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ABSTRACT

In a transform coding framework, we compare the optimal causal
approach (LDU, Lower-Diagonal-Upper) to the optimal unitary
approach (Karhunen-LoeveTransform, KLT). The criterion of merit
used for this comparison is the coding gain, defined for a transfor-
mationT as the ratio of the average distortion obtained with the
identity transformation over the average distortion obtained with
T . Both transforms are known to yield the same gain when they
are computed on the signal covariance matrixR. The purpose of
this paper is to compare the behavior of these two transformations
when the ideal transform coding scheme gets perturbed, that is,
when only an estimateR � �R of R is known. In this case, not
only the transformation itself will be perturbated, but also the bit
allocation mechanism. We compare the two approaches in two
cases. Firstly,�R is caused by a quantization noise : the coding
scheme is based on the statistics of the quantized data. We find
that the coding gain in the unitary case is higher than in the causal
case. In a second case,�R corresponds to an estimation noise
: the coding scheme is based on an estimate ofR based on a fi-
nite amount of available data. In this case, both causal and unitary
approaches are strictly equivalent, because of the unimodularity
and decorrelating properties of the transformations. Simulations
results confirming the predicted behavior of the coding gains with
perturbations are reported.

1. INTRODUCTION
Consider a stationary Gaussian vectorial sourcefXg. This source
may be composed of any scalar sourcesfx ig, for example au-
dio signals. In the classical transform coding framework, a lin-
ear transformationT is applied to each N-vectorX to produce an
N-vectorY � TX whose componentsyi are independently quan-
tized using a scalar quantizerQi. A number of bitsri is attributed
to eachQi under the constraint

P
i ri � Nr. For an entropy

constrained scalar quantizer of a Gaussian source, the high resolu-
tion distortion is E�yqi �k� � yi�k��

� � ��qi � c���r��yi , where
c � �e

� .
An important property of commonly used transformations is that,
if a noise (for example quantization noise) is added to the signalY ,
then its power will be the same in the transform and in the signal
domains. This property is sometimes referred to as ”unity noise
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gain” property [3]. The coding gain forT is then defined as

GT �
Ek �Xk��I�

Ek �Xk��T �
�

Ek �Xk��I�

Ek �Y k��T �
� (1)

whereI is the identity matrix, and the notationk �Xk��T � denotes the
variance of the quantization error on the vectorX, obtained for a
transformationT . The optimal bit allocation yields the well known
distortion for the vectorial signalfY g : Ejj�Y jj�T � �

N

PN
i�� �

�
qi �

Nc���r
�QN

i�� �
�
yi

� �
N

� N��q . ��qi is independent ofi, and the

number of bits assigned to the ith component isr��
� log�

��yi�Q
N
i�� �

�
yi

��
N

.

In the next section, we recall the main characteristics of the opti-
mal causal approach (LDU) when optimized onR, and summarize
the reasons why its performance is the same as the best unitary ap-
proach (KLT).
However, a backward adaptive coding scheme requires that nei-
ther the transformation nor the parameters of the bit allocation are
transmitted to the decoder. So supposenow that the coding scheme
is based onbRXX � R ��R instead ofR, wherebRXX is avail-
able at both encoder and decoder. Then the computed transforma-
tion will be �T � T ��T , and the distortion will be proportional
to the variances of the signals transformed by means of�T instead
of T , say��

�

yi . Moreover, the bitsri should be attributed on the
basis of estimates of the variances available at both encoder and
decoder also, that is,� �T bRXX

�T �ii, where���ii denotes the ith di-
agonal element of���. Hence, we get the following measure of
distortion for a transformation�T based onbRXX :

Ek �Y k�� �T � � E

NX
i��

c�
���r	 �

� log�
� �T bRXX �TT �ii

�
QN
i���

�T bRXX �TT �ii�
�
N




�
��

yi � (2)

where the expectation is w.r.t�R in case it is non-deterministic. In
the third section,we compare this distortion when�R is caused by
a quantization noise : the coding scheme is based on the statistics
of the quantized data, under high resolution assumption. In the
fourth part,�R corresponds to an estimation noise : the coding
scheme is based on an estimate ofR due to a finite amount ofK
vectors : bRXX � �

K

PK
i��XiX

T
i . The fifth part is dedicated to

simulation results.

2. OPTIMAL CAUSAL AND UNITARY APPROACHES
WITHOUT PERTURBATION

In the causal case,Y � LX � X � LX, whereLX is the ref-
erence vector. The outputX q is Y q � LX. Note that the recon-



struction error�X equals the quantization error�Y :

�X � X �X
q � X � LX � Y

q � Y � Y
q � �Y � (3)

as in the unitary case. As detailed in [2], the optimalL in terms of
coding gain is such thatLRXXL

T � diagf��y� � ����
�
yNg� where

diagf���g represents a diagonal matrix whose elements are��
yi .

In other words, the componentsyi are the prediction errors ofxi
with respect to the past values ofX, theX��i��, and the opti-
mal coefficients�Li���i�� are the optimal prediction coefficients.
Since each prediction erroryi is orthogonal to the subspaces gen-
erated by theX��i��, theyi are orthogonal. It follows thatRXX �
L��RY Y L

�T , which represents the LDU factorization ofRXX .
Referring to (1), the coding gain without perturbation for the opti-
mal causal transform can be written as

G
���
L �

Ejj �Y jj�I
Ejj �Xjj�L

�
Ejj �Xjj�I
Ejj �Y jj�L

�

�
det 	diag�RXX�


det 	diag�LRXXLT �


� �
N

� (4)

wherediag�R� denotes here the diagonal matrix that corresponds
to the diagonal of the matrixR. Now, using the unimodulariry of
L, det�diag�RY Y���det�RXX� � det �, where� is the eigenvalue
matrix ofRXX . The coding gain is

G
���
L �

�
det 	diag�RXX �


det 	diag�LRXXLT �


� �
N

�

�
det 	diag�RXX �


det �

� �
N

�G���
V �

(5)

whereV denotes a KLT ofRXX . Thus, for an optimal bit al-
location, the coding gains of the KLT and the LDU are the same
without perturbation for three reasons : both transformations en-
sure that the power of the quantization error is the same in the
transform and in the signal domains, they are totally decorrelating
transforms, and finally they are unimodular.

3. QUANTIZATION EFFECTS ON THE CODING GAINS

Suppose we compute the transformation on the basis of quantized
data. The statistics of the quantized data are assumed to be per-
fectly known in this section. In other words, we assume that the
decoder disposes of an infinite number of quantized vectorsX

q
i ,

and hence ofRXqXq . Under the assumptions of high resolu-
tion (uncorrelated white noise), optimal bit assignment and unity
noise gain property of the transformation,�R � E �X �XT � ��qI,

where��q � c���r
�QN

i�� �
�
yi

� �
N

. Thus, for �T � I� �V and �L,

we shall compute (the subscriptq refers to quantization)

Ek �Y k�� �T �q� �
NX
i��

c�
���r	 �

� log�
� �TRXqXq

�TT �ii

�
QN
i���

�TRXqXq
�TT �ii�

�
N




�
��

yi � (6)

3.1. Identity Transformation
In this case, the number of bits attributed to the quantizerQi is
r � �

� log�
�RXqXq �ii

�
Q
N
i���RXqXq �ii�

�
N

, and the variance���

yi are indeed

�RXX�ii. Thus

Ek �Y k��I�q��
NX
i��

c�
���r	 �

� log�
�RXqXq �ii

�
QN
i���RXqXq �ii�

�
N




�RXX�ii (7)

�
NX
i��

c���r �det diagfRXqXqg�
�
N

�RXX�ii
�RXqXq�ii

� (8)

One shows that
NX
i��

�RXX�ii
�RXqXq �ii

� trf
�
I � �

�
q �diagRXX�

�����
g�

wheretr denotes the trace operator, and
det �diagRXqXq� � det �diagRXX � det�I���q�diagRXX ����

and we find
Ek �Y k��I�q� � Ek �Y k��I�

�
N �det�I � ��q �diagRXX�

����
�
N

�trf
�
I � ��q�diagRXX ���

���
g�

(9)

The distortion is slightly increased becausethe bits allocated on the
basis of variances of quantized signals are not the optimal ones (the
variance of the quantization noise is not equal in each branchi).
An approximation of (9) up to the second order of the perturbation
gives

Ek �Y k��I�q� � c���r�detdiagfRXX g�
��N

���N
i���

��q
�RXX�ii

����N
PN

i��� �
�

�RXX �ii
���

� Ek �Y k��I�� �
��q
N� �

N��
�

PN
i��

�
�RXX��

ii

�
PN

i��

P
j�i

�
�RXX�ii�RXX �jj

��

(10)

3.2. KLT
As observed in [4] also, ifV denotesa KLT ofRXX , thenV �RXX�
��qI�V

T � �� ��qI � �q, andV is also a KLT ofRXX � ��qI.
Thus, the perturbation term��qI on RXX does not change the
backward adapted transformation, and the variances of the trans-
formed signals remain unchanged :���

yi � �i. However, the de-
coder estimates the variances�V RXqXqV T �ii � �i � ��q , on
the basis of which the coder assigns the bitsr i. Thus, the actual
distortion is

Ek �Y k��V�q��
NX
i��

c�
���r	 �

� log�
�V RXqXqV

T �ii

�
QN
i���V RXqXqV

T �ii�
�
N




�V RXXV
T �ii�

(11)

wich can be computed in a similar way as in 3.1. We find

Ek �Y k��K�q��Ek �Y k
�
�K�



N
�det�I � �

�
q ��

�����
�
N trf

�
I � �

�
q��

���
���g�

(12)

Again, the increase in distortion comes from the perturbation oc-
curing on the bit allocation mechanism. Up to the second order of
perturbation, an expression similar to (10) is

Ek �Y k��K�q�

� c���r�det diagfRXXg�
��N ��N

i���
��q
�i
����N

PN
i��� �

�
�i
���

� Ek �Y k��K�

�
 �

��q
N� �

N��
�

PN
i��

�
��i��

�
PN

i��

P
j�i

�
�i�j

�

�
(13)

The corresponding expression for the coding gain is

GK�q�G
��det�I � ��q�diagRXX �����

�
N trf

�
I � ��q �diagRXX ���

���
g

�det�I � ��q�������
�
N trf

�
I � ��q �����

���
g

�

(14)

whose second order approximation is
GK�q � G�	 �

��q
N� �

N��
�

PN
i���

�
�RXX��

ii

� �
��i��

�

�
PN

i��

P
j�i�

�
�RXX�ii�RXX �jj

� �
�i�j

��
�

(15)



3.3. LDU

In the causal case, the coder uses a transformationL � such that
L�RXqXqL

�T � R�
Y Y . R�

Y Y is the diagonal matrix of the es-
timated variances involved in the bit allocation (L� andR�

Y Y are
both available to the decoder). In this case, the difference vector
Y � X � L�Xq, the quantization noise is filtered by the rows
of L�. Note thatEk �Xk�L��q still equalsEk �Y k�L� �q, since �X �

Xq�X � Y q�L�Xq�X � Y q��X�L�Xq� � Y q�Y � �Y .
One shows that the actual variances of the signalsy i obtained with
L� are�L�RXqXqL

�T � ��qI�ii [2]. In this case, one finds

Ek �Y k��L� �q� �
PN

i�� c�
���r	 �

�
log�

�L�RXqXqL
�T �ii

�
QN
i���L

�RXqXqL
�T �ii�

�
N




��L�RXqXqL
�T � ��qI�ii

� Ek �Y k��L�
�
N �det�I � ��q��

�����
�
N trf

�
I � ��q�R

���
Y Y �

�
g�

(16)

The increase in distortion comes not only from the perturbation
occuring on the bit allocation mechanism but also from the filtering
of the quantization noise. Up to the first order of perturbation,we
obtain

Ek �Y k��L��q� � Ek �Y k��K�

	
 �

��q

N
�
NX
i��



�i
�



��yi
�



� (17)

whereN




�RXX�ii
� Ek�Y k��I�	 � E N��

�N�

PN
i���

�R�ii
�RXX �ii

��

� E �
N�

P
i

P
j�i

�R�ii
�RXX�ii

�R�jj
�RXX �jj




(21)

The expectation of the first term in (21) is

E
N � 

�N�

NX
i��

�
��R�ii
�RXX�ii

��

�
N � 

�N�

NX
i��

��RXX�
�
ii

K�RXX��ii
�

N � 

NK
�

(22)

The expectation of the second term is

E �
N�

P
i

P
j�i

�R�ii
�RXX �ii

�R�jj
�RXX�jj

� �
k

P
i

P
j�i

�RXX ��ij
�RXX�ii�RXX �jj

� �
k
k �

�
�diagfRXXg�

���RXX�diagfRXXg�
���
�
k�F

(23)

where��A� denotes the stritcly lower triangular matrix made with
the strictly lower trianguler part ofA, andkAk�F the squaredFrobe-
nius norm ofA. If D � diagfRXXg, we obtain

E �
N�

P
i

P
j�i

�R�ii
�RXX �ii

�R�jj
�RXX�jj

� �
K
�kD��

�RXXD
� �

� k�F

�kdiagfD� �
�RXXD

� �
� k�F �

� �
K
�trfRXXD

��RXXD
��g��

(24)

Finally, the expected distortion for Identity with estimation noise
is, for sufficiently highK,

Ek �Y k��I�K� � Ek �Y k��I�

�
 �



K
��

trfRXXD
��RXXD

��

N�
g�

�
�

(25)

4.2. KLT
In the unitary case, the expected distortion is

Ek �Y k�� �V �k��E

NX
i��

c�
���r	 �

� log�
� �V bRXX �VK�ii

�
QN
i���

�V bRXX �V T �ii�
�
N




� �V RXX
�V T �ii�

(26)

Using the fact that�V bRXX
�V T is diagonal, we can write (26) as

Ek �Y k�� �V �K� � Ec���r
�
det �V bRXX

�V
� �
N

NX
i��

� �V RXX
�V T �ii

� �V bRXX
�V T �ii

(27)



Because of the unimodularity of�V , the determinant in (27) may
be written as

det �V bRXX
�V T � det�RXX ��R�

� �detRXX� det�I �R��
XX�R�

(28)

The sum in (27) may be written asPN
i��

� �V RXX �V T �ii
� �V bRXX �V T �ii

�trf� �V bRXX
�V T ��

�
� �V RXX

�V T� �V bRXX
�V T ��

�
�g

� trf�I �R��
XX�R�

��g

(29)

Thus, (27) is equivalent to

Ek �Y k�� �V �K��Ek
�Y k��K�



N
E�det�I �R

��
XX�R��

�
N trf

�
I�R��

XX�R
���

g�

(30)

Using similar developments as in the previous section, the ex-
pected distortion for the KLT when the transformation is based
onk vectors is finally, under high resolution assumption

Ek �Y k�� �V �k� � Ek �Y k��K�

�
 �

N � 

�K
�

N � 

NK

�
� (31)

The associated coding gain is,whereD � diagfRXXg,

G �V �K�
Ek �Y k��I�K�

Ek �Y k�
� �V �K�

�G
�

�
�



KN�
trfRD��

RD
��g�

N � 

�K
�



NK

�
�

(32)
4.3. LDU
As stated in the introduction of this section, the expected distortion
with �L computed onbRXX is

Ek �Y k�
��L�K�

� E
PN

i�� c�
���r	 �

� log�
� �L bRXX �LT �ii

�
QN
i���

�L bRXX �LT �ii�
�
N
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� Ec���r
�
det �V bRXX

�V
� �
N� �z 

�det bRXX�det�RXX� det�I	R��
XX

R�

NX
i��

��LRXX
�LT �ii

��L bRXX
�LT �ii� �z 

�trf�I	R��
XX

R���g

� Ek �Y k�
� �V �K�

�

(33)

where the equality concerning the determinants comes from the
unimodularity of the transformations�L and �V . The equality con-
cerning the trace comes from their decorrelating property. Thus,
the distortion and coding gain with estimation noise are the same
in the causal and the unitary cases, and are given up to the first
order inK by (30) and (32).

5. SIMULATIONS

For the simulations, we used entropy constrained scalar quantiz-
ersQi and real Gaussian i.i.d. vectors with covariance matrix
RXX � HRAR�H

T . RAR� is the covariance matrix of a first
order autoregressive process with normalized correlation coeffi-
cient�. H is a diagonal matrix whose ith entry is�N � i� ����

(decreasing variances).
In Figure 1, the coding gain with quantization noise is plotted
for KLT (upper curves) and LDU (lower curves) with� � ���,
N � �. The theoretical exact expressions are given by (14) and
(18), and the approximated expressions by (15) and (19).
The coding gains in presence of estimation noise are compared

for LDU and KLT in Figure 2, forN � � and� � ��� (mean over
�� realizations). The observed behaviors of the transformation
corresponds quite well to the theoretically predicted ones forK �
a few tens.
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