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Abstract- For the case of white uncorrelated inputs, most
of the blind multichannel identification techniques are not
very robust and only allow to estimate the channel up to
a number of ambiguities, especially in the MIMO case.
On the other hand, all current standardized communica-
tion systems employ some form of known inputs to allow
channel estimation. The channel estimation performance
in those cases can be optimized by a semiblind approach
which exploits both training and blind information. When
the inputs are colored and have sufficiently different spec-
tra, the MIMO channel may become blindly identifiable
up to one constant phase factor per input, and this under
looser conditions on the channel. For the case of spatial
multiplexing, possible cooperation between the channel in-
puts allows for more complex MIMO source prefiltering
that may allow blind MIMO channel identification up to
just one global constant phase factor. We introduce semib-
lind criteria that are motivated by the Gaussian ML ap-
proach. They combine a training based weighted least-
squares criterion with a blind criterion based on linear pre-
diction. A variety of blind criteria are considered for the
various cases of source coloring.

I. I NTRODUCTION

The multichannel aspect has led to the development of a
wealth of blind channel estimation techniques over the last
decade. In this paper, blind identification shall mean channel
identification on the basis of the second-order statistics of the
received signal. Consider linear digital modulation over a lin-
ear channel with additive Gaussian noise. Assume that we have
p transmitters andm > p receiving channels (e.g. antennas in
BLAST or SDMA). For more details on the used notation in
this paper refer to [1].

II. B LIND IDENTIFICATION FOR COLORED INPUTS

In this section we aim to improve the Second-Order Statis-
tics (SOS) based blind channel identification by exploiting cor-
relation in the inputs. In the context of digital communica-
tions, the inputs are symbol sequences which are typically
uncorrelated. Correlation can be introduced by linear con-
volutive precoding, which corresponds to MIMO prefiltering
of the actual vector sequencebk of symbols to be transmit-
ted with a MIMO prefilterT(z) such that the transmitted vec-
tor signal becomesak = T(q) bk. In this paper we consider
full rate linear precoding so thatT(z) is a p � p square ma-
trix transfer function (in [2] an example of low rate precod-
ing appears since the same symbol sequence gets distributed
over all TX antennas). We get for the transmitted signal spec-
trumSaa(z) = T(z)Sbb(z)Ty(z) = �2b T(z)Ty(z) and for
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com, Swisscom, France T´elécom, La Fondation CEGETEL, Bouygues T´elé-
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the received signal spectrumSyy(z) = H(z)Saa(z)Hy(z) +
Svv(z) = �2b H(z)T(z)Ty(z)Hy(z) + �2vIm. The choice of
appropriate prefiltering, as we shall see below, may reduce the
non-identifiability to a phase factor per source or even to a
global phase factor. In the context of wireless communica-
tions, two scenarios may be distinguished:
Noncooperativescenario: this scenario corresponds to the
multi-user case (on the transmitter side) without cooperation
between users. We shall consider the simple case in which the
users transmit through only one antenna. This noncooperative
scenario can also arise in other source separation applications
since natural sources tend to have different spectra. In this sce-
nario, H(z) has no structure, other than possibly being FIR,
and T(z) andSaa(z) are diagonal. This scenario has been
considered in [3],[4].
Cooperativescenario: this is the single-user spatial multiplex-
ing case. In this case, since transmit antennas are near each
other and also receive antennas are near each other, all (FIR)
entries inH(z) have the same delay spread and hence are poly-
nomial of the same order.Saa(z) is allowed to be nondiagonal.

In the noncooperative case the channel will tend to be ir-
reducible, a characteristic we have assumed so far, due to the
fact that the users tend to be spread out in space. In the spa-
tial multiplexing case however, in which the TX antennas are
essentially colocated, the irreducibility of the channel depends
on the richness of the scattering environment. In general, we
need to consider a reducible channel. Such a channel can be
factored asH(z) = G(z)C(z) whereG(z) is irreducible and
column reduced with columns in order of e.g. non-increasing
degree. Ifr is the (generic) rank ofH(z), thenG(z) ism � r
whereasC(z) is r�p. In the noncooperative scenarioC(z) has
no particular structure. In the cooperative scenario however, all
entries in a particular row ofC(z) have the same degree and the
degrees of the rows are non-decreasing (the degree profile of
the rows inC(z) is complementary to the degree profile of the
columns inG(z)).

If r � m�1, then�2v is blindly identifiable fromSyy(z) and
G(z) is blindly identifiable from the signal/noise subspaces of
Syy(z) up to a postmultiplication factorL(z) that is block
lower triangular with block sizesaccording to the multiplici-
ties of the degrees of the columns ofG(z) and L (z) is also
polynomial with the degree of block(i; j) being the difference
between the degrees of blocki and blockj of the columns of
G(z) [5]. So in particular, the diagonal blocks ofL(z) are con-
stant. Also,L�1(z) has the same polynomial structure asL(z).
In the cooperative case,L�1(z)C(z) has the same polynomial
structure asC(z). If r � m�1, there are essentially no restric-
tions on the number of inputsp for identifiability. If r = m,
identifiability of �2v becomes an issue and there’s no longer a
point in considering a factorization ofH(z) for its identifica-



tion.
Finally, let us note that TX pulse shape filters can be incor-

porated inT(z) or Saa(z) and that oversampling at the RX
also leads to an increase in the number of RX channels. Also,
the formulation of complex quantities as a superposition of real
quantities may lead to an extra MIMO dimension. In the next
two sections we investigate channel identifiability with diago-
nal or full prefilteringT(z).

III. N ONCOOPERATIVE/DIAGONAL PREFILTERING

In general, we would like to handle the reducible channel
case. The rankr can be identified fromSyy(z). If r � m �
1, then we can denoise the SOS and identify the factorG(z)
from the subspaces.G(z) is unique up to a factorL(z). For
whicheverG(z) in this equivalence class, it remains to identify
C(z) in H(z) = G(z)C(z) from
S(z) = G#(z) (Syy(z)��2vIm)G# y(z) = C(z)Saa(z)Cy(z)

(1)
whereG#(z) is a MMSE ZF equalizer forG(z): G#(z)G(z) =
Ir . For r = m, the problem is similar to the one in (1) with
C(z) replaced byH(z) (apart from the�2v identification is-
sue which will be discussed below). The value of the rank
r 2 f1; 2; : : :;min(m; p)g is unpredictible in general. For a
certain rankr, subsets ofr�1 columns ofC(z) could be iden-
tified jointly fromS(z) using certainSaa(z) and under certain
conditions onC(z) (or subsets ofr columns under more strin-
gent conditions onC(z)). So to be general,Saa(z) should
be such that it allows identifiability for the worst case ofr,
which is r = 1. In that case, each column ofC(z) needs to
be identified separately. On the other hand, since in the case
r = 1 each column ofC(z) is a scalar FIR transfer function,
only its minimum-phase equivalent is identifiable. So a col-
umn would be truly identifiable only if it is minimum-phase.
To avoid having zeros would require to imposer � 2. In any
case, to be fully general, it is desirable to haveSaa(z) such that
it allows identifiability ofeach column ofC(z) separately. So
the MIMO problem gets converted into a set of disconnected
SIMO (r > 1) or SISO (r = 1) problems. This will allow iden-
tifiability of each column up to a constant phase factor of the
form ej� if the column has no maximum-phase zeros (which
is quite possible ifr � 2 but highly unlikely forr = 1). An-
other issue is the degree ofCj(z), columnj of C(z). We have
Hj(z) = G(z)Cj(z). The degree ofCj(z) is unpredictible
and can be up toNj � 1, the degree of the corresponding col-
umn Hj(z) of H(z). For identifiability, we need to consider
the worst case and hence we shall assume that the degree of
Cj(z) isNj � 1. Of course, theNj themselves may be unpre-
dictible and in practice need to be replaced by anupper bound.
We now consider two approaches for identification, leading to
two classes of solutions forSaa(z).

Frequency domainapproach: The idea here is to introduce
zeros into the diagonal elements ofT(z) or henceSaa(z) such
that all other elements other than diagonal elementj shareNj
zeros

Tjj(z) =
pY

i=1; 6=j

NiY
k=1

(1� zi;kz
�1) (2)

This allows identifiability ofCj(z) from S(z) up to a phase
since

S(zj;k) = Cj(zj;k)Sajaj (zj;k)C
y
j(zj;k) ; k = 1; : : : ; Nj

(3)

whereSajaj (z) = �2bTjj(z)T
y
jj(z). If all Nj are equal (to

N1), then we can choose equispaced zeros on the unit cir-
cle:

QNi

k=1(1 � zi;kz
�1) = 1 � ej�iz�N1 . If we furthermore

choose overall equispacing by taking�i = (i � 1)2�=pN1,
thenTii(z) = 1�z�pN1

1�ej�iz�N1
. In [4] very similar work appears in

which the degree ofSaa(z) (in the case of equalNj) is at least
pN1 (compared to(p� 1)N1 here), but the discussion in [4] is
limited to the casem > p = 2. Note that here we can easily
allow p > m even (more inputs than outputs!). Remark also
that by introducing a number of zeros inT(z), we can further-
more identify an equal number of noise parameters (such as
�2v for instance whenr = m). Non-FIRSaa(z) can be consid-
ered also. For instance we can consider the case in which the
Sajaj (e

j2�f ) have at leastNj disjoint expansion coefficients
in some orthogonal basis. An extreme example of this would
beSajaj (e

j2�f ) that are bandlimited with thep bands being
non-overlapping.

Time domainapproach: The idea here is to introduce delay
in the prefilter so that the correlations of eachCj(z) appear
separately in certain portions of the correlation sequence of
S(z). This can be obtained for instance with

Tjj(z) = 1� �jz
�dj ; dj =

j�1X
i=1

Ni : (4)

Identification can be done with a correlation sequence peeling
approach that starts with the last columnCp(z) of which the
(1-sided) correlation sequence appears in an isolated fashion in
the lastNp correlations ofS(z). Identification ofCp(z) from
its correlation sequence can be done up to a phase factorej�p

(and up to the phase of zeros ifCp(z) has zeros). We can then
subtractSajaj (z)Cp(z)Cy

p(z) (which does not requireCp(z)
but only its correlation sequence) fromS(z) which will then
reveal the correlation sequence ofCp�1(z) in its lastNp�1
correlations, etc. The degree ofSaa(z) is in this case the de-
greedp of Sapap (z) which, in the case of all equalNj , is again
(p � 1)N1, which leads to a degree ofpN1 � 1 for S(z) or
hencepN1 correlations. Such a degree forSaa(z) is not only
sufficient but also necessary since whenr = 1, there arepN1
parameters to be identified for which indeed at leastpN1 cor-
relations are needed. Note that in the temporal approach, in-
creasing all the delaysdj with an amountD allows furthermore
the (straightforward) identification of MA(D � 1) noise (e.g.
D = 1 for white noise with arbitrary spatial correlation).

In practice, with estimated correlations, the correlation peel-
ing approach leads to increasing estimation errors as the
columns ofC(z) get processed. This error increase can be
avoided by doubling the delay separation between sources,
which may furthermore lead to simpler algorithms (e.g. SIMO
subspace fitting with asymmetric covariance matrices). Time
domain approaches also appear in [3].

IV. COOPERATIVE/SPATIAL -MULTIPLEXING
PREFILTERING

Non-cooperative approaches can of course also be applied in
the cooperative scenario, so diagonal prefiltering can be used
for spatial multiplexing. However, this leads to at least a un-
known phase per TX antenna and hence requires either differ-
ential encoding or training symbols per TX antenna. By ap-
plying full prefiltering, such thatSaa(z) is not blockdiagonal



in which case it is said to be fully diverse, the channel may
possibly be identified up to a global phase factor only. Since
better identifiability results in this case, better estimation may
possibly be another consequence. We consider here linear pre-
coding by time-invariant MIMO prefiltering. In [6], a block
precoding approach is considered.

We can work with the eigen or LDU decompositions of
Saa(z). To begin with, consider the eigendecomposition
Saa(z) = V(z)D(z)Vy(z) where V(z) is paraunitary (i.e.
V
y(z)V(z) = I) and contains the eigenvectors as columns,

andD(z) is diagonal with the diagonal elements, the eigenval-
ues, being valid scalar spectra.

A paraunitary matrixV(z) is said to be full diverse, if
PV(z)Vy(1)P T cannot be made block diagonal for any per-
mutationP .

Theorem 1:: An irreducible FIR MIMO channel is blindly
identifiable up to a phase factor per user ifSaa(z) has distinct
eigen value functions, and up to one global phase factor if its
eigenvector matrix is fully diverse.

It may perhaps be more practical to work with the LDU
(Lower triangular-Diagonal-Upper triangular) decomposition
Saa(z) = L (z)D(z) L y(z) whereL (z) is lower triangular
with unit diagonal and the non-zero off-diagonal elements be-
ing unconstrained transfer functions, andD(z) is diagonal with
the diagonal elements being valid scalar spectra. The rela-
tion between the LDU decomposition and the prefilterT(z)
is immediate ifT(z) is of the formT(z) = L (z)�(z) where
�(z) is diagonal. An example of such aT(z) that allows irre-
ducible channel identification up to one global phase factor is
�(z) = Ip andT(z) = L (z) = Ip + eD z�1 whereeD has only
non-zero elements on the first subdiagonal and those elements
are all different constants.

Stationary precoding can be generalized to cyclostationary
precoding via periodically timevariant prefiltering. By stack-
ing q consecutive symbol period quantitiesyk, vk, ak, bk, we
obtainYk, Vk, Ak, Bk. We can then introduce apq � pq LTI
MIMO prefilter T(z) such that

Yk � Vk = (Iq 
 H(q))Ak = (Iq 
 H(q))T(q)Bk : (5)

Cyclostationary prefiltering introduces more information,
hence should allow improved estimation (and possibly avoid
stationary noise).

V. GAUSSIAN ML SEMIBLIND CHANNEL IDENTIFICATION

For Gaussian ML, which will allow to exploit the SOS, we
model the unknown symbols as uncorrelated Gaussian vari-
ables whereas the known symbolsbk lead to a non-zero mean.
By neglecting the non-stationarity due to the known symbols,
the Gaussian likelihood function can be written in the fre-
quency domain:H

[M lndet(Syy(z))+
(y(z) �H(z)T(z)bK(z))yS�1yy (z)(y(z)� H(z)T(z)bK(z))]

(6)
where

H
is short for 1

2�j

H
dz
z

and y(z), bK(z) denote thez
transforms of the signal ofM samplesyk and the known sym-
bolsbk. The gradient of this criterion is the same as the gradi-
ent of the following sum of two subcriteria. The first subcrite-
rion isI

(y(z)�H(z)T(z)bK(z))yS�1yy (z)(y(z)�H(z)T(z)bK(z))

(7)

which is a weighted LS criterion (quadratic inH(z)) with the
training information. The second subcriterion is

tr
I
fS�1yy (z)eSyy(z)S�1yy (z)eSyy(z)g (8)

where eSyy(z) = Syy(z) � bSyy(z), bSyy(z) = 1
M y(z)y(z)y

(periodogram), and the gradient is taken by considering
S�1yy (z) as constant. This second criterion is one of weighted
spectrum matching and expresses the blind information. By
taking the gradient of the sum of the two subcriteria, we com-
bine training and blind information in an optimal fashion (com-
pare to the CRB expression for GML). Asymptotically we can
replaceS�1yy (z) by a consistent estimatebS�1yy (z) such as the
periodogram. Also, we can replace the periodogram by an AR
model which matches the covariance sequence estimate ap-
pearing implicitely in the periodogram (or asymptotically by
a consistent AR model) such thatP(z)bSyy(z)Py(z) = I so

that bS�1yy (z) = Py(z)P(z), whereP(z) is the MIMO predic-
tion error filter in which a square-root of the prediction error
covariance matrix inverse has been absorbed. The blind sub-
criterion then becomesI P(z)Syy(z)Py(z) � Im

2
F

(9)

which is of fourth order inH(z). One solution consists of inter-
pretingH1(z) andH2(z) in Syy(z) = H1(z)Saa(z)H2(z) +

�2v Im as different quantities and performing alternating opti-
mizations between them (and�2v).

VI. B LIND GML CHANNEL IDENTIFICATION FOR A FLAT
CHANNEL

Here we shall focus on the blind identification part for a
frequency flat channelH = G C with r < m. We can take
G = VS , an orthonormal matrix spanning the signal subspace.
We shall estimate firstVS and thenC.

Identification of the signal subspaceVS :
We can alternatively estimate the noise subspaceVN . Ide-

ally, RL (IL 
 VN ) = 0 whereRL is the denoised covariance
matrix ofL symbol periods ofyk. We shall estimateVN using
a weighted LS criterion

min
VN :V H

N
VN=Im�r

fvect(bRL (IL
VN ))gHWfvect(bRL (IL
VN ))g
(10)

where bRL is the sample covariance matrix,bRL = RL +eRL. The optimal weighting isW = Evect(bRL (IL 

VN ))gfvect(bRL (IL 
 VN ))gH . With bRL based onM sam-
ples, we get Efvect(eRL)gfvect(eRL)gH = 1

MRTL 
RL. This
allows us to work out the WLS criterion (10) to become

min
VN :V H

N
VN=Im�r

tr fV HN ryy(0)VN g (11)

whereryy(0) is the estimated correlation matrix ofyk at lag
0. The solution is clearly given by the noise subspace of the
matrix in the middle, so thatVS becomes its signal subspace.

Identification ofC:
By equalizing VS , we get r(i) = V HS ryy(i)VS =

C raa(i)CH . We introduce a normalization so that

r�1=2(0)C r1=2aa (0) raa(i) rH=2aa (0)CH r�H=2(0) = r(i)
(12)



for i = 0; 1; : : : ; L, and wherer(i) = r�1=2(0)r(i)r�H=2(0)
andraa(i) = r�1=2aa (0)raa(i)r

�H=2
aa (0). From i = 0, we ob-

serve thatr�1=2(0)C r1=2aa (0) = Q for some matrixQ with

orthonormal rows, or henceC = r 1=2(0)Q r�1=2aa (0). To find
estimateQ, we shall assumer = p so thatQ is square and uni-
tary, and we shall solve (12), which becomesQ raa(i)QH =
r (i), for i = i; : : : ; L in a least-squares sense:

min
Q: trfQHQg=r

LX
i=1

kQ raa(i)� r(i)Qk2F (13)

The solution of this problem involves an eigendecomposition
and is unique in general up to a phase factor.

VII. PRECODER OPTIMIZATION

We focus here on the flat channel case, and we study the op-
timization of the precoder to maximize the available capacity
of the system, which is also the mutual information when the
channel is estimatedISaa (y; bjbH).

The ergodic capacity of an AWGN channel, when the chan-
nel knowledge is absent at the transmitter and perfect at the
receiver is given by:

C(Saa) = EISaa(y; bjH)
= E

H
lndet(I + 1

�2v
H Saa(z)HH) (14)

WhereSaa(z) =
PL
i raa(i) z�i, the expectation E is here

w.r.t. the distribution of the channel. As in [7], we as-
sume the entriesHi;j of the channel to be mutually inde-
pendent, identically distributed zero mean complex Gaus-
sian variables (Rayleigh flat fading MIMO channel model).
Telatar has shown [7] that for such a channel model, the op-
timization of the capacity subject to the TX power constraintH

tr(Saa(z)) � Ntx�
2
b leads to the requirement of a white

(and Gaussian) vector transmission signalSaa(z) = �2b I.
For a block of lengthM (sufficiently large for the fre-

quency domain expressions to be sufficiently accurate), and
using a precodingSaa(z) = �2b (I + � �S(z)) (� << 1,
�S(z) =

PL
i �Si z�i and

H
tr(�S(z)) = tr(�S0) = 0 for

power constraint), the deviation of the available capacity for
the whole block is:

�= MC(�2bI) �ME ISaa (y; bjbH)

=M (C(�2bI)� C(Saa))| {z }
�1

+M (C(Saa) � E ISaa (y; bjbH))| {z }
�2

(15)
�1 represents the deviation (decrease) of the capacity due to
the precoding, whereas�2 represents the deviation caused by
channel estimation errors.

Let � = �2b
�2v

andR = I + �H HH , then:

�1 = �ME
H
ln det(I + ��R�1H �S(z)HH

= �ME
H
[�� trfR�1H �S(z)HHg

��2�2 trfR�1H �S(z)HHR�1H �S(z)HHg+O(�3)]
� �M�� trfEHHR�1H�S0g
+M�2�2E trfH HHR�1H �S(z)HHR�1H �S(z)g

(16)
We will show below that EHHR�1H is a multiple of the
unity matrix I. In fact, for every permutation matrixP and

unitary diagonal matrixD = diag(ej 1 ; : : : ; ej p), H0 =
HPD has the same distribution asH, then EHHR�1H =
D�PHEHHR�1HPD. By averaging over the set of permu-
tationsP and phases[0; 2�]p, we get:

EHHR�1H= 1
(2�)p

Z
1

p!

X
P2P

D�PHEHHR�1HPD d 1 : : : d p

= trEHHR�1H
p I

(17)

The first term in�1 is�M�� trEHHR�1H
p tr�S0 = 0.

�1 =M�2�2
P
i;jEtrf

H
z�(i+j)HHR�1H�SiHHR�1H�Sjg

=M�2�2
P
i EtrfH HHR�1H �Si HHR�1H �SHi g

=M�2
P
i vect

H (�Si)Wvect(�Si):
(18)

whereW = �2E(HHR�1H)T 
(HHR�1H),
P

i is done over
all index valuesi for which�Si 6= 0 and�HHR�1H = (I +
(�HHH)�1)�1 then for high SNR i.e� >> 1: W � I.

As shown in [8], the deviation of the capacity for a small

channel estimation error is�2 = M�E
eH2. To mini-

mize�2 the channel estimator should be the MMSE estimator.
The MMSE estimator doesn’t achieve in general the Cramer-
Rao Bound (CRB) but a good measure of the deviation is
�2 = M� trECRB = M� trEJ#HH , whereJHH is the Fis-
cher Information Matrix.

Subspace fitting gives an estimation of the channelbH0

from the estimated correlation at lag 0 (see Section VI.)
ryy(0) = �HS0HH + I, which leads asymptotically toH0 =
HS1=20 QH . The identification of the unitary matrixQ is
done from the remaining correlation lag,H0#ryy(i)H0#H =

QS�1=20 SiS
�H=2
0 QH ; as a result we can assume without loss

of generality thatS0 = I and hence�S0 = 0. The Mean
Square Error of the subspace estimatorH0 is of orderM�1.

H = H0 Q = bH0 bQ|{z}
=bH

+ bH0 eQ|{z}
/g(�)=pM

+ eH0
Q|{z}

/1=pM

(19)

whereg(�) is an increasing function of��1. For largeM and

small� we can neglect the last term, and assume thatbH0
= H0.

The source of the channel error is then caused by the estimation
error onQ. If X = (x1; x2; : : : ; xnp) is a real parameterization
of the unitary matrix, i.eQ = Q(X), then:

JHH =
@X
@h

JJXX

�
@X
@h

�T
(20)

whereh = [Re(vect(H))T ; Im(vect(H))T ]T andJJXX =

�EYjH 0

�
@ ln p(YjX;H0

)

@X

��
@ ln p(YjX;H0

)

@X

�T
. An asymptotic

expression ofJJXX for largeM is then :

JJXX (i; j) = M

I
trfS�1yy (z)

@Syy(z)
@xi

S�1yy (z)
@Syy(z)
@xj

g
(21)

By proceeding as for�1, we can show that:



JJXX (i; j) = Mf�2
X
k

vectH (�Sk)W
J
i;jvect(�Sk)+O(�3)g

(22)

whereW J
i;j =

�
@Q�
Q
@xi

�H
R0�T 
 R0�1

�
@Q�
Q
@xj

�
and

R0 = I + (�H0HH0)�1. We can note that for high SNR
i.e � >> 1: R0 � I. The decrease is now�2 =

��2�Etr
�

JHH

M�2

�#
= ��2�Etr

�
JJXX

M�2

��1��
@X
@h

�T
@X
@h

��1
.

The minimization of the capacity lost� can be performed
by evaluating the expectation, which is quite complex, and
then optimizing the resulting cost function. An alternative ap-
proach is to consider a close lower bound of� that is easier
to calculate and to minimize. From the solution for�S(z),
we can then find the solution for the precoderT(z). For a
precoderT(z) = (1 � �2)1=2I + �

P
kM

�1
F Fk z�k, where

MF = (
P
i FiF

H
i )1=2 verifiesMF M

H
F =

P
i FiF

H
i and

F0 = 0, the power spectrum is:

Saa(z)=�
2
b fI + �(1 � �2)1=2

P
k

�
M�1
F Fk + FH�kM

�H
F

�
z�k

+�2
�
M�1
F F (z)F y(z)M�H

F � I
�g

(23)
This spectrum verifies the power constraint as�S0 = 0. The
first order approximation is:
�S(z) =

P
k

�
M�1
F Fk + FH�kM

�H
F

�
z�k.

Example of optimization forp = 2:
We introduce the following parameterization ofQ: X =

(�; ';  ) 2 [0; �] � [0; 2�]2, that allows to determineQ up
to a global phase factor:

Q(�; ';  ) =
h
ej cos � ej� sin ��e�j� sin � e�j cos �

i
(24)

We consider here the case of high SNR, i.e� >> 1, in which
case�1 = 2M�2

PL
1 jj�Sijj2 andR0�T 
 R0�1 = I. To

optimize�, we fix �1 by fixing
PL

1 jj�Sijj2 = 1, we op-
timize then�2 under this last constraint, and given the pre-
coder solution, optimize finally the overall decrease� with
respect to the scale factor�. We will skip below several de-
tails of the derivation due to lack of place. First we establish

the following equalities:
�
@X
@h

�#
= @hT

@XT =
@QT

v

@XT
@hT
@Qv

, where

Qv = [Re(vect(Q))T ; Im(vect(Q))T ]T .
Considering now the independence betweenH0andQ we

can write:

�2=��2�EXtr
�
JJXX

M�2

��1
@QT

v

@XT EH0

�
@hT
@Qv

�
@hT
@Qv

�T��
@QT

v

@XT

�T
= ��2�EjjHjj

2

p trEX

8<:JJXX

M�2

 
@QT

v

@XT

�
@QT

v

@XT

�T!�19=;
�1

= ��2�EjjHjj
2

p C(�S)
(25)

where EX (resp. EH0 ) denotes expectation with respect
to X (resp. H0), and to obtain the second expression
we used arguments similar to the ones used to prove that

EHHR�1H = trEHHR�1H
p I and applied here toH0 (as-

sumed to have the same distribution asH) in order to prove

that: EH 0
@hT
@Qv

�
@hT
@Qv

�T
= EjjHjj2

p
I. The main difficulty is to

minimizeC(�S), which is possible directly but at high numer-
ical cost. To avoid it, let’s first note that as result of the convex-
ity character of the functionf(x) = 1=x overR�+ : C(�S) �

C0(�S) = tr

8<:EX
JJXX

M�2

 
@QT

v

@XT

�
@QT

v

@XT

�T!�19=;
�1

, then

for �Sopt optimum of C 0, C(�Sopt) � Copt � C0
opt.

If
C(�Sopt)�C0opt

C(�Sopt)
<< 1 then we can conclude that

�Sopt minimizes �2. In our caseC 0(�S) = 1
4

5+
m1

m2

m1+m2

,

wherem1 =
PL
i=1 jj�Si(1; 1) � �Si(2; 2)jj2 andm2 =PL

i=1 jj�Si(1; 2)jj2 + jj�Si(2; 1)jj2, the optimal solution
(C 0

opt = 1:125) verifies: �Si(2; 2) = ��Si(1; 1); i =

1; : : : ; L,m2 = 2
3 , and

PL
i=1 jj�Si(1; 1)jj2+jj�Si(1; 1)jj2 =

1
3 . One choice of a causal precoder with the smallest order L=1
that verifies these optimality conditions is:

Topt(z) = (1� �2)1=2I + �Az�1; A =
1p
3

"
1p
2

1

1 � 1p
2

#
(26)

In the first order of� this leads to��Sopt(z) = �(1 �
�2)1=2A (z�1 + z) + ��2

2 I � � A (z�1 + z). By numeri-

cal evaluation we get:
C(�Sopt)�C0opt

C(�Sopt)
= 1:375�1:125

1:375 = 0:18,
hence�Sopt is close to optimal. The optimization of� gives

� =
n
�(EjjHjj2)C(�Sopt)

2Mp

o1=4
, usually the normalization is

EjjHjj2
p

= 1, then � = 0:91
n
M
�

o�1=4
and �

MC(�2
b
I)

=

1:66(�M)1=2

MC(�2
b
I) / 1

ln �

p
�
M . The same ratio in the case of the ex-

clusive use of a training sequence gives�
MC(�2

b
I)
/ M�1

TS
pm
ln � .

To achieve the same performance, the length of the training

sequence needs to be of the order
q

M
� m which can become

very important for large MIMO systems.
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