high SNR.
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Figure 8.7: Channel Order Overestimation: performance of semi{blind SRM w.r.t. the

scalar �; over= N 0 �N , where N 0 is the overestimated channel length.
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Figure 8.8: Channel with a common zero: performance of semi{blind SRM w.r.t. the

scalar �.
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Figure 8.9: Six Subchannels with same energy: performance of semi{blind SRM w.r.t

the scalar �.
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Figure 8.11: Performance of semi{blind SRM w.r.t the SNR.
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Figure 8.12: Performance of semi{blind SRM w.r.t the SNR.
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Figure 8.13: Semi{Blind Algorithms for a Random Channel of length 4 and a Burst Length

of 100; 9 known symbols.
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Figure 8.14: Semi{Blind Algorithms for Random Channels of length 5 and a Burst Length of

100: 1000 Monte{Carlo Runs of the channels, the input symbols and noise; 9 known symbols.
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Figure 8.15: Semi{Blind Algorithms for GSM Channel (\Typically Urban") of length 4 and

a Burst Length of 100: 1000 Monte{Carlo Runs of the channels, the input symbols and noise;

7 known symbols.
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Figure 8.16: Semi{Blind Algorithms for GSM Channel (\Typically Urban") of length 4 and

a Burst Length of 50: 1000 Monte{Carlo Runs of the channels, the input symbols and noise;

7 known symbols.
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Figure 8.17: Semi{Blind Algorithms for GSM Channels (\Typically Urban") of length 4 and

a Burst Length of 100 and 50: 1000 Monte{Carlo Runs of the channels, the input symbols

and noise; 5 known symbols.



A. Simulations for the Semi{Blind Algorithms 161

0 1 2 3 4 5
10

−1

10
0

Number of iterations

N
M

S
E

SB−SRM

WLS−PQML

Semi−Blind Algorithms − HI Channels − 5dB − M=100 − 10 known symbols

WLS−PQML
AQML
FA

0 1 2 3 4 5
10

−1

10
0

Number of iterations

N
M

S
E

SB−SRM

WLS−PQML

Semi−Blind Algorithms − HI Channels − 5dB − M=50 − 10 known symbols

WLS−PQML
AQML
FA

0 1 2 3 4 5
10

−1

10
0

Number of iterations

N
M

S
E

SB−SRM

WLS−PQML

Semi−Blind Algorithms − HI Channels − 10dB − M=100 − 10 known symbols

WLS−PQML
AQML
FA

0 1 2 3 4 5
10

−1

10
0

Number of iterations

N
M

S
E

SB−SRM

WLS−PQML

Semi−Blind Algorithms − HI Channels − 10dB − M=50 − 10 known symbols

WLS−PQML
AQML
FA

0 1 2 3 4 5
10

−2

10
−1

10
0

Number of iterations

N
M

S
E

SB−SRM

WLS−PQML

Semi−Blind Algorithms − HI Channels − 20dB − M=100 − 10 known symbols

WLS−PQML
AQML
FA

0 1 2 3 4 5
10

−2

10
−1

10
0

Number of iterations

N
M

S
E

SB−SRM

WLS−PQML

Semi−Blind Algorithms − HI Channels − 20dB − M=50 − 10 known symbols

WLS−PQML
AQML
FA

Figure 8.18: Semi{Blind Algorithms for GSM Channels (\Hilly Terrain" (HI)) of length 7 and

a Burst Length of 100 and 50: 1000 Monte{Carlo Runs of the channels, the input symbols

and noise; 10 known symbols.
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Chapter 9

BLIND AND SEMI{BLIND

GAUSSIAN

MAXIMUM{LIKELIHOOD

In this chapter, we show that Gaussian ML (GML) can be seen as a form

of covariance matching method and compare its performance to the classical

covariance matching method based on weighted least-squares: both methods are

equivalent for an asymptotic number of data and asymptotic size of covariance

matrix. We use the scoring algorithm to solve GML and compare it to the blind

and semi{blind deterministic methods of the previous chapter. Furthermore,

we derive two fast algorithms which are approximations of the scoring method

and the steepest descent algorithm, based on frequency domain approximation

of the gradient of GML and the FIM. As for semi{blind deterministic methods,

we give an example, based on covariance matching, to suggest how Gaussian

semi{blind criteria could be built.
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9.1 Comparison of GML with the Covariance Matching Method

We compare GML to the Optimally weighted Covariance Matching (OCM) method [37]

which is commonly said to be the most powerful method based on the second{order moments

of the data. In DOA estimation, it is well-known that the equivalent of OCM and GML

have asymptotically the same performance. Here, we are in a temporal context which di�er

from the DOA spatial context, and the performance equivalence problem is somewhat more

di�cult to handle. A noticeable di�erence between the DOA problem and our problem is

that the optimal performance of OCM is attained when the length of the correlation sequence

considered is in�nite. Only the case of a complex channel will be treated in this section.

9.1.1 GML as a Covariance Matching Method

By the law of large numbers, the GML criterion:

min
�=(h;�2v)

�
ln(detCY Y (�)) + tr

�
C�1
Y Y (�)Y Y

H
		

(9.1)

is equivalent to:

min
�=(h;�2v)

�
ln(detCY Y (�)) + tr

�
C�1
Y Y (�)E

�
Y Y H

�		
: (9.2)

Then, asymptotically, Y Y H can be considered in the criterion as an estimate of CY Y : bCY Y =

Y Y H . The GML criterion can then also be written as:

min
�=(h;�2v)

n
ln(detCY Y (�)) + tr

n
C�1
Y Y (�)

bCY Y oo : (9.3)

Equation (9.3) looks then like a criterion matching CY Y (�) to its estimate bCY Y = Y Y H ,

and then can be seen as a form of covariance matching.

9.1.2 Covariance Matching Method

The covariance matching method proceeds to a weighted least-squares �t between:

� the model of the second order statistics of the received signal:

R(�) = [ryy(0); ryy(1); � � � ; ryy(L� 1)]

where

8<: ryy(i) =
X
k

�2ah(k)h
H(k + i) + �i0�

2
vI

L is the length of the correlation sequence considered

(9.4)
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� their sample estimate built from the data:

bR = [r̂yy(0); r̂yy(1); � � � ; r̂yy(L� 1)]

where

8>>><>>>:
r̂yy(i) =

1

M � i

X
k

y(k)yH(k + i)

y(k) is the output of the multichannel at time k

M is the number of multichannel outputs available

(9.5)

As for all Gaussian methods, the parameter estimate is � =
�
hT �2v

�T
. Let rR(�) and r̂R

be two vectors containing the real and imaginary parts of the elements of R(�) and bR resp.

(they contain only the real part of ryy(0) which is real and of eryy(0)). The covariance matrix
criterion may be written as:

min
�

(r̂R � rR(�))HWR (r̂R � rR(�)) (9.6)

where WR is a weighting matrix. The optimal weighting matrix is:

Wo
R =

�
E [r̂R � rR(�o)] [r̂R � rR(�

o)]H
�
�1

: (9.7)

�o is the true parameter value: in practice, �o is replaced by a consistent estimate, which

does not change the asymptotic performance of the criterion.

Which elements should be considered in ~rR(�) = r̂R � rR(�)? The authors of [37, 38]

consider only the (non-redundant) non zero coe�cients and claim that they are su�cient to

get the optimal performance. This is not true however as stated in [39]. The optimal perfor-

mance is obtained when the number of covariance lags involved tends to 1. Asymptotically,

OCM corresponds then to the best method exploiting the second order moments of the data

and is equivalent, from a performance point of view, to GML.

9.1.3 Alternative Formulation

In order to give a closed form and simple expression for Wo
R as well as for the performance

of the OCM, it is convenient to express the covariance matching method as a �t between the

model of the covariance matrix of the received signal:

RL(�) = �2aTL(h)T
H
L (h) + �2vI (9.8)

and its sample estimate:

bRL =
1

M

MX
k=0

Y L(k)Y
H
L (k) : (9.9)
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Let the vectors r(�) and r̂ be de�ned as:

r(�) = vecfRL(�)g and r̂ = vecf bRg : (9.10)

OCM may be written as:

min
h;�2v

(r̂ � r(�))HWo+ (r̂ � r(�)) : (9.11)

This criterion can be proved to be equivalent to the matching criterion on the real and

imaginary parts of r(�), basically because r(�) contains one element and its conjugate. The

optimal weighting matrix is singular because r(�) contains redundant elements: the choice of

the pseudo{inverse of the weighting matrix leads to the best performance.

Formulation (9.11) is also equivalent to matching only the non redundant elements of r(�),

i.e. the elements of the �rst block column and block line of the matrices RL(�): vecfrog,
vecfR�

1g, vecfR1g as shown in �gure 9.1. Note that this is true because we weight the

criterion optimally: for a non{weighted formulation, this is not valid.

RH
1

R1

ro

RL(�) =

Figure 9.1: Elements selected in the covariance matrix to build the CM criterion.

The performance of the optimally weighted covariance matching method are:

C~�R~�R
=

"�
@rH(�)

@�R

�
Wo+

�
@rT (�)

@�R

�T#+
(9.12)

where the performance is computed under our usual phase constraint (4.7). In appendix A, we

study in more detail the performance of OCM, and especially the expression for the optimal

weighting matrix which is:

Wo =
1

M

24 L+N�1X
u=�(L+N�1)

RTL(u)
RL(�u)� vec
�
�2aT (h)T

H(h)
	
vecH

�
�2aT (h)T

H(h)
	35
(9.13)

where RL(u) = E
�
Y L(k)Y

H
L (k + u)

�
.
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9.1.4 Simpli�ed Covariance Matching Criterion

Consider the following simpli�cation of the weighting matrix:

Ws =
1

M

�
RTL 
 RL

�
(9.14)

where we keep only the central term of the sum in (9.13). This weighting matrix corresponds

to the expression of the optimal weighting matrix in DOA. The weighted CM criterion be-

comes: erH(�)nR�TL 
R�1L
o er(�) , tr

nfRL(�)R�1L fRL(�)R�1L o (9.15)

which is a well{known form of OCM in DOA. We will see in simulations that this weighted

CM criterion has performance very close to the optimal performance; its performance is:

C~�R~�R
=

"�
@rH(�)

@�R

�
Ws�1

�
@rT (�)

@�R

�T#+ �
@rH(�)

@�R

�
Ws�1WoWs�1

�
@rT (�)

@�R

�T
"�

@rH(�)

@�R

�
Ws�1

�
@rT (�)

@�R

�T#+
:

(9.16)

This form of covariance matching o�ers interesting perspectives as it can be solved by the

scoring method in a less complex way than GML (see section 9.3).

9.1.5 Numerical Evaluations

A proof that GML and OCM have the same asymptotic performance (using frequency domain

expressions for the error covariance matrices) is for the moment still under investigation. And

we will just illustrate the equivalence in performance by numerical evaluations.

In �gure 9.2 (left), we show the performance of GML and OCM for channel estimation

only (�2v is assumed known), i.e. khoR� ĥRk
2=khoRk

2, when the sample matrix is based on M

and M � L data samples (the true performance of OCM is in fact between the two curves);

as the burst length is of 100, we have not reach completely asymptotic conditions, which

explains why the curves are distinct. The multichannel has 2 subchannels of length 4: when

the noise is known, CM (and the Gaussian methods in general) is de�ned for a burst length of

at leastM for a multichannel and N for a monochannel. HereM = N�1 = 3. In this �gure,

it can be noticed that the performance of OCM gets better as more and more correlation

coe�cients are included. A quasi steady{state is rapidly attained, but considering only the

N �rst moments is not optimal.

In �gure 9.2 (right), we make a comparison between CM with the optimal weighting, the

approximated weighting in (9.14), and the non{weighted CM (the form (1) is based on the

non{redundant elements of RL(�) and the form (2) on all the elements). It can be noticed

that the approximated weighting gives performance very closed to OCM. There is however a

certain gap between non{weighted CM and OCM.
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Figure 9.2: Comparison between GML and the optimally weighted covariance matching

method w.r.t. the number of correlation coe�cients considered in the OCM method (left)

and comparison between CM methods di�erently weighted (right).

9.2 Method of Scoring

The purpose of this section is to compare by simulations the performance of blind, semi{blind

DML and GML methods, and see the bene�t of GML methods.

We propose to solve the GML criterion by the method of scoring. This method consists in

an approximation of the Newton-Raphson algorithm which �nds an estimate �(i) at iteration

i from �(i�1), the estimate at iteration i�1, as:

�(i) = �(i�1) �

"
@

@��

�
@F(�)
@��

�H�����
�(i�1)

#
�1

@F(�)
@��

����
�(i�1)

(9.17)

where F(�) is the cost function and � contains the parameters to estimate. The method of

scoring approximates the Hessian by its expected value, which is here the Gaussian Fisher

Information Matrix (FIM). This approximation is justi�ed by the law of large numbers as the

number of data is generally large. In the semi-blind case, the number of known symbols being

�nite, this approximation is not valid anymore but it will turn out to work very well in our

simulations. We did not choose to apply directly the Newton method: indeed, the Hessian

contains four terms one of which is the opposite of the FIM, so it would have represented an

increase in complexity.

We detail only the case of a complex channel. In the blind case, the FIM is singular,

so formula (9.17) cannot be applied directly: we take the Moore-Penrose pseudo{inverse of

the FIM. At iteration (i), it corresponds to the constraint ĥ
(i�1)T

R ĥ
(i)

R = 0, where ĥ
(i)

R is the
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Figure 9.3: Blind GML optimized by the method of Scoring initialized by Blind PQML.

channel estimate at iteration i. When the algorithm converges correctly, asymptotically, this

constraint is equivalent to our usual constraint hTS2hR = 0 (see 4.29).

The scoring algorithm is applied to the channel only, the noise variance is estimated apart:

in the simulations, we estimate it by the SRM method (see Chapter 7, section 7.5.2). As

pointed out in Chapter 5, at high SNR, the noise variance estimation is asymptotically de-

coupled from the channel estimation: at 10dB, this property is still veri�ed, so the estimation

quality of �2v is not really of importance.

In �gure 9.3, we show the NMSE of the blind scoring algorithm initiated by blind PQML

for a randomly chosen channel of length 4 and with 3 subchannels. The NMSE is averaged

over 50 noise and input symbol realizations. Blind PQML gives an estimate of the channel

up to a scale factor: in our simulations, we adjust the norm of the channel based on the

covariance of a received signal sample and the phase factor by constraint (4.7). We notice

the improvement brought by GML and performance closed to the theoretical blind GML

performance.

In the course of this work, we became aware of [64],[84] in which a semi{blind Gaussian

ML method and corresponding CRBs have been studied. The modeling of the training

sequence information in [64] is inappropriate though: instead of the training sequence, the

information considered is the training sequence times an unknown zero-mean unit-variance

normal variable.
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9.3 Method of Scoring for Covariance Matching

Element (i; j) of the expected value of the Hessian of the cost function in (9.15) is:

2tr

(
@RL(�)

@�Ri
R�1L

�
@RL(�)

@�Rj

�H
R�1L

)
(9.18)

which can also be expressed thanks to the quantities:

P��(i; j) = tr

8<:@RL(�)@��i
R�1L

 
@RL(�)

@��j

!H
R�1L

9=; (9.19)

P���(i; j) = tr

(
@RL(�)

@��i
R�1L

 
@RL(�)

@��j

!
R�1L

)
: (9.20)

The expected value of the Hessian is then 2 times the FIM. In the scoring algorithm, the

di�erence with GML is that the FIM is of reduced size L and that iterations are not done on

each quantity (the matrix RL is the sample covariance matrix).

Furthermore, the gradient w.r.t. �� is:

�2tr
�
@RL(�)

@��i
R�1L

fRL(�)R�1L � = �2tr
�
R�1L

@RL(�)

@��i

�
+ 2tr

�
R�1L

@RL(�)

@��i
R�1L R(�)

�
:

(9.21)

The gradient of the GML cost function w.r.t. �� is:

tr

�
R�1M (�)

@RM(�)

@��i

�
� tr

�
R�1M (�)

@RM(�)

@��i
R�1M (�)Y Y H

�
: (9.22)

So we see that the gradient of CM is also related to the gradient of GML in which Y Y H

plays the role of R(�). We have not tested yet the scoring method on this form of CM.

9.4 Semi{Blind GML: Suboptimal Approaches

We consider here the case of grouped known symbols and as for DML, we determine subop-

timal semi{blind GML criteria that keep the blind problem structure. Again, we consider

2 ways of splitting the data. The splitting is however not the same as for DML, where 2

observation vectors are uncorrelated if the corresponding noise vectors are uncorrelated. For

GML, 2 observation vectors are uncorrelated if the corresponding noise and input symbol

vectors are uncorrelated.
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9.4.1 Least{Squared GML (LS{GML)

For Least{Squared GML (LS{GML), a proper way of splitting the data would be the follow-

ing, as indicated in �gure 9.4:

� Y TS = TTS(h)ATS + V TS groups all the observations containing only known symbols.

� Y B = TB(h)AB + V B groups all the observations containing only unknown symbols.

Semi{blind GML is applied to the vector:"
Y TS

Y B

#
� N

 "
TTS(h)ATS

0

#
;

"
�2vI 0

0 TB(h)T HB (h) + �2vI

#!
(9.23)

to give the semi{blind criterion (�2v is assumed known):

min
h;�2v

�
1

�2v
kY TS � TTS(h)ATSk2 + ln detCYBYB + Y H

BC
�1
YBYB

Y B

�
: (9.24)

The overlap zone (�gure 9.4) containing at the same time known and unknown symbols is

ignored in this �rst decomposition. We also tested criterion (9.24) when Y B is replaced by

Y 0

B which contains Y B and the overlap zone, and although the correlations between Y TS

and Y B are neglected, this extended LS-GML criterion gives better performance than the

LS-GML criterion based on the 2 uncorrelated observation vectors.

Unknown Symbols
Only

Known Symbols Unknown Symbols

Only
Symbols

Symbols
Known

+
Unknown

Known

overlap
zone

Y TS

Y
0

B

Y B

Figure 9.4: Output Burst: split of the data for LS{GML.
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9.4.2 WLS{GML

An alternative splitting is as follows (�gure 9.5):

� Y WLS = TWLS(h)AWLS + V WLS contains Y TS and the overlap zone.

� Y B = TB(h)AB + V B groups all the observations containing only unknown symbols

except the unknown symbols of the overlap zone

Unknown Symbols
Only

Unknown Symbols
Known and Unknown

Only

Known
Symbols

Symbols
Known

+
Unknown

Symbols

zone
overlap

Y WLS Y B

Y
0

B

Figure 9.5: Output Burst: split of the data for WLS{GML.

Semi{blind GML is applied to the vector:"
Y WLS

Y B

#
� N

 "
T 0K(h)ATS

0

#
;

"
T 0U(h)T

0H
U (h) + �2vI 0

0 TB(h)T HB (h) + �2vI

#!
: (9.25)

As for LS{PQML, the GML part applied to Y WLS is solved by weighted Least{Squares:

min
h;�2v

kY WLS � T 0

K(h)A
0

Kk
2

C�1
YWLSYWLS

+ ln detCYBYB + Y H
BC

�1
YBYB

Y B : (9.26)

Again, observations samples are ignored in this formulation. When Y B is extended to Y 0

B

(see �gure 9.5) and correlations between input symbols are ignored, the resulting WLS{GML

gives better performance. An AQ{GML could also be built here.

9.5 Simulations for Semi{Blind GML

In �gure 9.6, performance of optimal and suboptimal semi{blind GML initialized by WLS-

PQML are presented for an SNR of 10dB. We show the NMSE for the channel averaged over

50 Monte-Carlo runs of the noise and the input symbols. We tested:
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1. the optimal scoring (called semi{blind scoring in the �gures),

2. the extended WLS{GML based on Y 0

B (�gure 9.4).

3. the extended LS-GML based on Y 0

B (�gure 9.5).

4. LS-GML based on uncorrelated vectors (ULS{GML in the curves).

For a randomly chosen channel (m = 3, N = 4), we see that GML does not o�er much

improvement. For a GSM channel (TU model), however, an improvement is more visible.

We also tested a channel with a common zero: we also have an improvement with a slight

anomaly at the �rst iteration. Furthermore, WLS{GML appears to be the best suboptimal

semi{blind GML method and the extended versions appear better.

9.6 Two fast Solutions to Solve Blind GML

In this section, we shall focus on fast solutions to solve GML also presented in [85]. We

remain here in a single{user context, however one of the reasons for examining, in a closer

way, GML is its extension to the multiuser case where GML is of particular interest. Apart,

from performance advantages, one of the great properties of GML, like all methods based on

the second{order statistics of the data, is their robustness to channel length overestimation.

Blind deterministic methods, like subspace �tting or DML, fail when the channel length has

been overestimated: each channel length for each users has to be tested. On the contrary,

the Gaussian approach can be shown not to su�er from this problem (as has been shown

for linear prediction methods [33]). In multiuser communications, GML has also another

advantage: deterministic methods can only identify the channel apart from a triangular

dynamical multiplicative factor, whereas Gaussian methods can identify the channel up to a

unitary static factor.

As initialization we use the Schur method briey described in Chapter 1 and detailed

in [35, 36] which is a low computational multi{user method.

9.6.1 Approximated Scoring Method

The problem parametrized in hR =
�
Re(hT ) Im(hT )

�T
can be equivalently parametrized in

hC =
�
hT h�T

�T
. The FIM for hC is:

JhChC =

"
Jhh Jhh�

J�hh� J�hh

#
(9.27)
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Figure 9.6: Semi{Blind GML by the method of Scoring initialized by WLS-PQML.
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and the gradient is:

DhC =

2664
@F(�)
@h�

@F(�)
@h

3775 =

"
Dh

D�

h

#
: (9.28)

Let us recall the expressions of Jhh and Jhh� :

Jhh(i; j) = tr

8<:C�1
Y Y

@CY Y

@h�i
C�1
Y Y

 
@CY Y

@h�j

!H9=; (9.29)

Jhh�(i; j) = tr

(
C�1
Y Y

@CY Y

@h�i
C�1
Y Y

@CY Y

@h�j

)
: (9.30)

Our fast implementation of the method of scoring is based on a frequency{domain asymp-

totic (in the number of data) approximation of the FIM and of the gradient of the cost

function.

Approximation for Jhh Let us consider �rst the term Jhh: it can be asymptotically approx-

imated as [86]:

Jhh(i; j) =
M

2�j

I
tr

8<:S�1yy (z)@Syy(z)@h�i
S�1yy (z)

 
@Syy(z)

@h�j

!H9=; dz

z
(9.31)

where Syy(z) = h(z)hy(z) + �2vI is the spectral density of the received signal. From this

expression, we see that Jhh(i; j) can be approximated as a block Toeplitz matrix (which is

also symmetric). The block (1; jb) of its �rst line is the coe�cient of order 1� jb of the �lter:

Jhh(1; jb) =
M

2�j

I
hy(z)h(z)

��
hy(z)h(z) + �2v

�
I � h(z)hy(z)

�
�2v
�
hy(z)h(z) + �2v

�2 z1�jb
dz

z
: (9.32)

Using the Gohberg-Semencul formula:
�
hy(z)h(z) + �2v

��2
= p(z)py(z)=~�2p, where p(z) is the

linear prediction �lter associated to
�
hy(z)h(z) + �2v

�2
, and ~�2p, the prediction error.

Jhh(1; jb) =
M

2�j

I
1

~�2p
p(z)py(z)hy(z)h(z)

h�
hy(z)h(z) + �2v

�
I � h(z)hy(z)

i
z1�jb

dz

z
:

(9.33)

Jhh(1; jb) =
1

~�2p

h
p � py � hy � h �

h�
hy � h+ �2v

�
I � h � hy

ii
1�jb

: (9.34)

Jhh(1; jb) is computed by truncating p(z) (a truncation �N , where � is 3 or 4 is in general

su�cient), and involves then only FIR �ltering operations. So computing the elements of Jhh

is of order N .
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Approximation for Jhh� The same kind of treatment holds for Jhh� which can be approxi-

mated as a block Hankel matrix. The block (1; jb) of its �rst line is the coe�cient of order

jb � 1 of the �lter:

Jhh�(1; jb) =

"
h(z)hT (z)�

hy(z)h(z) + �2v
�2
#
jb�1

=

�
1

�2p
p � h � hT � py

�
jb�1

: (9.35)

The block (ib; 1) of the last column is its coe�cient of order N � 2 + ib.

Approximation of the gradient Using the band property of CY Y , a fast computation of the

output of C�1
Y Y Y is of order NM.

@CY Y

@h�i
= T (h)T H(

@h

@hi
) and both terms being banded, the

computation of the second term is of order MN .

Using a frequency domain approximation, the block ib of the �rst term of Dh can be

approximated as the element ib � 1 of the �lter:

Dh(ib) =

�
h(z)

hy(z)h(z) + �2v

�
ib�1

=
1

�2p

h
p � py � h

i
ib�1

: (9.36)

Dh� can be computed using Dh� = (Dh)
�.

At each step of the algorithm, equation (9.17) is solved using the Toeplitz and Hankel

property of Jhh and Jhh� , which gives a complexity of order N2.

9.6.2 Regularization of the FIM

The approximated FIM is nonsingular: it has an eigenvalue (negative or positive) closed

to 0. The inverse of the approximated FIM could then be directly taken in the scoring

algorithm: this solution makes the algorithm diverge however, as the step in the direction of

the associated eigenvector is too large.

We use the Levenberg Marquardt method by regularizing the FIM by a factor �I . Unfor-

tunately, as seen in the simulations, the regularized approximated scoring algorithm looses

the high convergence speed of the true scoring method, and in fact a simple steepest{descent

algorithm:

�(i) = �(i�1) � �
@F(�)
@��

����
�(i�1)

(9.37)

gives similar performance.

9.6.3 Simulations

We plot the averaged the NMSE over 50 noise and input symbol realizations for a randomly

chosen channel (N = 4, m = 3): see �gure 9.7. For the approximated scoring algorithm, the
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Figure 9.7: Approximated scoring algorithm for 10dB and 20dB.

best regularization factor is � = 0:5�max(FIM), (�max(:) designate the larger eigenvalue) for

the steepest descent, it is � = 1:5=�max(FIM). We notice that at 10dB, the approximation

in the gradient makes the algorithms loose in performance.

9.7 Semi{Blind Criteria as a Combination of a Blind and a TS

Based Criteria

As for the semi{blind deterministic model, we can build Gaussian semi{blind criteria by doing

a weighted combination of a blind and a training sequence based algorithm (again, when it is

possible). Let us take the example of CM (9.15). We consider the decomposition of �gure 9.5

and choose the approximated weighted in (9.15). The semi{blind criterion is:

min
h;�2v

�erHWs�1er + 1

�2v
kY TS � TTS(h)ATSk2

�
,

min
h;�2v

�
1

MU
erH nR�TL 
R�1L

o er + 1

�2v
kY TS � TTS(h)ATSk2

�
:

(9.38)

9.8 Conclusion

GML was compared to the optimally weighted covariance matching method, which was

shown, through simulations, to have the same performance asymptotically (in the number of

data but also in the number of moments considered). A covariance matching criterion built

from an approximation of the weighting matrix was also proposed: this CM criterion o�ers
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some computationally low solutions that are still under investigation. The method of scoring

was used to solve GML and performs very well: we are now examining the computational

load required to apply this method. We have also developed a fast implementation of the

scoring algorithm and the steepest descent algorithm to solve GML. The fast GML should

be next generalized to the multi{user case.
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A Asymptotic Performance Analysis of GML

The main purpose of this appendix is to compute the optimal weighting matrix Wo. OCM

gives consistent estimate, which we do not prove here and its performance can be expressed

w.r.t. �C = [�T ��T ]T : �
@rH(�)

@�C

�
Wo�1

�
@rH(�)

@�C

�H
(9.39)

The error covariance matrix for [Re(hT ) Im(hT )]T is recovered from (9.39) using equation

(3.7).

Wo is computed in [39] but when the input symbols are really random variables. Here we

compute Wo for the real distribution of the input symbols: discrete i.i.d. complex circular

random variables.

Result 11 The complex optimal weighting matrix Wo is:

Wo =
1

M

24 L+N�1X
u=�(L+N�1)

RTL(u)
RL(�u)� vec
�
�2aT (h)T

H(h)
	
vec
�
�2aT (h)T

H(h)
	35
(9.40)

The �rst term in the sum would be the term obtained if the input symbols were really

Gaussian.

bRL =
1

M

MX
k=1

Y L(k)Y
H
L (k) ) r̂ = vec

n bRLo =
1

M

MX
k=1

vec
�
Y L(k)Y

H
L (k)

	
(9.41)

Er̂r̂H =
1

M2

MX
i=1

MX
j=1

E
�
vec
�
Y L(i)Y

H
L (i)

	
vecH

�
Y L(j)Y

H
L (j)

		
(9.42)

Using the following property:

vecfABCg = (CT 
A) vecfBg (9.43)

vecfY L(i)Y
H
L (i)g = (I 
 Y L(i)) Y

�

L(i) = (Y �

L(i)
 I) Y L(i) (9.44)

Then:

1

M2

MX
k=1

MX
k0=1

E

8><>:(Y �

L(k)
 I)| {z }
A

Y L(k)| {z }
B

Y T
L(k

0)| {z }
C

�
I 
 Y �

L(k
0)
�| {z }

D

9>=>; (9.45)

In a �rst step, we consider the symbols as Gaussian random variables. Then the following

formula can be applied:

EfABCDg = EfABg EfCDg+ E fC 
Ag E fD 
Bg + EfA EfBCgDg (9.46)
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EfABg = (EfCDg)H = rrH (9.47)(
EfC 
 Ag = EfY L(k)
 Y L(k

0)
 Ig = RTL(k � k
0)
 I

EfD
 Bg = EfI 
 Y L(k
0)
 Y L(k)g = I 
RL(k0 � k)

(9.48)

E fC 
AgE fD 
Bg =
�
RTL(k� k0)
 I

� �
I 
 RL(k

0 � k)
�
= RTL(k�k

0)
RL(k0�k) (9.49)

E
�
r̂r̂H

	
= E

�
rrH

	
+

1

M2

X
k;k0

RTL(k � k0)
 RL(k
0 � k) (9.50)

E
�ererH	 = 1

M2

X
k;k0

RTL(k � k
0)
RL(k0 � k) (9.51)

E
�ererH	 = 1

M

L+N�1X
u=�(L+N�1)

RTL(u)
RL(u) (9.52)

Now we consider the input symbols with their true distribution. The only term di�ering

from the Gaussian case is the term where fourth order moments of the input symbols appear,

with general term:

vec
�
TL(h)AL(k)AHL (k)T

H
L (h)

	
vec
�
TL(h)AL(k0)AHL (k

0)T HL (h)
	

= (T �

L (h)
 TL(h)) E (I 
AL(k))A
�

L(k)A
T
L(k

0)
�
I 
 AHL (k

0)
�| {z }

F

�
T T
L (h)
 T H

L (h)
�

(9.53)

In the Gaussian case, the matrix F would be:

FGaus = rar
H
a +RTALAL 
 RALAL (9.54)

where RALAL = E
�
AL(k)A

H
L (k)

�
= �2aI and ra = vecfCALALg.

For the true distribution, block (ib; jb) of matrix F is:

Fibjb = A�ib(k)A(k)A
H(k0)Ajb(k

0) (9.55)

It can be veri�ed that Fibjb di�ers from FGaus;(ib;jb) onlt when k = k0:

F = FGaus � rar
H
a : (9.56)

From that, we deduce expression (9.40).



Chapter 10

SOFT DECISIONS APPLIED TO

SEMI{BLIND CHANNEL

ESTIMATION

This chapter examines the di�culty of applying soft decision strategies to chan-

nel estimation. Starting from a semi{blind channel estimate, an equalizer is

built that gives estimates of the unknown symbols. The most reliable sym-

bols are selected and hard decisions on them are considered as known symbols:

semi{blind channel estimation is reprocessed with the augmented number of

known symbols. This idea seemed promising but contains some surprising dif-

�culties.
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10.1 Principle of the Soft Decision Strategy

The soft decision strategy which is particularly well connected to the general semi-blind

context, is as follows (see �gure 10.1):

1. From an estimate of the channel, an equalizer is built that gives estimates of the un-

known symbols. The most reliable estimates are selected and hard decisions on them

are considered as known symbols. The non reliable symbols are still considered as

unknown.

2. Semi-blind estimation is again applied with this augmented number of known symbols.

Steps 1 and 2 can be reiterated.

This soft decision strategy is opposed to a hard decision strategy where all the equalizer

outputs would be considered as error-free and then as known. Some algorithms exploiting

the �nite alphabet nature of the input symbols [45] follow that scheme: step 2 is replaced

by a training sequence based channel estimation step where the training symbols are the

hard decisions. This kind of algorithm requires a good channel initialization and because the

decision step may not be error-free, fall easily in local minima. This could be avoided by the

soft decision process.

Algorithm
Semi-Blind Equalizer 

Initial Input burst

Hard decisions = known symbols

-1 1

non reliable reliable
symbols symbols

reliable
symbols

Input burst

ĥSB;
bA(i�1)
K

bA(i�1)
U

bA(i)
K ;

bA(i)
U

â
(i�1)(k)

Figure 10.1: Soft Decisions for Semi{Blind Channel Estimation for a BPSK.
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10.2 Reliable Symbols

Consider a MMSE-ZF equalizer based on the true channel. It gives as estimates for the

unknown symbols:

bAU =
�
T HU (h)TU(h)

�
�1 T HU (h) (Y � TK(h)AK)

= AU +
�
T H
U (h)TU(h)

�
�1 T HU (h)V :

(10.1)

Then for each unknown symbol:

â(k) = a(k) + v0(k) (10.2)

where v0(k) is a centered Gaussian random variable, a linear combination of elements of V .

We will consider here only the case of a BPSK; the principle of soft decisions could be

extended to other constellations. Figure 10.2 shows the distribution of â(k).

0-1 1

Reliable Symbols

� = 1
â(k)

� = 1

Figure 10.2: Distribution of the symbol estimates at the output of the MMSE ZF equalizer:

reliable decisions are such that jâ(k)j � �.

The reliable symbol estimates will verify jâ(k)j � �; they will be all the more reliable as

� is large: see �gure 10.2 with � = 1, in which case, as v0(k) is centered, approximately half

the symbol estimates would be considered as reliable.

10.3 The Di�culty of Applying Soft Decisions

This soft decision strategy introduces correlations between a(k) (= dec(â(k))) and v0(k) and

then between the noise V and the symbols A originally independent. Figure 10.3 shows the

joint distribution of a(k) and v0(k) for the reliable and non-reliable â(k): in both cases, a(k)

and v0(k) are correlated (for � = 1, the marginal distribution of v0(k) remains approximately

unchanged).
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Reliable symbols
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v0(k)

1

-1

half a Gaussian

0

Non-reliable symbols

a(k)

v0(k)

Figure 10.3: Joint distribution of v0(k) and a(k) for the reliable (left) and non reliable symbols

(right) for the asymmetric reliability intervals.

Simulations proved GML and DML to be very sensitive to these modi�cations in the

correlations: we get better performance by not adding the hard decisions to the list of the

known symbols. The repercussions of these correlations in the formulations of DML and

GML are as follows:

� For DML, in fV jA;h(Y � T (h)A), correlations between A and V are to be taken into

account: v0(k)ja(k) does not have a Gaussian distribution anymore, but half a Gaussian.

� For GML, in a Gaussian approximation for fY jh(Y jh), the correlations between A and

V have to be taken into account.

Incorporation of these modi�cations have to be done in order to build properly the ML crite-

rion. As an alternative approach, we tried another type of interval of reliability: symmetric

intervals around the decision points.

With the choice of the symmetric intervals, where the symbols are considered as reliable

if jâ(k)� dec(â(k))j � � (�gure 10.4), the correlation between symbols and noise disappears

(as long as the interval is su�ciently small): see �gure 10.5. The marginal distribution of

the noise has changed though, and namely the variance of v0(k) associated to the reliable or

non-reliable symbols is di�erent.

Note that the MMSE-ZF equalizer could be replaced by an MMSE equalizer which gives

a higher output SNR. At the output of the equalizer, the ISI terms should now be taken into

account, as well as its bias (see Chapter 11).

We illustrate the e�ect of the two types of intervals by an example. In the example, we

plot the semi{blind cost function of DML and GML for a real multichannel with 2 coe�cients:

[1 � 1:5]T , a burst of length M = 100, a BPSK and an SNR equal to 5dB. The threshold �

is chosen equal to 0:3. We consider furthermore the ideal case where the hard decisions are

considered as error{free.
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r

0-1 1

Reliable Symbols

Figure 10.4: Distribution of the symbol estimates at the output of the MMSE ZF equalizer:

reliable decisions such that jâ(k)� dec(â(k))j � �.

-1 1
0

Reliable symbols

a(k)

v0(k)

-1 1
0

Non reliable symbols

a(k)

v0(k)

Figure 10.5: Joint distribution of v0(k) and a(k) for the reliable (left) and non reliable

decisions (right) for the symmetric reliability intervals.

(a) Figures 10.6(a){10.7(a) shows the pure semi{blind cost function, with 10 known symbols

in the burst.

(b) Figures 10.6(b){10.7(b) shows the cost function after considering the hard decisions given

by the asymmetric reliability intervals as known. Only 17 symbols remain unknown after

the soft decision step.

(c) Figures 10.6(c){10.7(c) shows the cost function after considering the hard decisions given

by the symmetric reliability intervals as known: 40 symbols remain unknown after the

soft decision step.

(d) At last, in �gures 10.6(d){10.7(d), the soft decision have the same number as the previous

ones (symmetric reliability interval), but this time the position of the known symbols is

chosen arbitrarily in the burst.

In this example, we see that chosing non symmetric reliability intervals results in worse perfor-

mance than the pure semi{blind case; the symmetric reliability intervals improve performance

w.r.t. the pure semi{blind case.
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ok2 = 0:0141

Figure 10.6: DML cost functions: (a) pure semi{blind DML cost function; (b) semi{blind

DML based on hard decisions (asymmetric interval); (c) semi{blind DML based on hard deci-

sions (symmetric interval); (d) semi{blind DML based on hard decisions (randomly chosen).
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Figure 10.7: GML cost functions: (a) pure semi{blind GML cost function; (b) semi{blind

GML based on hard decisions (asymmetric interval); (c) semi{blind GML based on hard deci-

sions (symmetric interval); (d) semi{blind GML based on hard decisions (randomly chosen).
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Figure 10.8: Soft AQML based on hard decisions compared soft AQML with the same number

of hard decisions but arbitrarily dispersed.

10.4 Soft Decisions Applied to the Semi{Blind AQML

In practice, for more general channels, the symmetric reliability interval gives disappointing

results. It improves performance w.r.t. purely semi{blind estimation but not signi�cantly.

As an example, we applied the soft strategy to semi{blind AQML. Results are shown in

�gure 10.4 for a randomly chosen channel (N = 5, m = 2) and a GSM channel (N = 4,

m = 2), for a burst length of 100, and an SNR of 10dB. The soft AQML is compared to

another soft AQML based on the same number of known symbols (including also the hard

decisions) but with position randomly chosen in the burst.

10.5 Conclusion

In this chapter, we have seen that the channel estimation is sensitive to the soft decision

strategy; we have proposed a symmetric reliability interval that decreases this sensitivity. As

we will see in Chapter 12, soft decisions can also be used for the input symbol estimation

and detection: in this case, correlations between the symbols and the noise are also present,

and the structure of the equalizers should be modi�ed accordingly. However, it appears that

symbol detection is not sensitive at all to these changes in the correlations, and soft decisions

can be very pro�table in that case.
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Chapter 11

BURST MODE EQUALIZATION

We consider a transmission by burst where the data is organized and sent by

bursts. At each end of the burst of data, a sequence of symbols is assumed

known, and the channel considered as constant over the burst duration. The

optimal structure of the burst mode equalizers is derived. The class of lin-

ear and decision feedback equalizers is considered, as well the class of ISI

cancelers that use past but also future decisions: for each class of equalizers

the MMSE, the Unbiased MMSE and the MMSE Zero Forcing versions are

derived. Unlike in the continuous processing mode, the optimal burst mode

�lters are time-varying. The performance of the di�erent equalizers are eval-

uated and compared to each other in terms of SNR and probability of error:

these measures depend on the position of the estimated symbol and on the

presence of known symbols. Finally, we show that, by choosing correctly the

number and position of the known symbols, (time-invariant) continuous pro-

cessing �lters applied to burst mode can be organized to give su�ciently good

performance, so that optimal (time-varying) burst processing implementation

can be avoided. This chapter extends the work of [87] and corresponds to the

submitted paper [88].
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11.1 Introduction

In most of the present mobile communication systems, the data is divided and transmitted

in bursts. In general, the bursts are separated by guard intervals, which avoid interburst

interference, and contain known symbols, like synchronization bits or a training sequence

to estimate the channel. This is typically the case of GSM, where the channel is assumed

constant over the duration of a burst and is estimated by a middamble training sequence and

the Viterbi algorithm is applied to estimate the transmitted data symbols.

We propose a scenario where a sequence of known symbols is attached to each end of

the burst of information symbols. This scheme is proved to include the GSM case. The

channel is assumed constant during the transmission of a burst. As we are operating with

a �nite amount of data, the usual time-invariant continuous processing equalizers are not

optimal anymore. We propose a derivation of optimal burst mode equalizers, which are time-

varying. Three classes of equalizers are considered: the usual linear and decision feedback

equalizers, as well as the ISI canceler. This last equalizer uses past but also future decisions

and was proposed in its continuous processing version in [89, 90], and in its burst mode

version in [91, 92] where it is called Non Causal Decision Feedback Equalizer (NCDFE). The

NCDFE is detailed in Chapter 12.

These three classes of equalizers are derived according to three di�erent criteria: MMSE,

Unbiased MMSE and MMSE Zero Forcing (MMSE-ZF) corresponding to increasingly strong

constraints; the �rst criterion is unconstrained, the second one is the element{wise Best

Linear Unbiased Estimate (BLUE), and the third one is the block{wise BLUE. These three

criteria will then give increasing MSEs. The MMSE equalizer gives biased estimates of the

symbols: the Unbiased MMSE equalizer is the best equalizer in the MMSE sense, giving

unbiased estimates. Although possessing a higher SNR than its MMSE counterpart, the

Unbiased MMSE equalizer gives a better error probability because the decision device is

built for unbiased symbols estimates. The Unbiased MMSE DFE equalizer was introduced

in [93]; we propose here a generalization to the other classes of equalizers.

All the equalizers are derived in the multichannel framework. We prove that the optimal

processing consists in �rst removing the contribution of the known symbols, then applying the

burst mode multichannel matched �lter; the following �lters depend on the speci�c equalizer

considered. The performance of the di�erent equalizers is evaluated in terms of SNR, studied

according to the position of the unknown symbols in the burst and the presence of the known

symbols.

In [94], burst mode MMSE and ZF equalizers are derived but for single channels: the

ZF equalizer exists then only if there are at least a number of known symbols equal to the

channel memory. In the multichannel context considered here, even with no known symbols,

ZF equalizers exist and in fact a whole class of ZF equalizers: we will present the special

class of MMSE-ZF versions of the equalizers. Furthermore, in [94], continuous{time matched
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�ltering is done, matched to the overall channel, which is unrealizable, followed by the symbol

rate burst mode processing. We follow the more realistic fractionnally{spaced approach in

which simple continuous{time lowpass �ltering is followed by oversampling. Another interest

of the multichannel model, which we will not detail here, is that it allows better performance

as the number of subchannels increases.

[94] presents complexity computations of the burst mode �lters, which appear more com-

plex than the time{invariant �lter continuous processing mode. We propose to compare the

performance obtained by applying the optimal time{varying burst mode �lters with the per-

formance obtained by applying the time{invariant continuous processing �lters to burst mode,

which is not done in [94]. [95, 96] proposed to enable time{invariant processing (with cyclic

convolution though) by introducing cyclic pre�xes. We propose to minimize the suboptimal-

ity of continuous processing by considering the inuence of the pre{ and postamble lengths on

the degradation between time{invariant �lters and the optimal processing: the best situation

happens when the lengths of these pre{ and postambles equal the channel memory. In [97],

N. Al{Dhahir presents such a comparison, but considering the single channel MMSE DFE

only. His treatment of the known symbol is not correct however. He estimates the unknown

symbols in terms of the received data only, whereas the correct treatment consists in esti-

mating the unknown symbols in terms of the received data and also of the known symbols

present in the burst. In his attempt to compare time{invariant and optimal processing fairly,

he averages SNR in both cases over di�erent amounts of symbols, estimating the known sym-

bols also in the time{invariant processing, whereas the number of unknown symbols (to be

equalized) is the same in both cases. So the comparison appears unfair. Furthermore, he

summarizes the performance into one SNR average number over the burst: as will be seen in

the paper, it appears important to consider on the contrary the performance as a function of

symbol position.

11.2 Burst Transmission

We consider a transmission by burst in which detection is done burst by burst. We assume

that the channel is time-invariant during the transmission of a burst. In the input burst

A, a pre{ and post{amble sequence of known symbols of variable length is attached to the

burst of data symbols: n1 known symbols at the beginning, grouped in the vector AK1
, and

n2 at the end, grouped in the vector AK2
: see �gure 11.1. The total length of the burst is

L+n1+n2; we want to detect the L central unknown symbols, grouped in the vector AU .

For that purpose, we consider as observation data Y , the channel outputs that contain only

symbols of burst A (the symbols to be detected or the known symbols of the burst), and not

outputs containing symbols of neighboring bursts: see �gure 11.1.
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Figure 11.1: Burst Transmission.

In the following, we consider the decomposition:

Y = T A + V = TK1
AK1

+ TUAU + TK2
AK2

+ V = TKAK + TUAU ; (11.1)

In this chapter, we will denote T the convolution matrix. TiAi represents the contribution
of the symbols in Ai. AK = [ATK1

ATK2
]T groups all the known symbols. As will be seen,

the optimal process consists �rst in removing the contribution of the known symbols, all the

�lters will then be applied to the processing data Y U :

Y U = TUAU + V = Y � TKAK ; (11.2)

It should be noted that the derivations of the paper are valid for any position for the known

symbols.

11.3 Burst-Mode Equalizers

In this section, we derive the expressions for the di�erent equalizers in burst mode. Linear

Equalizers (LE), classical Decision Feedback Equalizers (DFE) and the Non Causal DFE

(NCDFE) are considered for the Minimum Mean Squared Error (MMSE), the Unbiased

MMSE (UMMSE) and the MMSE Zero-Forcing (MMSE ZF) criteria. The di�erent equalizers

are linear estimators of the input symbols:

� linear equalizers give linear estimates based on the received data Y and the known

symbols AK ,
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� DFEs give linear estimates based on Y , AK , as well as the decisions on the past input

symbols,

� the NCDFE gives linear estimates given the Y , AK and the decisions on the past and

future input symbols.

We shall assume those past (and future) decisions to be error-free.

The di�erent equalizers are solutions of the MSE criterion

min
F
kAU � FY 0k2 (11.3)

where F is a matrix �lled out with �lter coe�cients and Y 0 groups the whole observation set

(e.g. Y and AK for the LE), under di�erent constraints:

� MMSE: no constraints.

� UMMSE: element{wise Best Linear Unbiased Estimate (BLUE).

� MMSE Zero-Forcing: burst{wise BLUE.

In burst mode, the equalizer �lters are time-varying. We de�ne the MSE of the ith symbol

as:

MSEi =
�
E( bAU � AU)( bAU �AU )H�

ii
(11.4)

where bAU is the vector estimate of the unknown input symbols and the Signal to Noise Ratio

(SNR) of the ith symbol:

SNRi =
�2a

MSEi
: (11.5)

11.3.1 Linear Equalizers

The MMSE Linear Equalizer

The MMSE LE gives the unconstrained MMSE estimate of the unknown symbols AU based

on the observations:

Y 0 =
h
Y T ATK

iT
: (11.6)

The linear MMSE estimate of AU is:

bAU , MMSE LE = R
AUY

0R�1
Y

0
Y

0Y
0 = R

AUY U
R�1
Y UY U

Y U : (11.7)

The last equality, proved in Appendix A, shows that linear estimation in terms of Y 0 is

the same as in terms of Y U : the optimal processing can be seen as eliminating �rst the

contributions of known symbols from the observation data Y to get Y U and then applying
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the MMSE equalizer determined on the basis of Y U . For the other equalizers, the previous

result is also true but will not be restated.

When a sequence of known symbols of length larger than the channel memory is present

in the middle of the burst, like in GSM, the processing data Y U can then be decomposed

into two independent parts, and all the equalization process can be done on the two parts

independently. For each part, the situation becomes equivalent to our proposed scenario of

known symbols at each end of the burst.

From equation (11.7):

bAU , MMSE LE = �2aT
H
U (�2aTU(h)T

H
U (h) + �2vI)

�1Y U =

�
T HU TU +

�2v
�2a
I

��1
T HU Y U : (11.8)

The last equality is obtained via the matrix inversion lemma. We will denote:

R = T HU TU +
�2v
�2a
I : (11.9)

Due to the presence of the regularizing term
�2v
�2a
I , the matrix R is invertible and the MMSE

LE is always de�ned.

In the continuous processing case, the MMSE equalizer gives the output:

âMMSE LE(k) =

�
Hy(q)H(q) +

�2v
�2a
I

��1
Hy(q)y(k) (11.10)

whereHy(z) = HH(1=z�) and q�1y(k) = y(k�1). By analogy with the continuous processing
case, we can �nd interpretations for the expression (11.8) in �ltering terms:

� T HU represents the multichannel matched �lter, matched to the �lter TU . When the

length of the two sequences of known symbols equals or is larger than the memory of

the channel N�1, T H
U is Toeplitz, banded and upper triangular, which implies that the

�ltering is time-invariant, FIR and anticausal. When the length of the sequences are

shorter however, the �lter is time-varying at the edges.

� R is the FIR denominator of an IIR �lter, R�1 is non-causal.

Figure 11.2 shows the MMSE LE structure.

The LDU decomposition of R = LDLH can be used to do a fast implementation of the

MMSE LE as mentioned in [94]. The Schur algorithm can indeed be used to compute these

factors. R�1 = L�HD�1L�1: the output of L�1, Z 0 = L�1Z ) LZ0 = Z, can be solved by

backsubstitution. The same kind of remark is valid for the output of L�H . So inverting R

becomes superuous and the complexity is of order MN .
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For the burst mode MMSE LE:

SNRi(MMSE LE) =
�2a

�2v(R
�1)ii

: (11.11)

The SNR depends on the position of the symbol in the burst and we will see the inuence

of the known symbols on the SNR according to the position of the symbols to be estimated.

This remark will also be valid for the other equalizers.

The General Unbiased MMSE Problem

AMMSE equalizer produces a biased estimate of the symbol a(i): the MMSE equalizer output

can indeed be written as �(i)a(i)+ n(i), where n(i) and a(i) are uncorrelated (n(i) contains

symbols di�erent from a(i) and noise terms). This bias increases the probability of error [93],

as the decision devices are made for unbiased data. The purpose of the unbiased MMSE

equalizer is to correct this bias. We then derive the best equalizer, in the MMSE sense, that

gives unbiased symbol estimates: we will see that its SNR gets reduced w.r.t. the MMSE,

but that the error probability increases. Note that ZF equalizers are unbiased equalizers:

they minimize the MSE under the unbiasness constraint but also the zero ISI constraint; the

UMMSE are derived under the unbiasness constraint only. So ZF and UMMSE equalizers

are di�erent except when there is no ISI at the output of the UMMSE, which will be the case

for the NCDFE.

In terms of estimation theory, the Unbiased MMSE equalizer is the element{wise BLUE.

We give and prove here results that will be valid for all the Unbiased MMSE equalizers (LE,

DFE, NCDFE).

Consider the estimation of symbol a(i). Y 0 contains all the information available for

estimation, Y U and A: A denotes here the past decisions w.r.t. a(i) for the DFE, the past

and future decisions for the NCDFE, and is zero for the LE. Let us decompose the processing

data Y U into the contribution of a(i) and of the other symbols AU;i.

Y U = TUAU + V = TU;ia(i) + T U;iAU;i + V (11.12)

Y 0 =

"
TU;i
0

#
a(i) +

"
T U;iAU;i + V

A

#
= T 0

U;ia(i) + V
0 : (11.13)

The BLUE theory for this linear model gives us as estimate for a(i):

âBLUE(i) =
�
T 0HU;iR

�1

Y
0
Y

0T 0U;i
�
�1

T 0HU;iR
�1

Y
0
Y

0Y
0 (11.14)

which can also be written as:

âBLUE(i) = �2a

�
R
a(i)Y

0R�1
Y

0
Y

0Ra(i)Y 0

�
�1

R
a(i)Y

0R�1
Y

0
Y

0Y
0| {z }

âMMSE(i)

: (11.15)
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The Unbiased estimate for the whole burst is then:

bAU , UMMSE = �2a

�
diag

�
R
AUY

0R�1
Y

0
Y

0RY 0
AU

��
�1

| {z }
D

R
AUY

0R�1
Y

0
Y

0Y
0| {z }bAU, MMSE

(11.16)

bAU , UMMSE = D bAU , MMSE : (11.17)

The Unbiased MMSE equalizer is simply a scaled version of the MMSE equalizer.

The SNR of the UMMSE is related to the SNR of the MMSE:

SNRi(UMMSE) = SNRi(MMSE)� 1 : (11.18)

The proof can be found in Appendix B.

The Unbiased MMSE Linear Equalizer

For the speci�c case of the MMSE LE:

R
AUY

0R�1
Y

0
Y

0RY 0
AU

=

�
T HU TU +

�2v
�2a
I

��1
T H
U TU

) D =

 
diag

 �
T HU TU +

�2v
�2a
I

��1
T HU TU

!!
�1

:

(11.19)

D can be further rearranged, and we get:

bAU , UMMSE LE =

 
I �

�2v
�2a

diag

"�
T HU TU +

�2v
�2a
I

��1#!�1 bAU , MMSE LE : (11.20)

As D is invertible, bAU , UMMSE LE is always de�ned. Figure 11.3 shows the UMMSE structure.

In the continuous processing case, the output of the UMMSE LE has for expression:

âUMMSE LE(k) =

�
1�

�2v
�2a

I
dz

z

�
Hy(z)H(z) +

�2a
�2v

��
�1

âMMSE LE(k) : (11.21)

The MMSE{ZF Linear Equalizer

A ZF equalizer has for property to leave the signal part of the received data undistorted: a

block ZF equalizer F veri�es:

FTU = I : (11.22)

In the monochannel case, the existence of the ZF equalizer is conditioned to the presence of

known symbols. When there are no known symbols, TU = T admits no left inverse. For a

number of known symbols of exactly N�1, the channel memory, TU is square and there is a
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unique ZF equalizer which is also the MMSE ZF equalizer. For a number of known symbols

of more than N�1, TU is strictly tall and full-column rank and ZF equalizers exist.

For a multichannel and also for a single channel, TU has full column rank if M � N and

if there are as many known symbols as the number of zeros. These will be the conditions for

a ZF equalizer to exist.

When TU is strictly tall and has full column rank, it admits several left inverses. Indeed,

let T ?U be a matrix which columns are orthogonal to those of TU , then T ?HU TU = 0. F =�
T HU TU

�
�1 T H

U , the Moore{Penrose pseudo{inverse of TU veri�es FTU = I , but also F =�
T HU TU

�
�1 T H

U + CT ?HU , where C is any M �M matrix.

We shall here concentrate on the MMSE{ZF LE, which give the lowest MSE among all

the ZF LE equalizers. The MMSE{ZF LE corresponds to the block{wise BLUE based on

Y U . Given the linear model: Y U = TUAU + V , the BLUE is given by:bAU , BLUE = (T HU R�1
Y UY U

TU)�1T H
U R�1

Y UY U

Y

= (T HU R�1
V V

TU)�1T H
U R�1

V V
Y U :

(11.23)

So the MMSE{ZF LE is: bAU , MMSE{ZF LE = (T HU TU )
�1T H

U Y U : (11.24)

Consider now the LDU decomposition of T HU TU = LDLH :�
T HU TU

��1
= L�HD�1L�1 : (11.25)

After the matched �lter, the optimal process consists in whitening the noise by the �lter L�1.

We will �nd these two optimal steps (matched �ltering and noise whitening) for all the ZF

equalizers. If we denote now R = T HU TU , the process is the same as for the MMSE LE (see

�gure 11.2). The remarks on the fast implementation are also valid here.

The output burst mode SNR is:

SNRi(MMSE{ZF LE) =
�2a

�2v((T HU TU)�1)ii
: (11.26)

In the continuous processing case, the MMSE{ZF LE output is:

âMMSE{ZF LE(k) =
�
Hy(q)H(q)

�
�1

Hy(q)y(k) : (11.27)

11.3.2 Decision Feedback Equalizers

The MMSE Decision Feedback Equalizer

The decision feedback equalizers consider the linear estimation of symbol a(i) based on the

processing data Y U and the past decisions w.r.t. a(i) assumed known that we denote A
p
i :

âMMSE DFE(i) = FiY U � BiA
p
i (11.28)
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where Fi is the forward �lter and Bi the feedback �lter. Let Y 0 =
h
Y T
U A

p
i
T
iT
, and let us

decompose Y U onto the contribution of A
p
i the past symbols and A

f
i grouping a(i) and the

future symbols.

Y U = T pUA
p
i + T

f
UA

f
i + V : (11.29)

[Fi �Bi]=Ra(i)Y 0R�1
Y

0
Y

0=

�
�2aT

H
U;i

�
�2aT

f
U T

f
U

H
+�2vI

��1
��2aT

H
U;i

�
�2aT

f
U T

f
U

H
+�2vI

��1
T p
U

�
:

(11.30)

Consider the LDU factorization of R = T HU TU +
�2v
�2a
I = LDLH . After some manipulations,

it can be proved that Fi is the i
th row of D�1L�1T H

U and that Bi the i
th row of LH � I . A

proof for this result is provided in Appendix C.

The symbol estimate is then:bAU , MMSE DFE = D�1L�1T H
U Y U � (LH � I)dec( bAU , MMSE DFE) : (11.31)

The MMSE DFE is always de�ned like the MMSE LE. The forward �lter consists in the

cascade of the multichannel matched �lter and an anticausal �lter D�1L�1. LH � I is a

strictly causal �lter, so that the feedback operation involves only past decisions. Figure 11.4

shows the structure of the MMSE DFE. As for the LEs, a fast implementation of the DFE

using the LDU decomposition is also possible here [94]: the resulting complexity in of order

MN .

The SNR is:

SNRi(MMSE DFE) =
�2a

�2v(D
�1)ii

: (11.32)

In the continuous processing case:

âMMSE DFE(k) =
Hy(q)

dGy(q)
yk � (G(q)� 1)dec(âMMSE DFE(k)) (11.33)

where Hy(q)H(q) +
�2v
�2a

= Gy(q)dG(q), G(q) is causal and G(1) = 1.

The Unbiased MMSE Decision Feedback Equalizer

Using the results of section 11.3.1, we can prove that the output of the Unbiased MMSE DFE

is: bAU , UMMSE DFE = (I �
�2v
�2a
D�1)�1 bAU , MMSE DFE : (11.34)

Figure 11.5 shows this structure. The burst output SNR is decreased by 1 with respect to

the MMSE DFE.

The continuous processing equalizer output is:

âUMMSE DFE(k) =

�
1�

�2v
�2a
exp

�
�
I
dz

z
ln(Hy(z)H(z)+

�2a
�2v

)

���1
âMMSE DFE(k) : (11.35)



11.3. Burst-Mode Equalizers 201

The MMSE-ZF Decision Feedback Equalizer

As for the ZF LE, there is a whole class of ZF equalizers, and we derive here the ZF MMSE

DFE equalizer. Consider the LDU factorization of T HU TU = LDLH . Then the forward and

feedback �lters are proven in Appendix D to be:(
F = L�1D�1T HU
B = LH � I

(11.36)

we have the same structure as the MMSE DFE. The same equalizability conditions as for

MMSE{ZF LE hold here also.

We conclude this section by noting that the expression of the MMSE and MMSE{ZF

DFEs can be recovered from the LEs: for the MMSE LE, we consider the LDU factorization

of R = LDLH and for the MMSE ZF LE, the UDL factorization of T H
U TU = LDLH . The

ouput of these two equalizers can then be written as:

bAU = L�HD�1L�1T HU Y U = D�1L�1T HU Y � (LH � I) bAU : (11.37)

The DFE operation consists in taking (LH � I)dec( bAU) instead of (LH � I) bAU , where dec(:)
is the decision operation.

11.3.3 Non Causal Decision Feedback Equalizers

The MMSE NCDFE

The NCDFE considers the linear estimation of symbol a(i) based on the processing data Y U

and the past and future decisions w.r.t. a(i) assumed known that we denote AU;i. The burst

mode equalizer is implemented in an iterative way. At the �rst iteration, the past and future

decisions come from another classical LE or DFE. The output the NCDFE can then be used

to reinitialized the NCDFE, and other iterations can be done. As for the DFE, we consider

the past and future decisions as correct.

âMMSE NCDFE(i) = FiY U �BiAU;i (11.38)

where Fi is the forward �lter and Bi the feedback �lter. Let Y 0 =
h
Y T
U A

T
U;i

iT
;

Y U = TU;ia(i) + T U;iAU;i (11.39)

[Fi �Bi] = R
a(i)Y

0R�1
Y

0
Y

0 (11.40)

and we get:

[Fi Bi] =
h
�2aT

H
U;i

�
�2aTU;iT

H
U;i + �2vI

��1
�2aT

H
U;i

�
�2aTU;iT

H
U;i + �2vI

��1
T U;i

i
(11.41)
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[Fi Bi] =

"�
T HU;iTU;i +

�2v
�2a
I

��1
T HU;i

�
T HU;iTU;i +

�2v
�2a
I

��1
T H
U;iT U;i

#
: (11.42)

Then, 8>>><>>>:
F =

�
diag

�
T HU TU +

�2v
�2a
I

���1
T HU

B =

�
diag

�
T HU TU +

�2v
�2a
I

���1�
T HU TU � diag

�
T H
U TU

�� (11.43)

The MMSE NCDFE has a very simple structure: the forward �lter is proportional to the

matched �lter and the feedback �lter to the cascade of the channel and the forward �lter

without the central coe�cient. Figure 11.6 shows the structure of the NCDFE.

All the ISI is removed if there are no errors in the non causal feedback: the NCDFE

attains then the matched �lter bound. But, like the decision feedback equalizer, the NCDFE

su�ers from the error propagation phenomenon.

The burst mode SNR is:

SNRi(MMSE NCDFE) =
�2a
�2v

�
T H
U TU +

�2v
�2a
I

�
i;i

: (11.44)

In the continuous processing case:

âMMSE NCDFE(k) =�
Hy(q)H(q) +

�2v
�2a

�
�1 �

Hy(q)y(k)� (Hy(q)H(q)� kHk2)dec(âMMSE NCDFE(k))
�
:

(11.45)

The Unbiased/ZF-MMSE NCDFE

As seen in section 11.3.1, the Unbiased MMSE estimate bAUMMSE NCDFE is a scale version ofbAMMSE NCDFE. We �nd:(
F =

�
diag

�
T HU TU

��
�1T HU

G =
�
diag

�
T HU TU

��
�1�T HU TU � diag

�
T HU TU

�� (11.46)

As all the ISI is removed by the NCDFE, the ZF NDFE and the UMMSE NCDFE are the

same. If n1 = n2 = N � 1, the burst mode �lters of the NCDFE are time{invariant. When

n1 < N�1 and n2 < N�1, the �lters vary only at the edges and are otherwise time{invariant.
It appears that another interest of the burst mode NCDFE is that it is as easy to implement

than its continuous processing version.

The burst mode SNR is:

SNRi(U/ZF-MMSE NCDFE) =
�2a
�2v

�
T HU TU

�
i;i
: (11.47)
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No special conditions are required for the ZF and MMSE NCDFEs to be de�ned as

diag
�
T H
U TU

�
and diag

�
T H
U TU +

�2v
�2a
I

�
are invertible.

11.4 Performance Comparisons

In this section, we discuss the performance of the equalizers in terms of SNR and probability

of error. In �gure 11.7, the SNR curves are drawn for a channel H1 of length 7 with 3

subchannels which coe�cients were randomly chosen (H1 is given in Appendix E). The SNR

per channel is 10dB. The input symbols are drawn from a BPSK (�2a = 1) and the number

of unknown input symbols in the burst is L = 30.

11.4.1 Case of no Known Symbols

In �gure 11.7 (left), the case of no known symbols is shown. We notice that degradations

appear at the ends of the burst. The middle symbols appear in N outputs. When no symbols

are known, the �rst and last unknown symbols of the burst appear in strictly less than N

outputs, so that there is less information about those symbols in the observations.

The SNR in the middle of the burst converges to the continuous processing level as the

burst length increases.

11.4.2 Case of N � 1 Known Symbols at Each End of the Burst

We assume now that n1 = n2 = N�1. The SNR curves are drawn in �gure 11.7 (right). This

time, burst processing performs better than continuous processing. The middle observations

contain N symbols. After eliminating the contributions of the known symbols the outputs at

the edges contain strictly less than N symbols, so that there is more information on those

symbols. This explains why the symbols are better estimated at both ends for the LEs.

For the DFEs, things are slightly di�erent at the beginning of the burst: the situation is as

if the feedback �lter had been correctly initialized and the contribution of the past decisions

removed, and as the forward �lter is anticausal we tend to the continuous processing case as

Channel

YA

T

V TKAK
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Figure 11.2: Structure of the MMSE and the MMSE-ZF LE.
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Figure 11.7: SNRs at the output of the di�erent equalizers when no symbols are known (left)

and when N-1 symbols at each end of the burst are known (right).

the number of data tends to in�nity. For the last symbol of the burst, the estimation process

is the same as that of the NCDFE. We notice that the NCDFE has a constant SNR over the

burst equal to the one of continuous processing.

11.4.3 Equalizers Comparisons

In terms of SNR

The following comparisons are deduced from the amount of a priori information used for

estimating the unknown symbols.

� Within each class of equalizers, LE, DFE, NCDFE:

SNRi(MMSE) � SNRi(UMMSE) � SNRi(ZF-MMSE) (11.48)

� For each criterion, MMSE, UMMSE and ZF-MMSE:

SNRi(NCDFE) � SNRi(DFE) � SNRi(LE) (11.49)

In terms of Probabilities of Error

For unbiased equalizers, a higher SNR implies a lower probability of error: MMSE ZF equal-

izers will then have a higher probability of error than the corresponding Unbiased MMSE

equalizers. However, it is not obvious to rank the MMSE equalizers w.r.t. the ZF equaliz-

ers because they are biased. In fact people would tend to believe that a MMSE equalizer

performs better than the corresponding MMSE-ZF equalizer.
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Figure 11.8: Probability of Error for the ZF-DFE, the MMSE-DFE and the Unbiased MMSE-

DFE.

In the case of constant modulus modulations, MMSE equalizers have the same perfor-

mance as the corresponding unbiased MMSE equalizers and so a higher performance than

MMSE ZF equalizers. For non constant-modulus constellations, the bias in MMSE equalizers

may have a stronger e�ect than its higher SNR compared to MMSE-ZF equalizers. This is

all the more true as the di�erence in SNRs between the di�erent equalizers tends to be lower

as subchannels are added.

Figure 11.8 treats of the DFE case. We plot the probabilities of error for the channel

H2 (see Appendix E) for the di�erent DFEs. In the error probability computations of the

MMSE and UMMSE, the symbols other than the current symbol of interest are approximated

as Gaussian random variables. The input symbols belong to a 4-PAM constellation. No

symbols are assumed known; the number of known symbols is equal to L = 3N . In order to

see better the di�erence between the di�erent curves, we only plot the probability of error

for the central coe�cients. We notice here that the MMSE equalizer has poorer performance

than the MMSE{ZF equalizer, and that the UMMSE performs the best.

11.5 Applying Continuous Processing Equalizers to the Burst Case

As already mentioned, burst processing involves time-varying �lters. We may wonder if it is

worth implementing these time-varying �lters, because of complexity reasons, and if simply

applying the time-invariant �lters corresponding to continuous processing in burst mode could

give acceptable performance.

For that purpose we will consider the case of N-1 known symbols at each end of the input

burst. We will show that the continuous processing �lters also give better SNR at the ends
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of the burst than in the middle and always give strictly better SNR than in the continuous

processing case.

For the LEs, the contribution of the known symbols is removed at the end of the observa-

tion data. For the DFEs, the initialization is done by putting the N-1 leading known symbols

in the memory of the feedback �lter. Only the trailing known symbols are removed from the

processing data.

In both cases, we put the channel outputs before and after the data to be processed equal

to zero. The only di�erence with the continuous processing case is that we have a �nite input

symbol sequence, but also a �nite noise sequence. As will be seen in the simulations of the

next section, for the DFE, the way we proceed is equivalent to the continuous processing case

at the beginning of the burst.

For the LEs, the di�erent reasonings will be held for zero delay non-causal continuous

processing �lters. For the DFEs, the forward �lter is assumed to be anticausal (zero delay)

the feedback �lter is causal and FIR (of the same length as the channel). As the channel

output is zero outside the time interval of the processing data, these �lters will involve only

a �nite number of data.

In the MMSE ZF case, the MSE contains only the noise contributions. Since the noise is

only �nite length, the MSE is smaller at the edges. The MSE of MMSE (unbiased or not)

equalizers outputs contains residual ISI also. This variance gets also reduced as the input

sequence becomes �nite length.

For the NCDFE, the leading and trailing symbols are both put in the memory of the

feedback �lter. In this case, the optimal burst mode feedforward and feedback �lters are

time-invariant and are the same as the continuous mode �lters. This fact reinforces the

interest of the NCDFE.

11.5.1 MSE Calculations

The outputs of the di�erent linear equalizers based on the continuous processing �lters may

be written as: bAU = FY U (11.50)

where F is a structured matrix containing the coe�cients of the continuous processing �lter.

In general:

MSEi = (�2a(FTU � I)(FTU � I)H + �2vFF
H)ii (11.51)

where FTU = I in the ZF case.

The outputs of the di�erent DFEs be may written as:

bAU = FY U � (B � I 0)A0 (11.52)
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Figure 11.9: SNR Curves: optimal burst processing compared to continuous processing ap-

plied to burst mode for the MMSE LE (left) and MMSE DFE (right).

A0 contains AU and the leading symbols, I 0 = [I 0], F contains the coe�cients of the

continuous processing forward �lter. B the coe�cients of the continuous processing feedback

�lter.

In general:

MSEi = (�2a(FTU � B)(FTU �B)H + �2vFF
H )ii (11.53)

where FTU = B in the ZF case.

In �gure 11.9, we present the case of the MMSE LE and MMSE DFE: we compare

performances for channel H1. The input symbols are drawn from a BPSK. The length of the

�lters for the LEs and for the feedforward �lter for the DFE is equal to 3N . The number of

unknown input symbols is L = 30.

11.6 Conclusion

We have derived the optimal structure of the burst mode equalizers for three classes of

equalizers: linear, decision feedback and non causal decision feedback equalizers. Three

di�erent criteria have been considered: the MMSE, the unbiased MMSE, and Zero Forcing.

The problem of �nding the equalizer �lters have been formulated in terms of linear estimation

based on the data and certain a priori information, which allows a simple classi�cation of the

equalizers in terms of performance. The SNR degradations have been studied as a function

of the position of the unknown symbols in the bursts and as a function of the presence of

known symbols. The more favorable situation for burst mode is when pre{ and postamble

sequence of known symbols are attached at each end of the burst: in this case burst mode

equalization performs better than continuous processing. At last we have shown how time{
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varying burst mode �lters can be approximated by time{invariant �lters in the situation where

the pre and postamble sequences have the same length as the channel memory: time{invariant

�lters still have better performance than the continuous processing level and allows a lower

complexity for implementation than the time{varying optimal burst mode �lters. The case of

the NCDFE appears also of particular interest: it is potentially the most powerful equalizer

as it can eliminate all the ISI, and has a particularly simple structure. In particular, when

the pre and postamble sequences have the same length as the channel memory, the NCDFE

�lters are time{invariant.
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A Linear MMSE Estimation in terms of Y U
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Then, the have the result:
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B SNR of the Unbiased MMSE

We prove that:

SNRi(UMMSE) = SNRi(MMSE)� 1: (11.62)

From expression (11.16), we deduce:�
R

bAU; UMMSE
bAU; UMMSE

�
i;i
= �2aDi;i and

�
R

bAU; UMMSEAU

�
i;i
= �2a (11.63)

R
eAU; UMMSE

eAU; UMMSE
= E

�
AU � bAU; UMMSE

��
AU � bAU; UMMSE

�H
= RAUAU �RAU bAU; UMMSE

�R
bAU; UMMSEAU

+ R
bAU; UMMSE

bAU; UMMSE

(11.64)
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and we �nd:

MSEi(UMMSE) = �2a (Di;i � 1) (11.65)

Noting that:

�2aD
�1
i;i = �2a �MSEi(MMSE) (11.66)

MSEi(UMMSE) = �2a
MSEi(MMSE)

�2a �MSEi(MMSE)
(11.67)

from which we get (11.62).

C Filters of the MMSE DFE

We derive the expressions of the feedforward �lter F and feedback �lter B of the MMSE-DFE.

We do not use directly expression (11.30), but rather a slightly more elegant way.

The expression of the estimate of the unknown symbols by the MMSE-DFE is:

bAU , MMSE DFE = FY U �BAU (11.68)

with B strictly triangular inferior. The MMSE criterion writes as:

min
F;B

kAU � (FY U � BAU ) k2 (11.69)

and

AU � bAU , MMSE DFE = (I +B)AU � FY U (11.70)

Using the orthogonality principle, which states that the error on AU should be orthogonal to

Y U , we �nd:

(I +B)�2aT
H
U � FRY UY U

= 0 (11.71)

from which we get:

F = �2a(I +B)T H
U R�1

Y UY U

) F = (I + B)(T HU TU +
�2v
�2a
I)�1T HU (11.72)

and

AU � bAU , MMSE DFE = (I + B)(AU � bAU , MMSE LE) (11.73)

Then:

EkAU � AU , MMSE DFEk2 = �2vtr
�
(I +B)R�1(I + B)H

	
(11.74)

(we recall that R = T HU TU +
�2v
�2a
I). Consider the LDU decomposition of R:

R = LDLH ; (11.75)
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EkAU �AU , MMSE DFEk2 = �2vtr
�
(I +B)L�HD�1L�1(I + B)H

	
(11.76)

The minimization problem:

min
fC: diag(C)=Ig

tr
�
CHD�1C

	
(11.77)

as for solution C = I .

Then (11.76) is minimized when I +B = LH . Then:(
F = D�1L�1T H

U

B = LH � I
(11.78)

D Filters of the MMSE{ZF DFE

We derive the expressions of the feedforward �lter F and feedback �lter B of the MMSE{ZF

DFE. We want to solve:

min
F;B

FTU � B = I

EkAU � (FY U �BAU )k2 (11.79)

and with constraint that B be strictly triangular inferior. Let the following decomposition

of F onto the rows of T HU and its orthogonal complement T H?

U (the rows of T H?

U span the

orthogonal complement of the rows of T HU ):

F = F1T HU + F2T H?

U ; F2T H ?

U T HU = 0) F1T HU TU = I + B ) F1 = (I + B)
�
T HU TU

��1
(11.80)

, min
F;B

FTU �B = I

EkFV k2 , min
F;B

FTU �B = I

�2vkFF
Hk2 (11.81)

kFFHk2 = tr
�
F1T HU TUF

H
1

	
+ tr

n
F2T H ?

U T H ?

U

H
FH2

o
(11.82)

(11.82) gives F2 = 0:

(11:79), min
B

(I + B)
�
T H
U TU

��1
(I +B)H (11.83)

Considering now the LDU factorization of T H
U TU , we obtain as in appendix 3:(

F = D�1L�1T H
U

B = LH � I
(11.84)
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E Channels used in the Simulations

The channels used in the simulations are the following:

H1 =

264 �0:7989 �0:0562 0:7562 0:3750 �2:3775 0:3180 1:6065

�0:7652 0:5135 0:4005 1:1252 �0:2738 �0:5112 0:8476

0:8617 0:3967 �1:3414 0:7286 �0:3229 �0:0020 0:2681

375

H2 =

264 �0:6776 �0:4710 0:4992 0:1558 �0:7209
0:4617 �0:5649 0:3827 �0:5692 0:3998

�1:1939 �0:4239 �0:0136 �0:7488 �1:3747

375
(11.85)
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Chapter 12

BURST MODE NON-CAUSAL DFE

BASED ON SOFT DECISIONS

The Non-Causal Decision-Feedback Equalizer (NCDFE) is a decision-aided

equalizer that uses not only past decisions, like DFEs, but also future deci-

sions, which usually come from another, classical equalizer. When there are

no errors on the decisions, the NCDFE output contains no ISI and the Matched

Filter bound (MFB) is attained. In practice, it su�ers from the propagation

of errors. We propose a multiple stage implementation of the NCDFE based

on soft decisions. At each stage, reliability intervals are de�ned based on the

SNR, the position of the symbol in the burst and the presence of known symbols

in the burst: only the reliable decisions are fed back. The other, non{reliable

symbols are classi�ed as unknown and again estimated in the next iteration.

The augmented presence of known symbols coming from the previous decision

stage results in a better estimation quality of the unknown symbols. This soft

strategy scheme is compared to other schemes.
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12.1 Introduction

The principle of the Non-Causal Decision-Feedback Equalizer (NCDFE) was �rst proposed

by Proakis [89]: this equalizer uses past and future decisions in order to cancel all the ISI

present in the signal. Gersho and Lim [90] introduced its MMSE design: the forward �lter

is proportional to the matched �lter and the feedback �lter applied to the past and future

symbol decisions w.r.t. the symbol to be detected, is the cascade of the channel and the

forward �lter, without the central coe�cient. These past and future symbol decisions come

from another classical equalizer, linear or DFE (note that the past decisions may come from

the NCDFE itself). A burst mode unbiased MMSE version based on MLSE was also proposed

in [91].

When no errors on the past and future decisions are made, we reach the ideal zero ISI sit-

uation and the equalizer attain the Matched Filter Bound (MFB): it is then potentially more

powerful than the other equalizers, linear or DFEs. It possesses furthermore a particularly

simple structure with only FIR feedforward and feedback �lters. As highlighted in the previ-

ous chapter, in its burst mode implementation, the optimal �lters are almost time-invariant

(they are only time-varying at the edges of the burst) when no known symbols are present

in the burst and are time{invariant when known symbols of a number of at least the channel

memory are present at each end of the burst. The error propagation phenomenon can cause

some degradations, however, like for the classical DFE, and the NCDFE may o�er only a

marginal improvement or even degradations.

Our purpose is to build a non-causal decision-feedback equalizer by replacing the hard

decision scheme by a soft decision one, allowing one then to reduce the feedback errors.

Our soft decision scheme consists in taking a decision on the most reliable symbols and

leaving the other non reliable symbols undecided. We will see that this scheme is equivalent

to feeding back only the most reliable symbols. The NCDFE is implemented in multiple

stages. Each iteration �nds a linear estimate of the unknown symbols based on the received

signal, the known symbols (i.e. , the hard decisions) computed in the previous iterations,

and the past hard decisions of the current iteration. Due to the augmented presence of hard

decisions/known symbols at each iteration, the reliability of the unknown estimate increases.

The �rst stage corresponds then to a (classical) decision feedback equalizer in which only

the most reliable past decisions are fed back. The following stages mix a decision and non-

causal decision feedback strategy. We will consider here only a BPSK; the principle of soft

decisions as explained in this chapter can be extended to other constellations though. We

will furthermore consider only Unbiased linear symbols estimation, i.e. Unbiased MMSE and

ZF-MMSE.

We proposed this soft decision scheme in [92]; it is similar to the \clipped" soft deci-

sions [98, 99] applied to multi{user detection but was independently developed. In multi{user

detection, soft decision schemes are becoming very popular and the bene�t of soft decisions
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can be quite visible. In the single{user context considered here its e�ects are probably less

dramatic but remain of interest.

12.2 Burst Mode NCDFE

Let us recall the structure of the burst mode NCDFE given in �gure 12.1. The forward �lter

is the multichannel matched �lter T H(h) followed by a scaling operation. D is a diagonal

matrix which di�ers according to the nature of the equalizer, MMSE or UMMSE: for the

UMMSE NCDFE [91], D =
�
diag(T H(h)T (h))

�
�1
. The non-causal feedback �lter consists of

the forward �lter without the central coe�cient. bA may be the output of another equalizer

or the output of the burst mode NCDFE at a previous iteration. If bA contains no errors, the

performance of the NCDFE attains the MFB.

Channel

Y
T (h) T H(h)

A

Matched
Filter

bA
D

Scaling
Factor

T H(h)T (h)�diag(T H(h)T (h))

V

Figure 12.1: Burst Mode Non Causal DFE.

12.3 Non Causal Soft Feedback

12.3.1 Linear Equalizers seen as Non{Causal DFEs

Consider the class of Linear Equalizers. The output symbol estimates can be written in the

general form: bALE = R�1T H(h)Y : (12.1)

For a ZF{MMSE, R = T H(h)T (h), for a MMSE, R = T H(h)T (h)+
�2v
�2a
I and for a UMMSE,

R =

 
I �

�2v
�2a

diag

�
T H(h)T (h) +

�2v
�2a
I

�
�1
!
�1 �

T H(h)T (h) +
�2v
�2a
I

�
.

(12:1) , R bALE = T H(h)Y : (12.2)

Assume we want to estimate the symbol a(k) and assume the hypothetic situation where the

linear estimates of the past and future symbols w.r.t. a(k) are known. Denoting R bALE =
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Rka(k)�Rk
bAk:

â(k) =
�
RH
k Rk

��1
RH
k T

H(h)Y �
�
RH
k Rk

��1
RH
k Rk

bAk : (12.3)

A linear equalizer can then be seen as a NCDFE where the past and future linear estimates are

fed back. The structure of a DFE can be deduced from (12.2) by considering, for each symbol

to estimate, the past symbol decisions as known (as well as the future symbol estimates, i.e.

the estimates given by the DFE before decision, but we will see that these estimates do not

intervene in the estimation of the symbol). In the NCDFE, the past and future decisions are

assumed known.

Our soft strategy consists in replacing the linear estimates bAk by soft decisions that will

be a mixture of linear and hard decisions.

12.3.2 Soft Decision Scheme

We propose an iterative scheme with each iteration composed of two steps.

1. In the �rst step, we perform linear estimation of the symbols based on the received data

and the symbol estimates from the previous iteration. This �rst step would correspond

to the NCDFE if the symbol estimates were perfect.

2. The second step performs element-wise nonlinear estimation, and iteration 1 is repeated.

The linear estimation step will be given by an unbiased equalizer, i.e. , a ZF or UMMSE

equalizer: each output can be put in the form â(k) = a(k) + ~a(k): for a ZF equalizer,

â(k) contains only noise terms and for a UMMSE noise and interference terms that we will

approximate as a zero{mean Gaussian variable.

The optimal nonlinearity to be used in the second step is the hyperbolic tangent function

tanh(:). Indeed, the MMSE estimate of â = a + ~a, with a taking with equal probability the

values +1 and �1 and ~a a zero{mean Gaussian random variable independent of a, hypotheses

veri�ed (with the Gaussian approximation) in our problem, is:

^̂a = tanh

�
â

�2~a

�
: (12.4)

However, with such nonlinear symbol estimates, the design of the linear estimator for step

1 in the next iteration becomes nontrivial. Therefore, we propose the following simpli�ed

nonlinearity:

^̂a = f�(â) =

(
â jâj < �

sign(â) jâj � � :
(12.5)

The question is to know where the linearity should be (i.e. what should the value of � be)

in order to get an improvement w.r.t. the linear estimates of step 1 and a hard decision step

2. We do not answer this question here. Our guess would be that the linearity should be in

between the linear and the hard decision curve, as indicated in �gure 12.2.
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Figure 12.2: Soft Decision Curves.

12.4 Soft Scheme as an Approximation of the Optimal Scheme

tanh(:)

The variable � gives the reliability of the symbol estimate and depends on �2~a, which depends

itself on the SNR conditions and other characteristics detailed later. Usually the soft decision

schemes that are based on the reliability principle (see section 12.7) use a constant threshold

that does not depend on the experimental conditions; for example, in [98, 99], � = 1. Here,

the threshold will be adapted to the experimental conditions: this will allow us to incorporate

more hard decisions in the feedback, with high con�dence, resulting in better performance.

We determine � by seeking the best MMSE estimate of â of the form f�(â) shown in

�gure 12.3 (left):

min
�

E (a� f�(â))
2 : (12.6)

A closed form expression for � could not be found. However a linear approximation w.r.t.

�2~a seemed to match well, especially for low �2~a: � = 1:33�2~a (see �gure 12.3 (right)).

The complete iterative scheme is depicted in �gure 12.4. bAsoft;i denotes the ^̂a for which

j^̂aj < �, whereas bAhard;i denotes the ^̂a for which j^̂aj = 1. bAhard(i) denotes the accumulation
of bAhard;1; : : : ; bAhard;i. bAlin;i is a linear combination of bAi = n bAsoft;i; bAhard(i)o and Y , i.e.bAlin;i is a linear estimate of the remaining undecided symbols in terms of the received data and

soft decisions for all symbols. One can observe that bAlin;i is in fact also a linear combination

of only bAhard(i) and Y and since the bAhard(i) are assumed to be error-free, the MMSE design

of bAlin;i becomes tractable.
This explanation means also that when you feed back the linear symbol estimates of step

1, it does change the linear estimates in the following step.
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Figure 12.3: Soft Decision Curves (left) and Linear approximation of � (right).
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Figure 12.4: Iterative Soft Decision Scheme.



12.5. NCDFE Based on Soft Decisions 221

12.5 NCDFE Based on Soft Decisions

The soft implementation of the NCDFE will mix a causal and a non{causal soft decision{

feedback strategy. The initialization is provided by a decision{feedback equalizer with feed-

back of the reliable decisions only.

For each symbol a(k), the implementation of the NCDFE based on the soft decisions is

as follows:

1. Linear estimation of the unknown symbols a(k) based on:

- the observations Y

- the \known" symbols made of the true known symbols, the hard decisions of the

previous iteration, the past hard decisions of the actual iteration.

2. The reliability measure �(k) is computed and the soft decision strategy (12.5) is applied

to â(k). The hard decisions are treated as known symbols.

The initial DFE step is the same except that the linear estimate of step 1 is computed from

Y and the past decisions of the actual iteration. Steps 1-2 are reiterated until bAhard;i is
empty. At the end of this process, the symbols that remain non reliable even when using

the feedback from known symbols are decided upon. Few iterations of the algorithm are

necessary in general as will be seen in the simulations.

The performance of this soft scheme relies on 2 ideas:

� Feeding back only the most reliable symbols helps to avoid the phenomenon of error

propagation.

� The presence of known symbols allows to increase the estimation quality of the unknown

symbols.

12.5.1 Computation of �(k)

Recalling results from the previous chapter, the error variance for each symbols is computed

as, for the UMMSE:

1

�2~a(k)
=

1

�2v

 �
T HU (h)TU(h) +

�2v
�2a
I

��1!
k;k

� 1 (12.7)

and for the ZF{MMSE:

�2~a(k) = �2v

��
T HU (h)TU(h)

��1�
k;k
: (12.8)
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For simplicity reasons, we do not take into account the past hard decisions of the current

iterations and used in the causal feedback; we only take into account the hard decisions of

the previous iteration.

When no known symbols are present in the burst, fast algorithms allow us to compute the

vectors of the �2~a(k)'s linearly in M . A simpli�cation consists in computing the continuous{

processing error variance, neglecting then edge phenomena. After a �rst soft decision step, in

general, few symbols remain unknown: TU has a small column dimension and �2~a(k) can be

computed using the previous expressions without requiring an intensive computational e�ort.

12.5.2 Inuence of the Known Symbols

In the previous chapter, the inuence of the known symbols in a burst on the estimation

of the unknown symbols was already studied. As an example, in �gure 12.5, we show the

SNR at the output of the MMSE Linear Equalizer (LE). Our soft design uses 2 important

properties of the burst mode equalization:

� The SNR depends on the position of the symbol on the burst.

� For a given symbol, the SNR is higher when there are known symbols in the burst and

especially when the symbol is surrounded by known symbols.

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

* 50 dispersed known symbols
x 10 dispersed known symbols
o N-1 known symbols at each end
+ no known symbols

SNR at the output of the MMSE linear equalizer

Unknown symbols

Figure 12.5: SNR at the output of a MMSE LE as a function of unknown symbol position

in the burst: inuence of the presence of known symbols on the estimation of the unknown

symbols.

In �gure 12.5, we show the case of no known symbols, grouped known symbols and arbitrarily

dispersed known symbols for a number of unknown symbols of 50: we can see the advantage
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Figure 12.6: Evolution of the reliability intervals.

of taking into account the presence of known symbols in the burst to estimate the unknown

symbols.

12.5.3 Adaptation of the Reliability Intervals

This strategy allows one to automatically adapt the reliability intervals to the experimental

conditions:

� The noise level: �(k) is all the larger as the noise level is large.

� The presence of known symbols will be reected in the value of �(k). Figure 12.6 shows

the evolution of the reliability intervals from one iteration to the next (for a randomly

chosen channel at 5 dB): most of the symbols that remain unknown at the second

iteration are located at the edges where indeed performance is lower. At the second

iteration, the reliability of those symbols increases due to the feedback of the known

symbols.

12.6 Fast Implementation of the Soft DFE and NCDFE

12.6.1 Soft DFE

We start from the equation:

R bA = T H(h)Y (12.9)

and consider the LDU decomposition of R = LDLH , then:

(12:9) , LH bA = D�1L�1T H(h)Y = Y 0 : (12.10)
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Figure 12.7: Computation of the soft DFE outputs.

This system is solved recursively by back substitution as illustrated in �gure 12.7: â(k) =

Y 0 �
X
i>k

Lk+i;k â(i). Unlike in the classical implementation, the unreliable symbols are not

decided upon and their soft value is fed back.

=

Y
0

hard decision

soft decision

symbol to estimate

R, banded bA

â(k)

computed at
previous iteration

Causal

Feedback
Anti-causal

Feedback
computed at
current iteration

Figure 12.8: Computation of the soft NCDFE outputs.

12.6.2 Soft NCDFE

For the computation of the soft NCDFE output, we consider the equation:

R bA = T H(h)Y (12.11)
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Figure 12.9: Di�erent Soft Decisions Scheme.

where bA is initiated by the soft DFE. Each a(k) is solved as: â(k) = Y 0 �
X
i<k

Rk�i;k â(i)�X
i>k

Rk+i;kâ(i), as in �gure 12.8.

12.7 Di�erent Soft Strategies

In �gure 12.9 are depicted the di�erent soft decision schemes found in the literature. Most

of the schemes are also based on the idea of reliable and unreliable symbols.

a) Hard Decision: hard decisions are taken on all the symbol estimates.

b) tanh soft decisions.

c) Erasure soft decisions: in this scheme, hard decisions are taken on the reliable symbol

estimates and the non{reliable symbols are put to 0.

d) Clipped soft decisions: this scheme corresponds to the one we propose.
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The Erasure technique is used to reduce the error propagation in a decision-feedback equal-

izers in [100] for a BPSK and proposed for a general 1{D constellation in [101]. [102, 103]

presents a dual feedback equalizer where two DFEs run independently. When a symbol esti-

mate is judged non reliable, one DFE chooses +1 and the other �1, so that both alternative

decisions +1 and �1 are tested. The output error energy over the feedback memory is then

compared for both DFEs; the DFE with the lowest error energy is selected and its settings

(previous decisions) are transferred to the other equalizer.

Non linear multi{user detection techniques, like Parallel Interference Cancellation (PIC)

and Successive Interference Cancellation (SIC) use also soft decisions [104, 105]. PIC is

based in fact on the same idea as the NCDFE: the past and the future decisions of the user

of interest and the decisions of the other users are fed back. In [98, 99, 106, 107], some of

the soft techniques of �gure 12.9 are tested. In [108], we can also �nd a variable threshold of

reliability based on the symbols already detected.

12.8 Simulations

For a well{conditioned channel, the e�ect of the soft decisions will not be very visible and,

often, hard decisions will give better results, even if some decision errors are fed back. To

illustrate the bene�ts of the proposed soft scheme (that we call, as in [98], clipped soft

decision scheme), we test here a particular channel: the DFE built from this channel gives

poor performance w.r.t. the MFB, which is the performance bound of the NCDFE. A channel

with a zero closed to the unit circle veri�es this property. We chose the channel:

H =

"
1 1

1 1:01

#
: (12.12)

For this channel, the mean burst SNR value is 1.87 for the MMSE DFE, and the MFB is

0.026.

Below, we show the averaged error probability over 5000 Monte{Carlo runs of the input

symbols and of the noise. We also test di�erent reliability thresholds: the threshold 1:3�2
~a(k)

is based on mean quantities and for ill{conditioned channels, there are some advantages in

choosing a larger value. We test the value 1:7�2
~a(k)

and 2�2
~a(k)

. We only show the results for

the MMSE equalizers: the ZF equalizers perform poorly as the subchannels of (12.12) possess

a nearly common zero.

12.8.1 Soft DFEs

In �gure 12.10, we show the performance of the soft DFEs based on the clipped, the erasure

and the tanh soft decisions, for 10dB and 15dB and with di�erent threshold levels. The

clipped scheme appears to give the best performance. We also plot the performance of the
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clipped soft scheme with a constant threshold of 1: the advantage of adapting the reliability

intervals to the experimental conditions can be noticed.
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Figure 12.10: Probability of Error of the Soft DFEs.

12.8.2 Soft NCDFEs

Figure 12.11 shows the error probabilities of the di�erent soft NCDFEs initialized by the soft

DFEs. As the DFE based on the tanh curve gives good performance, we also test a NCDFE

mixing the clipped and the tanh scheme: at a certain iteration, symbol estimation is based

on the hard decisions of the previous iteration and the tanh scheme for the unknown symbols

of the current iteration; the reliability intervals are computed based on the clipped scheme.

This NCDFE is initialized by the tanh based DFE. Again, we see that the clipped scheme

performs the best, with an improvement w.r.t. to the soft DFE that can reach a factor 10.

Choosing a threshold larger than 1:3�2
~a(k)

can be seen to be advantageous also.

In �gure 12.12, the clipped soft NCDFE is compared to the hard NCDFE initialized

by the MMSE Linear Equalizer (LE) and the MMSE DFE. The bene�t of the clipped soft

decisions can also be noticed.

We do not plot the simulated MFBs which are here much lower than the practical perfor-

mance of the proposed equalizers: in the example treated here, the purpose was to improve

the performance of the equalizers by using soft decisions; it turns out that the problem is

ill{conditioned and that the MFB cannot be easily attained.
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12.9 Conclusion

We have described an implementation of the NCDFE using soft decisions instead of hard

decisions, which cause error propagation. In this soft implementation, only the most reliable

symbols are fed back and the unreliable ones are left undecided. A reliability interval has been

de�ned which is adapted at each iteration of the NCDFE according to the SNR, the position

of the symbol to be estimated in the burst, the known symbols and the reliable symbols on

which a decision was taken at the previous iteration. Simulations have shown that the soft

implementation can improve dramatically performance w.r.t. a hard implementation. The

proposed soft decision scheme has been compared to other soft schemes and has given the

best simulation results.
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Chapter 13

MATCHED FILTER BOUNDS FOR

REDUCED-ORDER

MULTICHANNEL MODELS

We propose two Matched Filter Bounds (MFBs) to characterize the perfor-

mance of receivers using reduced-order channel models. The �rst one (WMFB)

uses the channel model to perform the spatio-temporal matched �ltering that

yields data reduction from multichannel to single-channel form. The rest of

the processing remains optimal. The second one (ICMFB) on the other hand

bounds the performance of the Viterbi algorithm with the reduced channel

model. Two methods for obtaining reduced-order channel models are discussed

to illustrate these measures: blind channel estimation by Deterministic Maxi-

mum Likelihood (which maximizes WMFB) and channel estimation by training

sequence. This work was presented in [109]
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13.1 Di�erent Matched Filter Bound De�nitions

13.1.1 Continuous Processing MFB

We present here four di�erent ways of computing the MFB in the case of continuous transmis-

sion, for the multichannel H(z), shown in �gure 13.1, where the input symbols a(k) are white

and the additive noise v(k) is temporally and spatially white. We introduce the following

notation for the matched �lter: Hy(z) =HH(1=z�).

(a)

(c)

(d)

(b)

H(z)
y(k)

v(k)

a(k)

H(z) H
y(z)

y(k) �
H
y(z)H(z)

��1=2a(k)

y(k)

v(k)

a(k)

H(z)
y(k)

v(k)

a(k)

H
y(z)H(z)� kHk2

H
y(z)H(z)

H
y(z)

mX
i=1

SNRi = MFB

SNR = MFB

SNR = MFB

SNR = MFB

k = 0

v(k)

Figure 13.1: Four Interpretations for the Continuous Processing MFB from SNRs.

The MFB can alternatively be calculated as the sum of the SNRs in the individual chan-

nels in (a), as the SNR of the appropriate output sample of the matched �lter (MF) when

transmitting only one symbol in (b), as the SNR of the output of the whitened MF (WMF)

in (c) or �nally as the SNR at the output of the MF from which past and future symbol

contributions (ISI) are eliminated. The MFB, calculated from (a), (b), (c) or (d), is equal to

kHk2�2a=�
2
v .

13.1.2 Burst Processing MFB

The MFB becomes symbol-dependent in the case of burst (packet) transmission. In the

di�erent structures presented in �gure 13.1, the multichannel H(z) is replaced by the �ltering

matrix T (h) in the time-domain, and the burst multichannel matched �lter becomes T H(h).
Since the MFB is symbol-dependent, we shall in fact consider the average MFB over the

symbols in the burst. In a burst context, �gure 13.2(b) is no longer of interest, which is why

we will not consider this con�guration anymore.
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(c) T H(h)

T (h)
y(k)

T (h) T H(h)
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T (h)
y(k)

v(k)

v(k)
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�
T H(h)T (h)

��1=2

T H(h)T (h)� diag
�
T H(h)T (h)

�
a(k)

a(k)

a(k)

Figure 13.2: Four ways to get the Burst MFB from SNRs.

In �gure 13.2(a), the burst signal covariance matrix at the channel output is: �2aT (h)T H(h).
The noise variance is �2vI . The SNR for the ith element of the output is then:

SNR
(a)
i =

�2a
�
T (h)T H(h)

�
i;i

�2v
: (13.1)

We �nd for (b):

SNR
(b)
i =

�2a

h�
T H(h)T (h)

�H=2 �T H(h)T (h)�1=2i
i;i

�2v
: (13.2)

The signal component is diag(T H(h)T (h))A in (c) (where diag(.) denotes a diagonal matrix

containing of the main diagonal of its argument), hence its variance, �2a
�
T H(h)T (h)

�2
i;i
, for

the ith element, for which the noise variance is �2v
�
T H(h)T (h)

�
i;i
. Thus we �nd:

SNR
(c)
i =

�2a
�
T H(h)T (h)

�
i;i

�2v
: (13.3)

Hence, we �nd the following equivalent expressions:

MmX
i=1

SNR
(a)
i =

M+N�1X
i=1

SNR
(b)
i =

M+N�1X
i=1

SNR
(c)
i : (13.4)

The structure in �gure 13.2(a) represents in fact a di�erent point of view from (b) or (c).

Indeed, theM +N � 1 outputs of (b) and (c) are directly related to the the M +N � 1 input
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samples; in (a) we get Mm output samples. The measure in equation (13.4) can then be

taken as a measure of the burst MFB. This leads to the following average MFB per symbol:

MFB =
1

M+N�1

MmX
i=1

SNR
(a)
i =

1

M+N�1

M+N�1X
i=1

SNR
(b)
i =

1

M+N�1

M+N�1X
i=1

SNR
(c)
i :

(13.5)

Note that, as the length of the burst grows to in�nity, the average MFB over the burst

converges to the continuous processing MFB. For structures (b) and (c) this follows from the

fact that the MFB in the middle of the burst converges to the continuous processing MFB.

13.2 Matched Filter Bounds for Reduced-Order Models

The MFB computation considered in the previous section requires knowledge of the channel.

However, in channel estimation, a channel order misestimation may happen. Since physical

channel impulse responses tend to be of in�nite length, this misestimation will often mean

an underestimation. Furthermore, the channel length assumed in the channel estimation is

often limited due to complexity considerations for the estimation procedure and/or the symbol

detection procedure. We now discuss appropriate MFBs when a reduced-order channel model

is used. Two levels of suboptimality ensue in that case. These correspond to the two ways

of implementing ML sequence estimation (MLSE) in the multichannel case: either use a

vectorial matched �lter and work with a scalar signal, or work with the vector received signal

directly. These two strategies are only equivalent if the further processing of the scalar signal

obtained in the �rst case is done in a speci�c way. Two measures corresponding to these two

strategies are proposed.

13.2.1 Whitened Matched Filter Bound (WMFB)

We denote by HN (z) the full-order multichannel. Assume we have a reduced-order model

z�dHN 0(z) of HN (z) (d 2 f0; 1; : : : ; N�N 0g, 1 � N 0 � N). In a �rst step of suboptimality,

we can consider that in the data reduction step from multichannel to single channel, we use

the MF matched to the reduced model z�dHN 0(z). However, after this suboptimal data

reduction, we shall allow optimal processing of the resulting single channel (this requires

knowledge of Hy

N 0(z)HN (z) which represents less information than HN(z) itself). In order

to �nd the conventional MFB for the processing of the resulting scalar channel, it su�ces to

whiten the noise after the vector MF. The resulting scalar channel then indeed becomes one

of additive white noise n(k) as indicated in �gure 13.3 and becomes similar to �gure 13.1(a)

so that the MFB can be calculated as in �gure 13.1(a). We get for the continuous processing

MFB:

WMFB =
�2a
�2v

1

2�j

I
Hy

N (z)PHN 0(z)
HN (z)

dz

z
(13.6)
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Figure 13.3: WMFB: reduced-order multichannel MF followed by a noise whitener.

where PH(z)
= H(z)(Hy(z)H(z))�1Hy(z). Note that it is insensitive to the delay in the

reduced order channel model.

It is interesting to analyze the variation of WMFB(N 0) as a function of the reduced order

N 0. For N = N 0 we get WMFB(N)=
�2a
�2v
kHNk2. It is not di�cult to show that, in the

limiting case N 0 = 1 (purely spatial channel model), we get WMFB(1)=
�2a
�2v
�max

�
HH

NHN

�
.

We then can derive the following bounds

1 �
WMFB(N)

WMFB(1)
=

tr
�
HH

NHN

�
�max

�
HH

NHN

� � min(m;N) : (13.7)

We see that a reduced-order model does not degradeWMFB a lot: in the case of 2 subchannels

the maximal degradation will be a factor of 2, which could seem surprising when considering

a purely spatial model only. The lower bound is attained when h(i) � h(0); i = 1; : : : ; N�1.
In that case, HN (z) = h(0)H1(z)=h1(0). The spatio-temporal channel factors into a spatial

�lter and a temporal one, and the optimal processing factors correspondingly: the full spatio-

temporal treatment gets replaced by the cascade of a purely spatial combiner followed by

a purely temporal treatment. The upper bound is attained when either HNH
H
N � Im

or HH
NHN � IN , whichever is of full rank. In that case, the individual channel impulse

responses are orthonormal. In a statistical set-up, if the m channel impulse responses are

i.i.d., then the upper bound is approached as the delay spread grows.

Consider now the case of burst processing. Let TN and TN 0 denote TM(hN ) and TM(hN 0)

respectively and consider the Cholesky factorization T HN 0TN 0 = LLH . Then the M+N 0�1
reduced-order WMF outputs are

L�1T H
N 0Y = L�1T H

N 0TNA+ L�1T H
N 0V : (13.8)

The covariance matrix of the noise component is �2vIM+N 0
�1 while the covariance matrix of
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the signal part is �2aL
�1T HN 0TNT HN TN 0L�H . The sum of the SNRs of all WMF outputs is then

M+N 0
�1X

i=1

�2a
�2v

�
L�1T HN 0TNT HN TN 0L�H

�
ii
=
�2a
�2v

tr
�
PTN 0TNT

H
N

�
: (13.9)

This point of view corresponds to (a) in �gure 13.2. To �nd the equivalent of (c) in �gure 13.2,

consider passing the previous WMF output L�1T H
N 0Y through the scalar MF T HN TN 0L�H .

This gives the M+N�1 outputs

T HN PTN 0Y = T HN PTN 0TNA+ T HN PTN 0V : (13.10)

As seen in section 13.1.2, the sum of the output SNRs in �gure 13.2(c) is equal to the

expression in equation (13.9). It is also possible to �nd the equivalent of (b) in �gure 13.2,

the sum of output SNRs giving again (13.9). What we call burst WMFB is again the average

WMFB over the burst:

WMFB =
1

M +N � 1
tr
�
PTN 0TNT

H
N

�
: (13.11)

13.2.2 ISI Canceler Matched Filter Bound (ICMFB)

We now go all the way in suboptimality. We will not only assume that the multichannel MF

is based on the reduced channel model but in fact that the whole receiver is. To �nd the

optimal performance in this case, consider MLSE. The received burst through the channel

HN(z) is Y (k) = T (hN )AM+N�1(k) + V (k). The channel estimation procedure has given a

reduced-order model z�dHN 0(z) in which HN 0(z) is known but the delay d may be unknown.

Based on the reduced-order model z�dHN 0(z), the MLSE problem is

min
a(i) 2 Ap

d 2 f0; 1; : : : ; N�N 0g

kY (k)� T (hN 0)AM+N 0�1(k�d)k2 (13.12)

where Ap is the symbol alphabet. We obtain the ISI Canceler Matched Filter Bound (ICMFB)

by considering the detection of a single symbol a(i) assuming that the other symbols are

known. It is easy to see that the continuous processing version of this leads to the struc-

ture in �gure 13.4(a) (except for a scale factor). As the true channel is not known, the

terms containing coe�cients of the channel estimation error contribute to noise in the SNR

computation. Hence, the equivalent structures in (b) and (c).

The output SNR in �gure 13.4(c) is:

ICMFB =

max
d2f0;:::;N�N 0g

kHN 0k2�2a
�2v+�

2
akH

y

N 0(z)(zdHN (z)�HN 0(z))k2=kHN 0k2
:

(13.13)
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Figure 13.4: ICMFB: MFB for MLSE with the reduced-order channel model.
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In contrast to WMFB, the delay d in the reduced-order channel model plays a role in ICMFB.

Note that the presence of an adjustable delay creates local minima for MLSE. Remark also

that for N 0 = N , ICMFB=WMFB=MFB.

13.3 Two Applications

13.3.1 Deterministic Maximum Likelihood Channel Estimation

As a �rst example, we shall investigate the e�ect of model reduction in blind DML channel

estimation. In [30], it is proved that, asymptotically in the number of data, the DML criterion

approximates the channel with a lower order model such that the output SNR of theWhitened

Matched Filter corresponding to this lower order model gets maximized. Asymptotically, the

reduced-order channel estimate obtained with the DML is the one that maximizes WMFB.

Some simulations were performed for m = 2 channels and average SNR per subchannel

of 10dB. In order to concentrate on the model reduction e�ects and not on the estimation

errors, the averaged likelihood function was maximized, solved by IQML. DML only allow

the estimation of the channel up to a multiplicative constant. WMFB on the other hand is

quite sensitive to the choice of this scale factor: we have determined the magnitude of this

scale factor using the norm constraint kHN 0k = kHNk.
We considered continuous processing WMFB and ICMFB measures, but since the IQML

method will normally be applied to a burst of data Y M(k), we also considered the burst

processing WMFB measure.
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Figure 13.5: WMFB as a function of N 0 = 1; : : : ; N for m = 2, M = 50, N = 6 for

orthonormal (left) and almost colinear (right) impulse responses.
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First, we illustrate equation (13.7), where the minimal and maximal degradations when

a model of reduced order 1 is considered, are shown. Figure 13.5 shows the evolution of

the continuous and burst processing WMFB as a function of N 0 for a case in which the two

impulse responses are orthonormal and a case in which they are almost colinear. In the �rst

case, we see a degradation of approximatively 1/2 from N 0 = N to N 0 = 1 as predicted in

(13.7). In the second case, quasi no degradations are visible. We note here that the burst

WMFB is lower than its continuous processing version. This is due to the degradations

occurring at the edges of the burst w.r.t. continuous mode performances.

Some other simulations were done for less particular channels. The evolution of WMFB

and ICMFB as a function ofN 0 is shown in �gure 13.6 for the following two decaying channels:

H1 =

"
1:0000 0:8000 0:5000 0:6000 0:1000 0:0050

�1:5000 1:4000 �0:9000 1:1000 �0:0300 0:0050

#

H2 =

"
1:0000 0:5000 �0:1500 0:0550 0:0145 �0:0014
1:5000 �0:9500 0:3050 0:0695 0:0431 �0:0043

# (13.14)

Both continuous and burst mode WMFB are ploted, as well as ICMFB.
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Figure 13.6: Comparison of WMFB and ICMFB as a function of N 0 for channels H1 and H2,

m = 2, N = 6, M = 50 in the case of DML estimation.

We notice thatWMFB is greater than ICMFB for all reduced ordersN 0. The degradations

due to reduced-order modeling are less severe for WMFB than for ICMFB, especially for low

orders. This veri�es equation (13.7), where we saw that maximal degradation for WMFB

due to a model of reduced-order 1 is limited. Furthermore, degradations for WMFB occur

mostly for N 0 = 1. As DML reduced-order models maximizes WMFB, WMFB is decreasing

as N 0 decreases.
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For channel H1, ICMFB decreases considerably when the reduced model is of order 3.

This is probably due to the fact that the channel contains most of its energy in its �rst 4

coe�cients, which shows that ICMFB is sensitive to the energy contained in the reduced-order

channel.

13.3.2 Training Sequence based Channel Estimation

In this second example, the channel is estimated by a white training sequence. The channel

estimate of reduced-order N 0 becomes the part of N 0 consecutive coe�cients of HN which

contains the most energy. This estimation procedure produces a value for the delay d. How-

ever, this value for d may not be the best one for MLSE. Hence the problem formulation

in (13.12) and the ensuing bound in (13.13) with optimization over d are still meaningful.

Nevertheless, the optimal d thus obtained will usually equal the d obtained with channel

estimation by training sequence.

We see in �gure 13.7 that WMFB is not decreasing anymore, but remains high and

always greater than ICMFB. Although training sequence based channel estimation does not

maximize ICMFB, it tends to. Indeed, in equation (13.13), the numerator kHN 0k2 gets

maximized, and the coe�cient in z0 of H
y

N 0(z)(z
dHN(z) �HN 0(z)) becomes equal to 0. In

particular, we see how ICMFB improves, for channel H2 when the reduced-order channel is

estimated by training sequence compared to DML estimation.
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Figure 13.7: Comparison of WMFB and ICMFB as a function of N 0 for channels H1 and H2,

m = 2, N = 6, M = 50 in the case of training sequence based channel estimation.
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13.4 Conclusion

In this chapter, we have proposed two performance bounds for MLSE when the channel

order is underestimated. These measures are interesting when complexity reduction, through

channel order reduction, have to be done, for the implemention of the Viterbi equalizer for

example. In simulations, we use these bounds to see the e�ect of the channel order reduction

for certain channel estimation methods. In [110], MFBs were developed in the case of colored

noise (representing interferers) for an erroneous noise covariance model. MFBs taking into

account channel errors are also under study.
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GENERAL CONCLUSION

In this thesis, we have presented an extensive study on semi{blind channel estimation.

The �rst theoretical part has concentrated on performance bounds for semi{blind, blind, and

training sequence based channel estimation: the superiority of semi{blind techniques over

blind and training sequence based techniques have been shown. The comparison between

semi{blind and blind methods have motivated an analysis of performance under constraints.

FIM regularity and local identi�ability are equivalent, and the number of independent con-

straints needed to regularize the estimation problem is equal to the number of singularities of

the FIM. We have proposed a bound for blind estimation, which is the pseudo{inverse of the

FIM, giving, for a minimal number of independent constraints, the minimal CRB and that

we have interpreted as a CRB with some speci�c constraints. We think that this study is

important because it gives a way to systematically characterize most constrained estimation

problems, and furthermore, it provides a clear characterization of blind channel performance,

which is sometimes done in a non satisfactory way.

Di�erent ways of building semi{blind criteria have been presented. The optimal semi{

blind criteria should be based on methods that naturally incorporate the knowledge of sym-

bols: this is the case of ML methods, that we studied in this thesis, and also of methods

that estimate directly the symbols like [76]. These optimal methods provide semi{blind so-

lutions when the symbols are arbitrarily dispersed in the burst. This symbol con�guration

is undesirable in general as the associated semi{blind criteria will require computationally

demanding algorithms.

For grouped known symbol, i.e. a training sequence, low complex solutions can be built

because the structure of the blind problem is kept. By neglecting some information about the

known or unknown symbols, ML easily allows one to construct semi{blind criteria that are

a linear combination of a blind and a training sequence based criteria. Especially when the

training sequence is short, it appears important to be able to take into account the overlap

zone where known and unknown symbols appear at the same time. One of the solutions

we have proposed for that is to combine blind DML to the optimally weighted least squares

criterion; this combination corresponds to a mixed deterministic and Gaussian point of view

and was shown to give the best results in our simulations. A semi{blind SRM solution was also

proposed that proved to perform very well with performance closed to the ML performance.

The last step of this study was to �nd how to construct a semi{blind criterion based on a
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given blind criterion. We propose a weighted combination of the blind and training sequence

criteria which is typically possible when the blind criteria are based on least{squares. The

semi{blind SRM example is built that way and by approximating the weighting matrix of

blind SRM by a diagonal matrix, the criterion becomes a linear combination of blind SRM

and a training sequence based criterion. Some words are said about the subspace �tting and

covariance matching based semi{blind methods.

Constructing a semi{blind criterion as a linear combination of a blind and a training

sequence based criterion may be a di�cult task. Through the di�erent examples studied, we

could see that the resulting semi{blind criteria are very sensitive to the value of the coe�cients

of the linear weighting, and, for certain values of the weighting, the semi{blind criterion may

give worse performance than the pure training sequence criteria. We could notice that when

the linearly combined semi|blind criterion is correctly constructed, as with our semi{blind

SRM for example, the performance is quite stable around the value of the chosen weight.

Blind algorithms have also been studied. We have provided new solutions to solve DML

that are not complex, and need few iterations to converge. PQML is particularly powerful as it

attains asymptotically the ML performance. Gaussian ML, well-known in the DOA context, is

often misunderstood in the channel identi�cation context. We brought more understanding to

it by interpreting it as a form of covariance matching criterion and comparing it to the classical

optimally weighted least squares covariance matching criterion. Through simulations, GML

appears as the most powerful method among all the methods exploiting the second{order

moments of the data; covariance matching attains GML performance for an in�nite size of

covariance matrix. Fast implementations of GML have been proposed and some others are

still under investigation; fast implementations for covariance matching are also the subject

of ongoing studies.

At last, we would like to insist on the interest of the non{causal DFE which is not

extensively used whereas it possesses the potential of providing lower probability errors than

the classical DFE. The piece{wise linear soft decision scheme we proposed o�ers interesting

perspectives especially in a multi{user context applied to techniques like parallel interference

cancellation.
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1 Introduction

La plupart des standards de communications mobiles actuels incluent une s�equence de sym-

boles connus, la s�equence d'apprentissage, pour estimer le canal. Les m�ethodes d'apprentissage

utilisent les �echantillons du signal re�cu contenant des symboles connus uniquement et tous

les autres �echantillons, contenant des symboles inconnus sont ignor�es. Les m�ethodes aveu-

gles sont bas�ees sur tous les �echantillons, mais la connaissance de symboles �a l'entr�ee n'est

pas mise �a pro�t. Le but de l'estimation de canal semi{aveugle est d'exploiter �a la fois

l'information aveugle et l'information provenant des symboles connus et ainsi de combiner les

aspects positifs des deux techniques.

Les techniques semi-aveugles permettent d'estimer les r�eponses impulsionnelles de canaux

plus longues que possible avec une certaine longueur de s�equence d'apprentissage; pour

une longueur de canal et une qualit�e d'estimation donn�ees, elles permettent l'utilisation de

s�equences d'apprentissage plus courtes compar�ees �a une technique d'apprentissage; les m�eth-

odes semi{aveugles sont �egalement plus robustes que les m�ethodes aveugles qui requi�erent

des conditions de r�egularit�e sur le canal. En�n, elles o�rent de meilleures performances

d'estimation que les m�ethodes aveugles et les m�ethodes d'apprentissage.

Le principal objet de cette th�ese est l'�etude de l'identi�cation semi{aveugle de canaux

FIR multiples, avec une transmission des donn�ees d'entr�ee par paquet. Nous pr�esentons

tout d'abord les conditions d'identi�abilit�e et des bornes de performance pour l'estimation

semi{aveugle. On montre que les m�ethodes semi{aveugles peuvent identi�er n'importe quel

canal, avec peu de symboles connus et même lorsque ceux-ci sont dispers�es arbitrairement

dans le paquet. Des bornes de performance, les bornes de Cram�er{Rao, permettent une

comparaison des techniques semi-aveugles avec les techniques d'apprentissage et les techniques

aveugles. De plus, une �etude de performance sous contraintes est donn�ee pour caract�eriser

les performances de l'estimation aveugle.

Les m�ethodes semi{aveugles propos�ees sont bas�ees sur le principe de Maximum de Vraisem-

blance (MV) qui o�re la possibilit�e d'incorporer la connaissance de symboles d'entr�ee. Lorsque

les symboles connus sont group�es dans une s�equence d'apprentissage, des m�ethodes sous{

optimales sont propos�ees: les crit�eres correspondant sont sous la forme d'une combinaison

lin�eaire d'un crit�ere bas�e sur la s�equence d'apprentissage et du crit�ere MV aveugle. A�n

de construire des crit�eres semi{aveugles performants, nous nous concentrons �egalement sur

l'�etude des m�ethodes MV aveugles. En�n, nous proposons des solutions pour construire des

crit�eres semi{aveugles combinant un certain crit�ere aveugle (qui n'est pas un crit�ere MV) et

un crit�ere d'apprentissage.

Dans cette th�ese, des structures d'�egaliseurs sont �egalement propos�es. La structure des

�egaliseurs en mode paquet et en particulier la structure d'un annulateur d'interf�erences entre

symboles que nous appelons Non{Causal Decision{Feedback Equalizer (NCDFE) et qui utilise

les d�ecisions pass�ees mais �egalement futures. Une impl�ementation du NCDFE bas�ee sur des
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Figure 1: Mod�ele multicanal; exemple de 2 sous{canaux.

d�ecisions douces est pr�esent�ee. En�n, des bornes de performance sur \Maximum Likelihood

Sequence Estimation" (MLSE) pour des mod�eles de canaux d'ordre r�eduit sont donn�ees.

2 Formulation du Probl�eme

Nous consid�erons un mod�ele multicanal FIR o�u une s�equence de symboles a(k) est envoy�ee

�a travers m canaux lin�eaires de longueur N et de coe�cients h(i) (voir la �gure 1):

y(k) =

N�1X
i=0

h(i)a(k�i) + v(k); (1)

v(k) est un bruit additive Gaussien blanc, rvv(k�i) = Ev(k)v(i)H = �2vIm �ki. Supposons

que nous recevons M �echantillons, concat�en�es dans le vecteur Y M(k):

Y M (k) = TM(h)AM+N�1(k) + V M (k) : (2)

Y M(k) = [yH(k�M+1) � � �yH(k)]H , et similairement pour V M(k) et AM (k). La fonction

de transfert du canal est H(z) =
PN�1

i=0 h(i)z
�i = [H1(z)� � �Hm(z)]T . TM(h) est une ma-

trice bloc Toeplitz avec M ligne bloc et
�
H 0m�(M�1)

�
comme premi�ere ligne bloc (H =

[h(0) � � �h(N�1)]). On notera de plus: h = [hT (0) � � � hT (N�1)]T . La longueur du canal

est N ce qui implique que h(0) 6= 0 et h(N�1) 6= 0; la r�eponse impulsionnelle est nulle en

dehors de l'intervalle indiqu�e. On simpli�era la notation (2) pour k =M�1 en:

Y = T (h)A+ V : (3)

Commutativit�e de la Convolution Nous aurons besoin de la propri�et�e de commutativit�e de

la convolution:

T (h)A = Amh (4)
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o�u: Am = A1 
 Im,

A1 =

266664
a(M�1) a(M�2) � � � a(M�N)

a(M�2) . .
.

. .
. ...

... . .
.

. .
. ...

a(0) � � � � � � a(�N+1)

377775 : (5)

Pour simpli�er, on notera A la matrice A.

Mod�ele Semi{Aveugle Le vecteur des symboles d'entr�ee s'�ecrit comme A = P

"
AK

AU

#
o�u le vecteur AK regroupe les MK symboles connus et le vecteur AU regroupe les MU =

M+N�1�MK symboles inconnus. Les symboles connus peuvent être arbitrairement dis-

pers�es dans le paquet et P d�esigne la matrice de permutation appropri�ee. Dans le cas de

l'estimation aveugle, A = AU , alors que A = AK = ATS dans le cas de l'estimation par ap-

prentissage. La sortie du canal peut être d�ecompos�ee en la contribution des symboles connus

et la contribution des symboles inconnus: T (h)A = TK(h)AK + TU(h)AU .

Canaux irr�eductibles, r�eductibles et �a minimum de phase Un canal est dit irr�eductible

si tous ces sous{canaux Hi(z) n'ont pas de z�eros en commun, et r�eductible sinon. Un canal

r�eductible peut être d�ecompos�e comme:

H(z) = HI(z)Hc(z); (6)

o�u HI(z), de longueur NI , est irr�eductible et Hc(z) de longueur Nc = N � NI + 1 est un

monocanal pour lequel nous supposons Hc(1) = hc(0) = 1 (monique). Un canal est dit

�a minimum de phase si tous ces z�eros sont �a l'int�erieur du cercle unit�e. Ainsi H(z) est �a

minimum de phase si et seulement si Hc(z) est �a minimum de phase.

Mod�eles pour les symboles d'entr�ee Les m�ethodes aveugles peuvent être classi��ees (ap-

proximativement) selon le niveau d'information exploit�e sur les symboles d'entr�ee: voir �g-

ure 2.

1. Pas d'information exploit�ee: les m�ethodes d�eterministes.

Ces m�ethodes sont bas�ees directement sur la structure du signal re�cu, et plus partic-

uli�erement sur la structure de la matrice de convolution T (h). Parmi les techniques

d�eterministes, on trouve la m�ethode de "subspace �tting" [56], la m�ethode \Subchan-

nel Response Matching" (SRM) [17, 18], la m�ethode de maximum de vraisemblance

d�eterministe (DML) [9] ou encore les techniques de \least{squares smoothing" [25, 26].
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Figure 2: Classi�cation des m�ethodes d'identi�cation de canal selon la connaissance a priori

exploit�ee sur les symboles d'entr�ee.

2. Statistiques du second ordre: les m�ethodes Gaussiennes.

Ce sont des m�ethodes qui utilisent les moments du second{ordre des donn�ees, comme

la m�ethode de pr�ediction [9] ou de covariance matching [37]. On trouve �egalement la

m�ethode de maximum de vraisemblance Gaussienne (GML) [40].

3. Statistiques d'ordre sup�erieur.

4. Alphabet �ni des symboles d'entr�ee.

Ces m�ethodes sont bas�ees sur le signal re�cu et exploitent en plus l'alphabet �ni des sym-

boles d'entr�ee. Parmi ces m�ethodes, on trouve les m�ethodes de maximum de vraisem-

blance telles que [45].

5. La distribution compl�ete des symboles d'entr�ee.

Dans ces m�ethodes, la vraie distribution des symboles d'entr�ee est exploit�ee; par exem-

ple pour une BPSK on exploite le fait que les symboles prennent la valeur +1 ou �1
avec probabilit�e 1

2 . La m�ethode de maximum de vraisemblance stochastique (SML) [49]

appartient �a cette cat�egorie.

Cette classi�cation peut être adapt�ee au cas semi{aveugle: les di��erentes cat�egories cor-

respondent aux di��erentes mod�elisations des symboles inconnus.

Plus on exploite d'information sur les symboles d'entr�ee, meilleures vont être les perfor-

mances d'estimation, mais, en même temps, plus coûteuses vont être les m�ethodes associ�ees

avec des fonctions de coût pr�esentant des minima locaux. Dans cette th�ese, nous nous sommes

surtout concentr�es sur les m�ethodes d�eterministes et Gaussiennes: on verra que certaines de

ces m�ethodes peuvent être r�esolues de fa�con simple avec des fonctions de coût quadratiques,

sans minima locaux donc.
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3 Conditions d'Identi�abilit�e Semi{Aveugle

Un param�etre � sera dit identi�able s'il peut être d�etermin�e de fa�con unique �a partir de sa

fonction de densit�e de probabilit�e:

8Y ; f(Y j�) = f(Y j�0)) � = �0 : (7)

Dans le cas de l'estimation aveugle d�eterministe et Gaussienne, l'identi�cation du canal se

fait au mieux �a un facteur d'�echelle ou de phase pr�es; l'identi�abilit�e sera l'identi�abilit�e �a

l'ambigu��t�e aveugle pr�es.

Nous r�esumons ici les conditions d'identi�abilit�e pour l'estimation de canal par appren-

tissage et pour l'estimation aveugle et semi{aveugle. On ne pr�ecise que les conditions sur le

canal et le nombre de symboles connus; dans la th�ese, des conditions sur la longueur du pa-

quet du signal de r�eception, sur les modes d'excitation des symboles d'entr�ee sont �egalement

fournies.

3.1 Mod�ele D�eterministe

� Estimation par apprentissage: n'importe quel canal peut être estim�e pourvu qu'on ait

2N � 1 symboles connus.

� Estimation aveugle: un canal irr�eductible sera identi�able �a un facteur d'�echelle pr�es.

� Estimation semi{aveugle: n'importe quel canal peut être estim�e pourvu qu'on ait 2Nc�1
symboles connus (non tous nuls). Ainsi:

{ pour un canal irr�eductible, il faut 1 symbole connu.

{ pour un monocanal, il faut 2N � 1 symboles connus.

Un r�esultat important d�emontr�e dans cette th�ese est que ces derni�eres conditions sont

valables pour des positions arbitraires des symboles connus dans le paquet. Le cas de

symboles connus tous �egaux �a 0 est �egalement trait�e: dans ce cas{l�a, la canal sera

identi�able �a un facteur d'�echelle pr�es avec 2Nc � 2 symboles connus su�samment

dispers�es dans le paquet, c'est{�a{dire qu'on doit avoir au moins Nc�1 symboles connus
qui n'appartiennent pas �a un groupe de Nc symboles connus ou plus.

3.2 Mod�ele Gaussien

� Estimation aveugle: un canal irr�eductible sera identi�able �a un facteur de phase pr�es.

Les z�eros d'un canal sont identi�ables mais on ne peut d�eterminer s'ils sont �a minimum

ou maximum de phase; ainsi, si on sait que le canal est �a minimum de phase, il sera

identi�able.
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� Estimation semi{aveugle: n'importe quel canal sera identi�able pourvu qu'on ait un

seul symbole connu (non nul) dans le paquet (qui n'est pas situ�e pr�es des bords du

paquet, i.e. dans les N � 1 premiers ou derniers symboles).

Au point de vue identi�abilit�e, on voit donc que le mod�ele Gaussien est plus robuste que

le mod�ele d�eterministe. De plus, l'estimation semi{aveugle a besoin de moins de symboles

connus pour permettre l'identi�abilit�e que l'estimation par apprentissage.

4 Bornes de Performance

Pour caract�eriser les performances de l'estimation semi{aveugle, nous utilisons les bornes de

Cram�er{Rao (CRB). La plupart des d�e�nitions seront donn�ees pour le cas de param�etres

r�eels; dans la th�ese, nous traitons �egalement le cas complexe.

La CRB donne une borne inf�erieure sur la matrice de corr�elation C~�~�
des erreurs d'un

estimateur non biais�e:

C~�~� � CRB = J�1
�� (8)

J�� = E

�
@f(Y j�)
@�

��
@f(Y j�)
@�

�T
(9)

o�u J�� est la matrice d'information de Fisher (FIM).

4.1 CRB pour l'Estimation sous Contraintes

Pour les mod�eles d�eterministe et Gaussien, on d�emontre le th�eor�eme suivant:

Theorem 25 La FIM est non singuli�ere en � si et seulement si � est identi�able localement

(i.e. il existe un voisinage ouvert de � sur lequel on a identi�abilit�e).

L'estimation aveugle ne peut estimer la totalit�e des param�etres et il s'ensuit qu'on n'aura pas

identi�abilit�e locale. La FIM aveugle est donc singuli�ere et le r�esultat classique de la CRB

(8) ne peut être directement appliqu�e.

L'estimation aveugle est en g�en�eral faite sous contraintes: nous proposons donc des CRBs

pour l'estimation sous contraintes. On consid�erera les contraintes sous la forme de la fonction

implicite suivante:

K� = 0 (10)

o�u K� : Rn ! Rk est continûment di��erentiable. On note n le nombre d'�el�ements de �. On

supposera que ces contraintes r�esultent en une estimation non biais�ee de �. On d�e�nit la

matrice V� telle que:

espace fV�g =
�
espace

�
@KT�
@�

��?
(11)
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o�u espace f:g d�esigne l'espace engendr�e par les colonnes de son argument et (:)? d�esigne

l'espace orthogonal �a son argument; on suppose que les colonnes de V� sont ind�ependantes.

Theorem 26 La CRB sous les contraintes K� = 0 est

CRBC = V�
�
VT� J��V�

�
�1 VT� : (12)

Cette CRB est d�e�nie si et seulement si VT� J��V� est r�eguli�ere, ce qui �equivaut �a dire que �

est localement identi�able sous les contraintes K�.

4.2 Contraintes Particuli�eres

Dans la th�ese, nous avons mis en �evidence des contraintes particuli�eres importantes. Quand

espace

�
@KT�
@�

�
= null(J��),

CRBC = J +
�� : (13)

Ces contraintes donnent, pour un nombre minimal de contraintes ind�ependantes, la plus

petite valeur de tr fCRBCg.
Ce r�esultat peut �egalement être appliqu�e au cas de l'estimation conjointe des vecteurs de

param�etres �1 et �2 o�u les contraintes K�1 ne sont appliqu�ees que sur �1; On suppose que J��
est singuli�ere tandis que J�2�2 est r�eguli�ere. La CRB sous la contrainte K�1 est:

CRB = V�1
�
VT�1J�1�1(�)V�1

��1 VT�1 (14)

o�u

J�1�1(�) = J�1�1 � J�1�2J
�1
�2�2

J�2�1 : (15)

J�1
�1�1

(�) serait la CRB pour �1 si J�1�1(�) �etait inversible. VT�1J�1�1(�)V�1 est suppos�e in-

versible. Maintenant, si espace

(
KT�1
@�

)
= null(J�1�1(�)), la CRB contrainte est:

CRBC = (J�1�1(�))
+ : (16)

4.3 Application �a l'Estimation Aveugle

On suppose ici que les conditions d'identi�abilit�e aveugle sont v�eri��ees.

Mod�ele D�eterministe

Dans le cas d'un canal complexe, la FIM d�eterministe a 2 singularit�es; son espace nul est

engendr�e par:

hS1 =

"
Re(h)

Im(h)

#
et hS2 =

"
�Im(h)

Re(h)

#
: (17)
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Le premier vecteur peut être interpr�et�e comme correspondant �a l'ambigu��t�e sur la norme et

le second vecteur comme correspondant �a l'ambigu��t�e de phase.

Pour l'estimation aveugle d�eterministe, on consid�ere les contraintes suivantes:

� Une contrainte quadratique:

hHh = hoHh (18)

qui permet d'ajuster la norme du canal.

� Dans le cas d'un canal complexe, une contrainte suppl�ementaire pour ajuster le facteur

de phase:

ho TS2 hR = ho TS2 h
o
R = 0 : (19)

On d�enote (:)o la vraie valeur de son argument et hR =
�
Re(hT ) Im(hT )

�T
. Ces contraintes

laissent une ambigu��t�e de signe mais qui ne conduit pas �a une FIM singuli�ere. Pour �evaluer

le MSE, cette ambigu��t�e peut être r�esolue en imposant ho Th > 0.

Mod�ele Gaussien

La FIM Gaussienne pour un canal complexe a une seule singularit�e; l'espace nul est engendr�e

par le vecteur hS2 . Une seule contrainte est donc n�ecessaire pour r�egulariser le probl�eme

d'estimation; cette contrainte est la contrainte de phase utilis�ee dans le cas d�eterministe:

ho TS2 hR = ho TS2 h
o
R = 0 : (20)

Pour les deux mod�eles, la CRB sous contraintes est:

CRBC = (Jhh(�))+ : (21)

Dans le cas d�eterministe, la contrainte de norme est usuellement utilis�ee, mais sans autre

justi�cation que celle de donner des solutions simples pour les m�ethodes associ�ees. Ici, nous

choisissons �egalement cette contrainte parce que, adjointe de la contrainte de phase (19), elle

donne comme CRB la pseudo inverse de Jhh(�). C'est ainsi que l'on justi�e �egalement la

contrainte de phase choisie dans le cas Gaussien.

4.4 �Evaluations Num�eriques des CRBs

Dans la �gure 3, nous montrons la mesure tr(CRB), pour un paquet de longueur �xe M =

100, le canal Hwell (voir Chapitre 5, appendice D). Les symboles d'entr�ee appartiennent �a

une BPSK et sont choisis al�eatoirement. Nous ne pr�esentons ici que le cas d�eterministe.

Dans la �gure 3 �a gauche, les performances sont montr�ees en fonction du nombre de

symboles connus dans le paquet. On voit une am�elioration spectaculaire des performances
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Figure 3: CRBs pour l'estimation semi{aveugle (gauche) et comparaison des modes semi{

aveugle et d'apprentissage (droite).

semi{aveugles avec tr�es peu de symboles connus (10 symboles connus); pass�e ce stade, il faut

un nombre plus important de symboles connus pour avoir une am�elioration signi�cative.

Dans la �gure 3 �a droite, on compare les performances de l'estimation semi{aveugle avec

l'estimation par apprentissage. Pour 10 symboles connus, on a un gain de performance de

20 apport�e par l'estimation semi{aveugle. Pour un niveau de qualit�e d'estimation d�esir�e, il

faudrait 10 symboles connus pour l'estimation semi{aveugle alors qu'il en faudrait 50 pour

l'estimation par apprentissage. Pour 25 symboles connus, on a un gain de performance de 3;

il faudrait 70 symboles connus en apprentissage pour obtenir les performances de l'estimation

semi{aveugle.

4.5 Optimisation des Symboles Connus

Valeur des Symboles Connus

Pour l'estimation par apprentissage, la s�equence optimale est une s�equence blanche (au sens

d�eterministe), c'est{�a{dire telle que AHA est une diagonale constante. Pour l'estimation

semi{aveugle, l'optimisation de la s�equence va d�ependre du canal: une s�equence blanche ne

va pas optimiser les performances mais reste sans doute parmi les meilleurs choix.

Symboles Group�es ou Dispers�es

Lorsque les symboles connus sont group�es, on aura de meilleures performances lorsque ces

symboles sont choisis al�eatoirement. Par contre, lorsqu'ils sont tous identiques, les perfor-

mances seront meilleures lorsque les symboles connus sont dispers�es dans le paquet.
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5 M�ethodes Semi{Aveugles Optimales

Dans une premi�ere approche, nous nous sommes int�eress�es �a des m�ethodes semi{aveugles

optimales: ce sont des m�ethodes qui permettent d'exploiter toute l'information venant des

symboles connus et des symboles inconnus, et notamment des zones de transitions qui conti-

ennent �a la fois des symboles connus et des symboles inconnus. De telles m�ethodes sont des

m�ethodes qui incorporent naturellement la connaissance de symboles �a l'entr�ee. Ainsi, nous

avons opt�e pour les m�ethodes de maximum de vraisemblance semi{aveugles.

DML Semi{Aveugle

Y = T (h)A + V : comme V � N (0; �2vI), Y � N (T (h)A; �2vI). Le crit�ere DML s'�ecrit

comme:

max
AU ;h

f(Y jh) , min
AU ;h

kY � T (h)Ak2 , min
AU ;h

kY � TK(h)AK � TU(h)AUk2 (22)

o�u f(Y jh) est la densit�e de probabilit�e de Y . Quand on minimise ce crit�ere en fonction de

AU et on remplace l'expression obtenue dans le crit�ere, on obtient un crit�ere DML pour h

uniquement:

min
h

(Y � TK(h)AK)H P?TU (h) (Y � TK(h)AK) : (23)

Le premier crit�ere (22) peut être optimis�e par des minimisations altern�ees entre h et AU .

Cette m�ethode simple pr�esente un certain nombre de propri�et�es avantageuses: la fonction

de coût DML d�ecrô�t �a chaque it�eration et avec une bonne initialisation, on converge vers

le minimum global. Cette m�ethode a pour d�esavantage de pr�esenter une convergence lente

qui rend son utilisation quelque peu prohibitive. Le crit�ere (23) en h peut être r�esolu par la

m�ethode de scoring [40].

GML Semi{Aveugle

Y = TK(h)AK + TU(h)AU + V : comme AU � N (0; �2aI) et V � N (0; �2vI), alors Y �
N (TK(h)AK ; CY Y ) avec CY Y = �2aTU(h)T HU (h) + �2vI . Le crit�ere GML s'�ecrit comme:

min
h;�2v

n
ln detCY Y + (Y � TK(h)AK)

H C�1
Y Y (Y � TK(h)AK)

o
: (24)

Ce crit�ere peut être optimis�e par la m�ethode de scoring. Il est �a noter que l'hypoth�ese

Gaussienne sur les symboles inconnus, qui est une hypoth�ese non valide, n'est utilis�ee que

pour construire le crit�ere. Dans la th�ese, une forte connexion entre GML aveugle et la m�ethode

de covariance matching bas�ee sur un crit�ere aux moindres carr�es optimalement pond�er�e. On

montre que GML peut être vu comme une certaine forme de covariance matching et a des

performances �equivalentes �a la m�ethode de covariance matching quand le nombre de donn�ees

et la taille de la matrice de covariance tendent vers l'in�ni.
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Une �etude de performance des m�ethodes MV d�eterministes et Gaussiennes est pr�esent�ee

dans le chapitre 6.

Dans une seconde approche qui est sous{optimale, on consid�ere que les symboles connus

sont group�es sous forme d'une s�equence d'apprentissage. Dans ce cas{l�a, on verra, qu'avec peu

d'approximations, le crit�ere MV semi{aveugle s'�ecrira sous la forme de la somme du crit�ere

MV et du crit�ere d'apprentissage. Comme le probl�eme semi{aveugle garde la structure du

probl�eme aveugle, il va être possible de construire des algorithmes rapides semi{aveugles.

Ainsi, pour des raisons de complexit�e algorithmique, mais �egalement pour des raisons de

performance, il est pr�ef�erable d'avoir des symboles connus group�es.

Pour avoir des crit�eres semi{aveugles performants, il apparâ�t important de trouver des

m�ethodes performantes pour r�esoudre le probl�eme MV aveugle.

6 DML Aveugle

Une solution peu coûteuse pour optimiser le crit�ere DML aveugle est bas�ee sur une param�etri-

sation de l'espace bruit (i.e. compl�ement orthogonal �a l'espace colonne de T (h)). Une telle
param�etrisation H?(z) v�eri�e H?(z)H(z) = 0 et T H(h?)T (h) = 0 o�u T (h?) est la matrice

de convolution construite �a partir deH?(z). Par exemple, dans le casm = 2 (2 sous{canaux),

H?(z) = [�H2(z) H1(z)]. Le crit�ere DML pour h s'�ecrit alors comme:

min
khk=1

Y HT H(h?)
h
T (h?)T H(h?)

i
| {z }

R(h)

+

T (h?)Y : (25)

On ne pr�ecise que la contrainte de norme sur le canal: une contrainte de phase est �egalement

n�ecessaire dans le cas d'un canal complexe.

Iterative Quadratic ML (IQML) est un algorithme it�eratif qui permet de r�esoudre (25): �a

chaque it�eration, IQML consid�ere le d�enominateurR(h) = R comme constant, calcul�e �a partir

de l'it�eration pr�ec�edente. Le crit�ere devient alors quadratique. Utilisant la commutativit�e de

la convolution, on peut �ecrire T (h?)Y = Yh; le crit�ere IQML s'�ecrit:

min
khk=1

hHYHR+Yh : (26)

Dans le cas sans bruit, Yho = 0: le vrai canal annule le crit�ere (quadratique) et donc la

solution est ho. A haut SNR, une premi�ere it�eration donnera une estim�ee consistente de h

et une seconde it�eration donnera la solution DML. A bas SNR cependant, IQML donne une

estimation biais�ee du canal et ses performances sont mauvaises. En e�et, asymptotiquement

dans le nombre des donne'es, la fonction de coût IQML est �equivalente �a son esp�erance par
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la loi des grands nombres:

T H(h?)R+T (h?)EY Y H = tr
n
T H(h?)R+T (h?)XXH

o
+ �2vtr

n
T H(h?)R+T (h?)

o
:

(27)

ho annule le premier terme mais n'est pas en g�en�eral un vecteur propre du second terme et

donc de la somme.

6.1 Denoised IQML (DIQML)

La premi�ere m�ethode que nous proposons va d�ebruiter le crit�ere IQML. Nous soustrayons au

crit�ere IQML une approximation de la contribution du bruit (c�2v est une estim�ee consistente
de la variance du bruit):

min
khk=1

tr
n
P
T H(h?)

�
Y Y H �c�2vI�o ,

min
khk=1

n
hHYHR+(h)Yh�c�2vtrfT (h?)R+(h)T H(h?)g

o
:

(28)

(28) est r�esolu de la même mani�ere que IQML: on consid�ere R(h) = R comme constant �a

chaque it�eration et le probl�eme devient quadratique:

min
khk=1

hH
n
YHR+Y �c�2vDo h (29)

o�u hHDh = trfT H(h?)R+T (h?)g.
Le choix de c�2v s'av�ere crucial. Pour un nombre �ni de donn�ees, la matrice centrale

Q = YHR+Y �c�2vD sera ind�e�nie si c�2v n'est pas choisi proprement: dans ce cas l�a, DIQML

n'aura pas de bonnes performances. Pour avoir un probl�eme de minimisation bien d�e�ni �a

chaque it�eration, on va choisir le c�2v qui rend Q(h) positive avec 1 singularit�e. Le probl�eme

devient alors:

min
khk=1;�

hH
�
YHR+Y � �D

	
h : (30)

� est la valeur propre g�en�eralis�ee minimale de Q et h le vecteur propre g�en�eralis�e associ�e.

6.2 Pseudo Quadratic ML (PQML)

PQML est un algorithme it�eratif qui �a chaque it�eration va tenter d'annuler le vrai gradient

de DML. Ce gradient peut être d�ecompos�e sous la forme P(h)h o�u P(h) est une matrice

id�ealement positive. A chaque it�eration P(h) = P est consid�er�e comme constant (�evalu�e

grâce �a l'it�eration pr�ec�edente). Le probl�eme devient quadratique:

min
khk=1

hHP h : (31)
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Figure 4: Paquet de sortie: d�ecomposition des donn�ees pour LS{PQML

Pour le probl�eme DML, la matrice P(h) peut être mise sous la forme P(h) = YHR+Y �
B(h). Quand M ! 1, B(h) ! �2vD + terme signal. �Evalu�e en un h consistent, le terme

signal devient n�egligeable, et l'e�et de B(h) est de d�ebruiter le crit�ere IQML mais d'une fa�con

plus e�cace que DIQML.

Les performances de PQML et DIQML sont �etudi�ees: PQML a de meilleures performances

que DIQML. De plus PQML a les mêmes performances asymptotiques que DML.

7 M�ethodes Semi{Aveugles Sous{Optimales

On suppose que les symboles connus sont group�es et pour simpli�er, sont situ�es au d�ebut du

paquet. Le paquet de sortie (�gure 4) peut être d�ecompos�e en 3 zones: une zone ne contenant

que des symboles connus, une zone contenant �a la fois des symboles connus et inconnus et

une zone ne contenant que des symboles inconnus.

Les crit�eres semi{aveugles que nous proposons vont être bas�es sur une d�ecomposition en

2 zones, le zone de transition �etant assimil�ee �a la partie aveugle ou �a la partie apprentissage

du crit�ere.

7.1 Least Squares{PQML (LS{PQML)

La premi�ere m�ethode assimile la zone de transition �a la partie aveugle et les symboles connus

dans cette zone sont consid�er�es comme inconnus, ce qui entrâ�ne une perte d'information. On

applique DML �a
�
Y T
TS Y T

B

�T
avec Y TS = TTS(h)ATS + V TS et Y B = TB(h)AB + V B. Le

crit�ere semi{aveugle s'�ecrit:

min
h;AU

�
kY TS � TTS(h)ATSk2 + kY B � TB(h)ABk2

	
(32)
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Figure 5: Paquet de sortie: d�ecomposition des donn�ees pour AQ/WLS{PQML

c'est{�a{dire la somme du crit�ere aux moindres carr�es pour Y TS et du crit�ere DML pour Y B .

Ce crit�ere semi{aveugle peut être r�esolu en utilisant des minimisations altern�ees entre h et

AB. On peut �egalement utiliser le crit�ere DML en h pour la partie aveugle en la r�esolvant

par PQML:

min
h;�

�
kY TS � TTS(h)ATSk2 + hH

�
YHBR

+YB � �B
	
h
	
: (33)

7.2 Alternating Quadratic{PQML (AQ{PQML)

Dans la deuxi�eme m�ethode, la zone de transition est assimil�ee �a la partie apprentissage, les

symboles inconnus dans cette zone sont consid�er�es comme d�eterministes. On applique DML

�a
�
Y T
AQ Y T

B

�T
avec Y AQ = T 0

K(h)ATS + T
0

U (h)A
0

U + V AQ. Le crit�ere semi{aveugle s'�ecrit:

min
AB ;A

0
U ;h

�
kY AQ � T 0

K(h)ATS � T
0

U (h)A
0

Uk
2 + kY B � TB(h)ABk2

	
: (34)

Ce crit�ere peut être optimis�e en utilisant des minimisations altern�ees. Si on r�esoud la partie

aveugle par PQML:

min
A0
U
;h;�

�
kY AQ � T 0

K(h)ATS � T
0

U (h)A
0

Uk
2 + hH

�
YHBR

+YB � �B
	
h
	

(35)

et on r�esoud par minimisations altern�ees entre h et A0U .

7.3 Weighted Least Squares{PQML (WLS{PQML)

Dans la troisi�eme m�ethode, la zone de transition est de nouveau assimil�ee �a la partie appren-

tissage, mais les symboles inconnus dans cette zone sont cette fois{ci consid�er�es comme des
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variables al�eatoires Gaussiennes. On applique GML �a Y WLS = T 0K(h)ATS+T
0

U(h)A
0

U+V WLS

et DML �a Y B, and apr�es quelques approximations, on obtient:

min
AB ;h

n
kY WLS � T 0K(h)ATSk

2
CYWLSYWLS

+ kY B � TB(h)ABk2
o

(36)

avec CYWLSYWLS
= �2aTWLS(h)T HWLS(h)+�

2
vI . On peut de nouveau utiliser des minimisations

altern�ees. WLS{PQML s'�ecrit:

min
h;�

n
kY WLS � T 0K(h)ATSk

2
CYWLSYWLS

+ hH
�
YHBR

+YB � �B
	
h
o
: (37)

Dans la �gure 6, on montre les performances simul�ees des di��erents algorithmes bas�es sur

PQML pour un paquet de longueur M = 100, un SNR de 10dB, une longueur de canal de

4 (les coe�cients du canal sont choisis al�eatoirement). 1000 r�ealisations de Monte{Carlo sur

les symboles d'entr�ee inconnus et sur le bruit sont e�ectu�ees. On a 7 symboles connus, c'est{

�a{dire le nombre minimal pour que l'estimation par apprentissage soit d�e�nie. On remarque

que la m�ethode la plus performante est WLS{PQML avec des performances simul�ees proches

des performances optimales de ML, et la moins performante est LS-PQML. On montre de

plus les performances de l'algorithme de minimisations altern�ees bas�ees sur le crit�ere optimal

(22). On remarque la convergence lente de cet algorithme.

Dans la �gure 7, on e�ectue 5000 r�ealisations de Monte{Carlo sur le canal (al�eatoire), le

bruit et les symboles d'entr�ee. On y montre les performances du PQML aveugle (le facteur

d'�echelle du canal est estim�e grâce �a la s�equence d'apprentissage). On remarque que le PQML

aveugle a de mauvaises performances: ceci n'est pas dû au fait que PQML est un mauvais

algorithme, mais au fait que le probl�eme aveugle est tr�es sensible au conditionnement du

canal: sur les 5000 r�ealisations, des canaux mal conditionn�es ont �et�e tir�es qui ont rendu les

performances aveugles moyennes mauvaises. L'estimation semi{aveugle permet par contre de

robusti�er le probl�eme.

8 Combinaison Crit�ere Aveugle et Crit�ere Apprentissage

8.1 Exemple de SRM

Certains crit�eres semi{aveugles se pr�esentent sous la forme d'une combinaison lin�eaire d'un

crit�ere aveugle (crit�ere qui ne permet pas d'incorporer la connaissance de symboles connus)

et d'un crit�ere d'apprentissage.

Nous traitons ici l'exemple de SRM semi{aveugle. SRM aveugle peut être vu comme une

version non pond�er�ee de IQML: minkhk=1 h
HYHY h. Le crit�ere SRM semi{aveugle s'�ecrit

comme:

min
h

�
�hHYHB YBh+ kY TS � TTS(h)ATSk2

	
: (38)
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Ce crit�ere est bas�ee sur la d�ecomposition des donn�ees de la �gure 4. Une fa�con intuitive de

pond�erer les deux parties aveugle et apprentissage est de leur associer le nombre de donn�ees

sur lesquelles elles sont bas�ees. Ainsi, dans notre cas, le � optimal serait �egal �a 1. Dans la

�gure 8, nous montrons le NMSE moyenn�e sur 100 r�ealisations du canal (dont les coe�cients

sont choisis al�eatoirement), du bruit et des symboles d'entr�ee. On consid�ere les cas de 10 et

20 symboles connus pour un burst de longueur 100. Pour � = 1, on trouve des performances

pires que celles donn�ees par apprentissage pur (� = 0).

Cet exemple nous montre qu'un crit�ere semi-aveugle bien construit ne consiste pas en une

simple combinaison lin�eaire du crit�ere aveugle et du crit�ere d'apprentissage. Le crit�ere SRM

aveugle ne donne une estim�ee du canal non biais�e que sous la contrainte de norme constante.

L'estimation semi{aveugle se faisant sans contraintes, les mauvaises performances de la partie

aveugle rendent le crit�ere semi{aveugle mauvais.

Il apparâ�t donc n�ecessaire de d�ebruiter la partie SRM du crit�ere semi-aveugle, il reste

cependant �a trouver le bon facteur �. Pour cela, nous faisons un parall�ele avec DIQML, et

nous approximons la matrice R (30) par sa diagonale. Ainsi dans le cas m = 2, le crit�ere

SRM semi{aveugle est:

min
h

(
1dkhk2hH

�
YHB YB � �min(Y

H
B YB)

�
h+ kY TS � TTS(h)ATSk2

)
(39)

o�u �min(YHB YB) est la valeur propre minimale de Y
H
B YB , et dkhk est une estim�ee de la norme

de h. Dans la �gure 8, on montre les performances du SRM semi{aveugle corrig�e. On voit

que la valeur � = 1 donne approximativement les performances optimales. On remarque en

fait que les performances d�ependent assez peu du facteur �.

8.2 Autre Exemple

Consid�erons maintenant un crit�ere semi{aveugle form�e d'un crit�ere aveugle quadratique de la

forme hHUHB UBh, avec UBh
o MU!1! 0. Consid�erant la situation asymptotique o�u le nombre

de symboles connus et inconnus tendent vers l'in�ni, on connâ�t la matrice de pond�eration

optimale W du crit�ere aux moindres carr�es pond�er�es:

min
h

 UBh
Y TS � TTS(h)ATS


2

W+

(40)

(ce crit�ere est bas�e sur la d�ecomposition de la �gure 4). En e�et:

W = E

"
Uh

Y TS � TTS(h)ATS

#"
Uh

Y TS � TTS(h)ATS

#H
=

"
WB 0

0 �2vI

#
(41)
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avec WB = E
�
UBhhHUHB

�
. Le crit�ere semi{aveugle pond�er�e optimalement devient alors:

min
h

�
hHUHB W+

B UBh+
1

�2v
kY TS � TTS(h)ATSk2

�
(42)

9 Gaussian ML

Des algorithmes aveugles et semi{aveugles pour optimiser GML bas�es sur la m�ethode de

scoring sont �egalement propos�es. Dans des simulations, on met en �evidence les performances

sup�erieures de GML par rapport �a DML. La m�ethode de scoring est cependant plus algorith-

miquement complexe que l'algorithme DIQML ou PQML. Nous proposons une approximation

de la m�ethode de scoring bas�ee sur des expressions fr�equentielles de la FIM gaussienne et du

gradient de GML.

Dans le cas Gaussien, on peut �egalement construire des crit�eres semi{aveugles sous la

forme de la somme d'un crit�ere aveugle et d'un crit�ere d'apprentissage comme cela a �et�e fait

dans le cas d�eterministe. Le d�ecoupage des donn�ees en deux parties devrait être di��erent

cependant: en e�et, non seulement le bruit au niveau de ces deux parties doit être d�ecoupl�e,

mais la partie signal �egalement. Cependant, nous avons v�eri��e par des simulations qu'on peut

ignorer les corr�elations au niveau signal et donc adopter les mêmes d�ecompositions (�gure 4

et 5) que dans le cas d�eterministe.
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10 D�ecisions Douces Appliqu�ees �a l'Estimation Semi{Aveugle

Dans une derni�ere �etape, nous appliquons une strat�egie de d�ecisions douces �a l'estimation

de canal semi{aveugle. On part d'une estim�ee du canal obtenue par une m�ethode semi{

aveugle, �a partir de laquelle un �egaliseur est construit qui nous donne des estim�es des symboles

d'entr�ee inconnus. Des d�ecisions sur les symboles les plus �ables sont prises et sont consid�er�ees

comme des symboles connus; les autres estim�es des symboles, non �ables, sont consid�er�es

comme inconnus. Un nouveau crit�ere semi{aveugle est alors construit bas�e sur un nombre de

symboles connus plus important. Cette id�ee prometteuse est appliqu�ee �a DML et �a GML: il

apparâ�t en fait di�cile d'appliquer cette strat�egie car elle change les statistiques conjointes

de symboles et du bruit.

11 Structures de R�ecepteurs

11.1 �Egaliseur en Mode Paquet

On �etudie la structure des �egaliseurs en mode paquet: on donne la structure des �egaliseurs

classiques lin�eaires et �a retour de d�ecision, ainsi que celle de l'annulateur d'interf�erences entre

symboles, que l'on appellera NCDFE (Non Causal Decision Feedback Equalizer), qui utilise

les d�ecisions pass�ees et futures: les d�ecisions futures sont donn�ees par une autre �egaliseur

(lin�eaire ou DFE), les d�ecisions pass�ees sont donn�ees par cet autre �egaliseur ou le NCDFE

lui{même. Les di��erents �egaliseurs sont donn�es selon les crit�eres z�ero{forcing, MMSE et

MMSE non biais�e. Contrairement au mode continu, les �ltres optimaux sont variants dans le

temps. Les performances des ces �egaliseurs sont donn�ees en terme de SNR. Le SNR d�epend

de la position du symbole dans le paquet, ainsi que de la pr�esence de symboles connus

dans le paquet. Nous montrons qu'en choisissant correctement le nombre et la position des

symboles connus, les �ltres du traitement continu (qui sont invariants dans le temps) peuvent

être organis�es pour donner des performances satisfaisantes, de telle fa�con que le traitement

optimal en mode paquet impliquant des �ltres variants dans le temps peut être �evit�e.

11.2 �Egaliseur �a Retour de D�ecision Non Causal

Quand il n'y a pas d'erreurs dans le retour de d�ecision non causal du NCDFE, celui{ci donne

en sortie un signal sans interf�erences entre symboles, et le \matched �lter bound" est atteint.

En pratique, il sou�re de la propagation d'erreurs. Nous proposons une impl�ementation du

NCDFE bas�ee sur des d�ecisions douces. A chaque �etape, pour chaque symbole inconnu,

des intervalles de �abilit�e sont calcul�es sur la base du SNR du symbole, de la position du

symbole dans le paquet et de la pr�esence de symboles connus dans le paquet. Uniquement les

symboles les plus �ables sont mis dans le retour de d�ecisions du NCDFE. Les autres symboles

sont classi��es comme inconnus et seront de nouveau estim�es dans la prochaine it�eration du
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NCDFE. Le nombre croissant de symboles assimil�es comme connus, venant des it�erations

pr�ec�edentes du NCDFE, am�eliore la qualit�e d'estimation des autres symboles inconnus. Ce

sch�ema de d�ecisions douces est compar�e �a d'autres sch�emas, et en particulier celui bas�e sur

la tangente hyperbolique.

11.3 Matched Filter Bounds pour des Mod�eles de Canaux d'Ordre R�eduit

Le Matched Filter Bound (MFB) correspond �a une borne de performance pour les r�ecepteurs

quand le canal est connu. Nous proposons ici deux Matched Filter Bounds (MFB) destin�es �a

caract�eriser les performances de r�ecepteurs qui utilisent des mod�eles de canaux d'ordre r�eduit.

La premi�ere borne utilise le mod�ele du canal pour e�ectuer un �ltrage adapt�e spatio{temporel

qui conduit �a une r�eduction des donn�ees de multicanal �a monocanal. Le reste du traitement

reste optimal. La seconde mesure (ICMFB) borne les performances de l'algorithme de Viterbi

bas�e sur le mod�ele de canal d'ordre r�eduit. Nous pr�esentons deux m�ethodes fournissant des

mod�eles d'ordre r�eduit pour illustrer ces deux mesures: l'estimation de canal aveugle par

DML (qui maximise WMFB) et l'estimation de canal par apprentissage.

12 Conclusion

Dans cette th�ese, nous avons pr�esent�e une �etude approfondie sur l'estimation de canal semi{

aveugle. Nous avons montr�e la sup�eriorit�e des techniques semi{aveugles par rapport aux

techniques aveugles et aux techniques d'apprentissage. Les m�ethodes semi{aveugles sont

capables d'identi�er n'importe quel canal avec tr�es peu de symboles connus; ces derniers

peuvent de plus être arbitrairement dispers�es dans le paquet d'entr�ee. Les performances

de l'estimation semi{aveugle sont �egalement meilleures que celles de l'estimation aveugle et

de l'estimation par apprentissage. Nous avons de plus fourni une �etude sur les CRBs sous

contraintes a�n de caract�eriser les performances de l'estimation aveugle. Il existe di��erentes

fa�cons de construire des crit�eres semi{aveugles. On a vu des crit�eres optimaux qui sont

bas�es sur des m�ethodes incorporant naturellement la connaissance de symboles d'entr�ee. Des

crit�eres sous{optimaux bas�es sur MV qui consid�erent des symboles group�es et s'�ecrivent sous

forme d'une combinaison lin�eaire du crit�ere aveugle et du crit�ere d'apprentissage: les poids de

la combinaison lin�eaire sont donn�es par MV. En�n, nous avons examin�e des crit�eres combinant

certains crit�eres aveugles, comme subspace �tting, et un crit�ere d'apprentissage. Dans une

derni�ere partie, nous nous sommes concentr�es sur des structures de r�ecepteurs avec un int�erêt

particulier pour le NCDFE.
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