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Abstract

Two channel estimation methods are often opposed:
training sequence methods which use the information com-
ing from known symbols and blind methods which use
the information coming from the received signal with-
out integrating the possible knowledge of symbols. Semi-
blind methods combine both informations and appear more
powerful than both methods separately. Two Maximum-
Likelihood approaches to semi-blind SIMO channel esti-
mation are presented, one based on a deterministic model
and another on a Gaussian model. Their asymptotic per-
formance are studied and compared to the Cramer-Rao
Bounds. The superiority of semi-blind over blind and train-
ing sequence methods, and of the Gaussian approach is
demonstrated.

1. Introduction

Most of the actual mobile communication standards, like
GSM, include a training sequence to estimate the chan-
nel, or simply some known symbols used for synchroniza-
tion or as guard intervals. Training sequence methods base
the parameter estimation on the received signal containing
known symbols only and all the other observations, contain-
ing (some) unknown symbols, are ignored. Blind methods
are based on the whole received signal, containing known
and unknown symbols, but no use is made of the knowl-
edge of some input symbols. The purpose of semi-blind
methods is to combine both training sequence and blind in-
formations.

Semi-blind techniques can then avoid the possible ill-
conditioning of blind techniques, like the case of channel
with closely-spaced zeros. With few known symbols, any
channel becomes semi-blindly identifiable. Coupling blind
and training sequence informations improves performance
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w.r.t. purely blind estimation but also w.r.t. to training se-
quence based estimation, possibly allowing good estima-
tion even when the training sequence is short. All those
aspects were already mentioned in [1] and [2]. We propose
two approaches to semi-blind channel estimation based on
ML, which we believe are among the less complex and more
powerful methods. We study their performance asymptot-
ically in the number of known and unknown symbols and
compare it to the Cramer-Rao Bounds (CRB).

We consider a single-user multichannel model: this
model results from the oversampling of the received sig-
nal and/or from reception by multiple antennas. Consider a
sequence of symbolsa(k) received throughm channels of
length N and coefficientsh(i):

y(k) =
N�1X
i=0

h(i)a(k�i) + v(k); (1)

v(k) is an additive independent white Gaussian noise with
rvv(k�i) = Ev(k)v(i)H = �2vIm �ki.

We consider the symbol constellation as known. When
the input symbols are real, it will be advantageous to con-
sider separately the real and imaginary parts of the channel
and received signal as:

�
Re(y(k))
Im(y(k))

�
=
N�1X
i=0

�
Re(h(i))
Im(h(i))

�
a(k�i)+

�
Re(v(k))
Im(v(k))

�
(2)

Let’s renamey(k) = [ReH(y(k)) ImH (y(k))]H , and idem
for h(i) andv(k), we get again (1), but this time, all the
quantities are real. The number of channels gets doubled,
which has for advantage to increase diversity. Note that the
monochannel case does not exist in the real case.

Assume we receiveM samples, concatenated in the vec-
torY M (k):

Y M (k) = TM(h)AM+N�1(k) + V M (k) (3)

Y M(k) = [yH(k�M+1) � � �yH (k)]H , similarly for

V M (k), andAM (k) =
�
aH (k�M�N+2) � � �aH(k)

�H
,

where (:)H denotes Hermitian transpose.TM(h) is a



block Toeplitz matrix filled out with the channel coefficients
grouped in the vectorh. We shall simplify the notation in
(2) with k =M�1 to:

Y = T (h)A + V = Tk(h)Ak + Tu(h)Au + V (4)

We assume that the known symbols are grouped and for
notational simplicity at the beginning of the burst:A =
[AHk AHu ]H , Ak contains theMk known symbols andAu,
theMu unknown symbols.

2. ML Methods

2.1. Deterministic ML (DML)

In the deterministic model both input symbols and chan-
nel coefficients are considered as deterministic. We are in-
terested in the joint estimation ofh and the unknown sym-
bols, which is decoupled from the estimation of�2v. This
estimation is based on the following DML criterion:

max
Au;h

f(Y jh) , min
Au;h

kY � T (h)Ak2 (5)

f(Y jh) is the complex probability density function when
A is complex (which exists asV is circular) and the real
one whenA is real.Y = Tk(h)Ak + Tu(h)Au + V , and
optimizing w.r.t. the unknown symbols, we get:

Au =
�
T Hu (h)Tu(h)

��1
T Hu (h) (Y � Tk(h)Ak) (6)

which is the output of the non-causal minimum mean
squared error zero-forcing decision feedback equalizer with
feedback of the known symbols. Substituting (6) in (5) we
get the following minimization criterion forh:

min
h

(Y � Tk(h)Ak)
H
P?Tu(h) (Y � Tk(h)Ak) (7)

whereP?Tu(h) = I � Tu(h)
�
T Hu (h)Tu(h)

��1
T Hu (h). We

will denoteC(h) the cost function. For commodity reasons,
whenA is complex, it is taken equal to1

�2v
times the expres-

sion in (7), whenA is real it is 2
�2v

times this expression.

2.2. Gaussian ML (GML)

In the Gaussian Model [1],[2], the channel coefficients
are still considered as deterministic but the input symbols
as Gaussian random variables. This hypothesis, although
false, allows to robustify the estimation problem and im-
proves performance w.r.t. DML, as will be seen.

In the Gaussian model for (4),V � N (0; CVV ) is in-
dependent ofA � N (Ao; CAA). Ao is the prior mean
for the symbols. In the Gaussian case, the estimation of

the channel can be done without the estimation of the un-
known input symbols: GML considers the joint estimation
of h and the coefficients ofCV V . Y � N (T (h)Ao; CYY ),
CYY = T (h)CAAT H(h)+CVV and the GML criterion is
max
h;�2v

f(Y jh), or:

min
h;�2v

n
lndetCYY+(Y �T (h)Ao)H C�1YY (Y �T (h)Ao)

o
(8)

We will specialize this general model to the semi-blind case

as follows: Ao =

�
Ak
0

�
andCAA =

�
�I 0
0 �2aI

�
,

where� is arbitrarily small. Furthermore, as already men-
tioned, we takeCV V = �2vI. We will denoteC(h) the cost
function. WhenA is complex, it is taken equal to the ex-
pression in (7), whenA is real, it is 2 times this expression.

2.3. Identifiability Conditions

Let � be the parameter vector to be estimated.� is said
to be identifiable if8Y , f(Y j�) = f(Y j�0)) � = �0. For
Gaussian distributions, which is our case, identifiability is
based on the first and second-order moments.

We give here identifiability conditions on the channel
characteristics only. We assume that the burst length is suf-
ficiently long and, for DML, that the entry contains at least
2N�1 modes, which is a sufficient identifiabiblity condi-
tion for DML. For GML, the uncorrelated symbols are max-
imally excited.

2.3.1 Blind

Blind DML cannot estimate monochannels as well as the
zeros and a scale factor of a multichannel. A multichannel
can be estimated up to a complex scale factor if and only if
it is irreducible [3], [4].

Blind GML requires less demanding conditions.
Monochannels can be identified up to a phase factor if and
only if they are minimum-phase. Multichannels can be es-
timated, up to a phase factor, if and only if the zeros, if any,
are minimum-phase.

2.3.2 Semi-Blind

Semi-blind allows the estimation of any channel.
Monochannels as well as the zeros or the ambiguous
blind scale factor are estimated thanks to the training
sequence. One needs2Nz�3 known symbols containing
at leastNz�1 modes, whereNz is the number of zeros. 1
known symbol is sufficient when the channel is irreducible,
and2N�1 are required for a monochannel.

For GML, identification is possible from the mean alone:
1 known symbol (not located at the edges of the burst) is
sufficient to allow the identification of any channel. Note
then that the blind part of the GML brings information on
monochannels and zeros of multichannels.



Continuous ambiguities for identifiabilitycorresponds to
singularities in the (Fisher-like) information matrices (IM)
J andJ below, as will be seen. Binary ambiguities, like a
sign for example, will not lead to singularity for the IM.

3. Asymptotic Performance
We explain here the general procedure to compute the

asymptotic ML performance.� is the complex parameter
vector,�R = [ReH(�) ImH (�)]H , the real associated pa-
rameter vector,�o and�oR the true values,̂� and�̂R the ML
estimates and�� = �̂��o ,��R = �̂R��oR , the errors. As-
suming consistency, we can proceed to the following Taylor
development ofC(�), the cost function, around�o.

@C(�)

@�R

����
�=�̂

=
@C(�)

@�R

����
�=�o

+
@

@�R

�
@C(�)

@�R

�H �����
�=�o

��R+o(��R)

(9)

with @C(�)
@�R

���
�=�̂

= 0, then asymptotically:

��R =

 
@

@�R

�
@C(�)

@�R

�H!�1
@C(�)

@�R
: (10)

Let’s denote:

J
(1)
�R

=E

�
@C(�)

@�R

��
@C(�)

@�R

�H
, J (2)

�R
=�E

@

@�R

�
@C(�)

@�R

�H
(11)

In our specific cases, asymptotically, by the law of large
numbers:

@

@�R

�
@C(�)

@�R

�H
� J

(2)
�R

(12)

Then,��R � N (0; C��R), with error covariance matrix:

C��R =
�
J
(2)
�R

��1
J
(1)
�R

�
J
(2)
�R

��1
(13)

As we are working with complex quantities, we found
it easier to manipulate derivation w.r.t. complex vectors,

defined as:@
@�

= 1
2

�
@
@�
� j @

@�

�
, with � = �+ j�. Let:

J
(1)
' 

=E

�
@C(�)

@'�

��
@C(�)

@ �

�H
, J (2)

' 
=�E

@

@'�

�
@C(�)

@ �

�H
(14)

J (1)
�R

andJ (2)
�R

can be expressed in terms ofJ�� andJ��� ,

in particular,J (2)
�R

equals:

2

"
Re(J (2)�� ) �Im(J

(2)
�� )

Im(J (2)�� ) Re(J (2)�� )

#
+2

"
Re(J (2)���) Im(J

(2)
���)

Im(J (2)���) �Re(J (2)���)

#

(15)
In the DML case,J��� = 0, so when the input symbols
are complex, we can work directly with complex quantities,
and (13) can be compactly written as:

C�� =
�
J
(2)
��

��1
J
(1)
��

�
J
(2)
��

��1
(16)

We will treat the general case of a reducible channel:
H(z) = HI(z)Hc(z), HI(z) of lengthNI is irreducible,
Hc(z) is a monochannel of lengthNc and admits as zeros
theNc�1 zeros ofH(z). We assume that the first coeffi-
cient ofHc(z) is equal to 1. For an irreducible channel,
Hc(z) = 1 and is known. For a monochannelH(z) =
Hc(z). TM(h) = TM(hI )TM+NI�1(hc) = T (hI)T (hc).

Furthermore, the asymptotic conditions will be:
(i) Mk !1 andMu !1

(ii)
p
Mu

Mk
! 0:

We will not treat the case whereMk is finite andMu infi-
nite: the performance in that case is that of the blind method
up to some ambiguities, that get estimated by the known
symbols part.

One of the main challenges (for algorithm development)
and interests of semi-blind methods is to give good perfor-
mance when both blind and training sequence methods fail,
and especially when the training sequence is too short to al-
low good channel estimation. Our asymptotic study does
not allow to elucidate this phenomenon which happens be-
cause semi-blind methods also takes the observations into
account that contain both known and unknown symbols.

3.1. Semi-Blind DML

As already mentioned the blind part does not contain
any information onHc(z), andP?Tu(h) = P?Tu0 (hI ), where
Tu0(hI ) is T (hI) with the firstMk�Nc+1 columns re-
moved. Under condition (i), the observations containing
both known and unknown symbols can be neglected and the
training sequence and blind contributions can be separated
in the criterion as:

kY TS � TTS(h)Akk
2
+ Y H

BP
?
TB(hI )Y B (17)

with TTS(h) = TMk�N+1(h) andTB(h) = TM�Mk
(h),

Y TS andY B designate resp. the observations with known
and unknown symbols only.

The estimation of� = [hHI
�hHc ]

H (where�hc is deduced
from hc by eliminating its first element equal to 1) can be
proven to be consistent under conditions (i) and (ii). Condi-
tion (ii) allows the training sequence part not to be neglected
in (17) and in (12). The different quantities of interest are:

8>>>>>>>>>><
>>>>>>>>>>:

J
(1)
hIhI

=J
(2)
hIhI

+ J 0hIhI
J
(2)
hIhI

= 1
�2v
AHITSP

?
�ATS

AITS + 1
�2v
AHIBP

?
TB(hI )AIB

J 0hIhI (i; j)=

tr
n
T HB ( @hI

@hI i
)P?TB(hI )TB(

@hI
@hI j

)(T HB (hI)TB(hI))�1
o

J
(2)
hchc

= 1
�2v
AHcTST

H
TS(hI)�

I � AHITS

�
AHIBP

?
TB(hI )AIB

��1
AITS

�
TTS(hI)AcTS

(18)



with the notations defined by:�ATS = TTS(hI) �AcTS ,
TTS(�hc)Ak = �AcTS�hc, TTS(hI)TTS(hc)Ak = AITShI ,
TB(hI)TB(hc)Au = AIBhI .

LetCRBhI be the CRB forhI andCRBhc the CRB for
hc, then asymptotically:

CRBhI =
�
J
(2)
hIhI

��1
andCRBhc =

�
J
(1)
hchc

��1
: (19)

�hI � N (0; C�hI ). Using equation (16):

C�hI = CRBhI +
�
J
(2)
hIhI

��1
J 0hIhI

�
J
(2)
hIhI

��1
: (20)

�hc � N (0; C�hc), hence�hc = Op(
1p
Mk

) and

C�hc = CRBhc +
�
�AHTS

�ATS
��1 �AHTSAITS

�
J
(2)
hIhI

��1
J 0hIhI

�
J
(2)
hIhI

��1
AHITS

�ATS
�
�AHTS

�ATS
��1

(21)
The DML ambiguous scale factor, not identifiable by blind
estimation, is estimated thanks to the training sequence and
its error evolves as 1p

Mk
. Note then that one component in

�hI does not evolve as 1p
Mu

whereas the remaining com-

ponents evolve as 1p
Mk

.
The second terms in (20) and (21) are positive: DML for

hI andhc does not reach theCRB. Their estimation is in-
deed coupled with the estimation of the unknown symbols
which cannot be estimated consistently. The coupling pre-
vents the channel estimates from being efficient. At high
SNR however, these second terms being of order�2v and
the CRBs of order�2v become negligible and the CRB is
attained.

3.2. Blind DML

HereMu = M+N�1 ! 1. Hc(z) cannot be esti-
mated by blind DML: we assumeH(z) = HI(z), which
is blindly identifiable up to a complex scale factor:J (2)hh

will have one singularity spanned byho corresponding to
this ambiguity. For regularization purpose, blind estima-
tion performance will be computed under the constraint
hHho = hHo ho whereho is the true channel value, or:

h = Vo� + ho (22)

where the columns ofVo form an orthonormal basis of the
orthogonal complement ofho. It can be shown that the
estimation of� is consistent and (16) can be applied to�.
C�h = VoC��V

H
o implies:

C�h = J
(2)
hh

+
J
(1)
hh J

(2)
hh

+
(23)

where+ denotes the Moore-Penrose pseudo-inverse.J
(1)
hh

andJ (2)hh are given by (18) withAk = 0. The asymptotic

CRB with constraint (22) is the pseudo-inverse of the Fisher
information matrix [1], which equals the IMJ (2)hh :

CRBh = J
(2)
hh

+
(24)

Asymptotically,�h � N (0; C�h) with:

C�h = CRB + J
(2)
hh

+
J 0hhJ

(2)
hh

+
(25)

The second term of (25) is positive semi-definite: blind
DML does not attain the CRB asymptotically inM , but it
does at high SNR (as mentioned in [4] also).

3.3. Semi-Blind GML

In the Gaussian, the estimation of�2v is not decoupled
from the estimation ofh. We have� = [hHI

�hHc �2v]
H . As

DML, the GML criterion can be decomposed into training
sequence and blind contributions as:

1
�2v
kY TS � TTS(h)Akk

2 +Mk ln�2v
+ ln detCYBYB + Y H

BC
�1
YBYB

Y B

(26)

When the input symbols are complex, lethR =
[ReH(hI) ImH(hI ) ReH (�hc) ImH(�hc)]H and �0R =

[hHR �2v]
H . J (1)

�0
R

= J (2)
�0
R

= J�0
R

, which we get by (15)
thanks to the quantities:

J��(i; j) =
1
�2v

�
[Ao �Ac]H [Ao �Ac]

�
i;j
��2v �

Mk

4�4v
���2v

+tr

�
C�1YBYB

�
@CYBYB

@��
i

�
C�1YBYB

�
@CYBYB

@��
j

�H�
(27)

J���(i; j) = tr
n
C�1YBYB

�
@CYBYB

@��
i

�
C�1YBYB

�
@CYBYB

@��
j

�o
�Mk

4�4v
���2v ; where:

(28)8>>>>>>>><
>>>>>>>>:

@CYBYB

@h�
Ii

= �2aT (h)T
H(hc)T H

�
@h�I
@h�

Ii

�
@CYBYB

@�h�ci
= �2aT (h)T

H

�
@h�c
@�h�ci

�
T H(hI)

@CYBYB

@�2v
= 1

2I

��2v = 0 for i or j = Nom +Nc and 1 elsewhere
���2v = 1 for i = j = Nom +Nc and 0 elsewhere:

(29)
When comparing asymptotically with the CRBs:

CRBhI =
�
J�1
�0
R

�
hIR

andCRBhc =
�
J�1
�0
R

�
hcR

: (30)

�hIR � N (0; CRBhI ) and evolves as 1p
Mu

; �hcR �

N (0; CRBhc) and evolves as 1p
Mu

. However, the phase

component of�hIR evolves as 1p
Mk

.

When the input symbols are real, againJ (1)
� = J

(2)
� =

J�� of (27). CRBhI =
�
J�1
�

�
hoho

and CRBhc =



�
J �1
�

�
hchc

�ho � N (0; CRBhI ) and evolves as 1p
Mu

;

�hc � N (0; CRBhc) and evolves as 1p
Mu

.
The CRB is asymptotically attained. Note that the CRB

when the number of known symbols is finite (derived in [1])
is not attained. At high SNR, the influence of the estimation
of �2v on the estimation of the channel becomes negligible,
and performance for the estimation ofhI is the same as in
the deterministic case.

3.4. Blind GML
Blind GML cannot estimate the channel phase factor.

When the input symbols are real, this ambiguity is only
about a sign and does not lead to singularity ofJ��. Also the
ambiguities of the common zeros being minimum or maxi-
mum phase are binary. Discrete ambiguities do not lead to
singularity of the FIM unlike continuous ambiguities. The
error covariance matrices forhI andhc are the appropriate
submatrices ofJ�1�� .

When the input symbols are complex,J�0
R

has one
singularity spanned byh0s = [hHs 0 � � � 0]H , where
hs = [�ImH (hI) ReH(hI)]H corresponding to the con-
tinuous ambiguity in the phase; again the non-minimum-
phase channel zeros ambiguity does not appear inJ�0

R
. In

this case, blind GML performance will be computed under
the regularization constrainthHoRhs = 0, or:

hoR = VoR� + hos (31)

where the columns ofVoR form an orthonormal basis of the
orthogonal complement ofhos . Then:

C�hIR =
�
JhIRhIR � JhIRh�IR (Jh�IRh�IR )

�1Jh�IRh�IR

�+
(32)

C�hcR =
�
JhcR hcR � JhcR h�cR (Jh�cR h�cR )

+Jh�cR h�cR

��1
(33)

h�IR = [hHoR �2v]
H andh�cR = [hHIR �2v]

H . These quantities
correspond to the CRBs under constraint (31): GML forhI
andhc attains asymptotically the blind CRB.

4. Numerical Evaluations
For the simulations, we use an irreducible channel (N =

5, m = 2) and a reducible channel (No = 2, Nc = 2
m = 4), both randomly chosen, under SNR=10dB. The
input symbols belong to a QPSK constellation and are i.i.d..
We plot the quantity:

p
tr(C�h)=khk.

In fig.1 (left), the irreducible semi-blind curves for DML
and GML and the deterministic CRB is plotted w.r.t. the
number of known symbols for a burst of length 150. The
training sequence estimation mode (based on the known
symbols of the semi-blind mode) is also shown as well as
the case where all the input symbols are known, for refer-
ence. We essentially see the gain of semi-blind techniques
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Figure 1. Semi-blind DML and GML: irre-
ducible case
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Figure 2. Semi-blind DML and GML: reducible
case

w.r.t. the training sequence technique. In fig.1 (right), the
blind and semi-blind performance with constraint (22) are
shown: semi-blind appears better than blind. In both fig-
ures, GML appears better than DML. Other comments on
such curves can be found in [1].

In fig.2, the reducible case is shown. For a fixed num-
ber of known symbols we plot the error variance w.r.t. the
number of unknown symbols. The performance for the es-
timation ofHc(z) by DML will tend to be constant as the
number of unknown symbols grows. GML profits from the
blind information, and the slope of the curve will eventually
evolve in 1

Mu
.
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