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Abstract

We consider a transmission by burst where the data are organized and sent by bursts. At each end of the burst of data,
a sequence of symbols is assumed known, and the channel considered as constant over the burst duration. The optimal
structure of the burst mode equalizers is derived. The class of linear and decision feedback equalizers is considered, as well
the class of ISI cancelers that use past but also future decisions: for each class of equalizers the MMSE, the unbiased
MMSE and the MMSE zero forcing versions are derived. Unlike in the continuous-processing mode, the optimal burst
mode "lters are time varying. The performance of the di!erent equalizers are evaluated and compared to each other in
terms of SNR and probability of error: these measures depend on the position of the estimated symbol and on the
presence of known symbols. Finally, we show that, by choosing correctly the number and position of the known symbols,
(time-invariant) continuous-processing "lters applied to burst mode can be organized to give su$ciently good perfor-
mance, so that optimal (time-varying) burst processing implementation can be avoided. ( 2000 Elsevier Science B.V.
All rights reserved.

Zusammenfassung

Wir betrachten die Burst-UG bertragung, wobei die Daten in Bursts organisiert und gesendet werden. Am Ende jedes
Datenburst wird eine Symbolsequenz als bekannt und der Kanal wird als konstant uK ber der Burstdauer vorausgesetzt.
Die optimale Struktur des Burst-Modus-Entzerrerswird hergeleitet. Es wird sowohl die Klasse der linearen, entscheidun-
gsruK ckgekoppelten Entzerrer als auch die Klasse der lCl-Canceler betrachtet die sowohl vergangene als auch zukuK nftige
Entscheidungen benutzen. FuK r jede Entzerrerklasse werden der MMSE, der biasfrcic MMSE und MMSE nullerzwin-
gende Versionen abgeleitet. Im Gegensatz zum kontinuierlichen Verarbeitungsmodus sind die optimalen Burstmodus-
Filter zeitvariant. Die Leistung der verschiedenen Entzerrer wird bewertet und untereinander in Hinblick auf SNR und
Fehlerwahrscheinlichkeit verglichen. Diese Ma{e haK ngen von der Position des geschaK tzten Symbols und der PraK sens
unbekannter Symbole ab. Schlie{lich zeigen wir, dass durch die richtige Wahl der Nummer und Position der bekannten
Symbole, (zeitinvariante) kontinuierlich verarbeitende Filter angewandt auf den Burstmodus derartig organisiert werden
koK nnen, dass hinreichend gute Ergebnisse erzielt werden koK nnen, so dass optimale (zeitvariante) burstverarbeitende
Implementierungen umgangen werden koK nnen. ( 2000 Elsevier Science B.V. All rights reserved.
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Nomenclature

( ) )H complex conjugate
( ) )T transpose
( ) )H Hermitian transpose
( ) )~1 inverse
A

i
element i of the vector A

A
i,j

element i, j of the matrix A
hK estimate of parameter h
E mathematical expectation
I identity matrix of adequate dimension
w.r.t. with respect to

Re2 sume2

Nous consideH rons une transmission par rafales où les donneH es sont organiseH es et envoyeH es en rafales. A chaque "n de la
rafale de donneH es, une seH quence de symboles est supposeH e connue, et le canal est consideH reH constant sur la dureH e de la
rafale. Nous deH rivons la structure optimale de l'eH galiseur de mode rafale. Nous consideH rons la classe des eH galiseurs
lineH aires et à retour de deH cision, ainsi des eH liminateurs ISI qui utilisent les deH cisions passeH es mais aussi futures: pour
chaque classe d'eH galiseur, la MMSE, la MMSE non biaiseH e et la variante MMSE Zero Forcing sont deH riveH es.
Contrairement au mode de traitement continu, les "ltres de mode en rafales optimaux sont variables dans le temps. Nous
eH valuons les performances des di!eH rents eH galiseurs et nous les comparons entre eux en terme de rapport signal à bruit et
de probabiliteH d'erreur: ces mesures deH pendent de la position du symbole estimeH et de la preH sence de symboles connus.
Finalement, nous montrons que, en choisissant correctement le nombre et la position des symboles connus, des "ltres de
traitement continus (invariants dans le temps) appliqueH s au mode en rafale peuvent e( tre organiseH s pour donner des
performances su$samment bonnes, de sorte que une impleHmentation de traitement de rafales optimale (variable dans le
temps) peut e( tre eH viteH e. ( 2000 Elsevier Science B.V. All rights reserved.

Keywords: Burst mode equalization; Multichannel; Linear equalizer; Decision feedback equalizer; ISI canceler; Non-causal decision
feedback equalizer; Unbiased MMSE equalizer

1. Introduction

In most of the actual mobile communication
systems, the data are divided and transmitted in
bursts. In general, the bursts are separated by guard
intervals, which avoid interburst interference, and
contain known symbols, like synchronization bits
or a training sequence to estimate the channel. This
is typically the case of GSM (global system for
mobile communications), where the channel is as-
sumed constant over the duration of a burst and is
estimated by a middamble training sequence, and
the Viterbi algorithm is applied to estimate the
transmitted data symbols.

We propose a scenario where a sequence of
known symbols is attached to each end of the burst
of information symbols. This scheme is proven to
include the GSM case. The channel is assumed
constant during the transmission of a burst. As

we are operating with a "nite amount of data,
the usual time-invariant continuous-processing
equalizers are not optimal anymore. We propose
a derivation of the optimal burst mode equalizers,
which are time varying. Three classes of equalizers
are considered: the usual linear and decision feed-
back equalizers, as well as the ISI canceler. This last
equalizer uses past but also future decisions and
was proposed in its continuous-processing version
in [10,7], and in its burst mode version in [11,6]
where it is called non-causal decision feedback
equalizer (NCDFE); in this paper, we use the term
NCDFE to designate the ISI canceler. In a burst
mode implementation of the NCDFE, a classical
linear or decision feedback equalizer is used to give
a "rst estimation of the symbols. Based on these
decisions, the NCDFE computes new estimates
and its output can be used to do other iterations.
This NCDFE is potentially the most powerful
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equalizer: indeed when no errors occur at the input
of the non-causal feedback, all the ISI is removed
and the matched "lter bound (MFB) is attained.

These three classes of equalizers are derived ac-
cording to three di!erent criteria MMSE, unbiased
MMSE and MMSE zero forcing (MMSE-ZF) cor-
responding to increasingly strong constraints: the
"rst criterion is unconstrained, the second one is
the element-wise best linear unbiased estimate
(BLUE), and the third one is the block-wise BLUE.
These three criteria will then give increasing MSEs.
The MMSE equalizer gives biased estimates of the
symbols: the Unbiased MMSE equalizer is the best
equalizer in the MMSE sense, giving unbiased esti-
mates. Although possessing a higher SNR than its
MMSE counterpart, for non constant modulus
symbol constellations, the unbiased MMSE
equalizer gives a better error probability, because
the decision device is built for unbiased symbol
estimates. The unbiased MMSE DFE equalizer
was introduced in [2]; we propose here a generaliz-
ation to the other classes of equalizers.

All the equalizers are derived in a multichannel
framework, which typically happens when there is
an antenna array at the reception of a wireless
system. We prove that the optimal processing con-
sists in "rst removing the contribution of the
known symbols, then applying the burst mode
multichannel matched "lter; the following "lters
depend on the speci"c equalizer considered. The
performance of the di!erent equalizers is evaluated
in terms of SNR, studied according to the position
of the unknown symbols in the burst and the pres-
ence of the known symbols.

In [8], burst mode MMSE and ZF equalizers are
derived but for single channels: the ZF equalizer
exists then only if there are at least a number of
known symbols equal to the channel memory. In
the multichannel context considered here, even
with no known symbols, ZF equalizers exists and
in fact a whole class of ZF equalizers: we will pre-
sent the special class of MMSE-ZF versions of
the equalizers which gives, among all the ZF
equalizers, the lowest MSE. Furthermore, in [8],
continuous-time matched "ltering is done, matched
to the overall channel, which is unrealizable, fol-
lowed by the symbol rate burst mode processing.
We follow the more realistic fractionnally spaced

approach in which simple continuous-time lowpass
"ltering is followed by oversampling. Another in-
terest of the multichannel model, which we will not
detail in the paper, is that it allows better perfor-
mance as the number of subchannels increases, and
in particular, gives better performance than a single
channel.

Ref. [8] presents complexity computations of the
burst mode "lters, which appear more complex
than the time-invariant "lter continuous processing
mode. We propose to compare the performance
obtained by applying the optimal time-varying
burst mode "lters with the performance obtained
by applying the time-invariant continuous-process-
ing "lters to burst mode, which is not done in [8].
Refs. [4,3] proposed to enable time-invariant pro-
cessing (with cyclic convolution though) by intro-
ducing cyclic pre"xes. We propose to minimize the
suboptimality of continuous processing by consid-
ering the in#uence of the pre and postamble lengths
on the degradation between time-invariant "lters
and the optimal processing: the best situation hap-
pens when the lengths of these pre and postamble
equals the channel memory. In [1], Al-Dhahir pres-
ents such a comparison, but considering the single-
channel MMSE DFE only. His treatments of the
known symbol is not correct however. He estimates
the unknown symbols in terms of the received data
only, whereas the correct treatment consists in esti-
mating the unknown symbols in terms of the re-
ceived data and also of the known symbols present
in the burst. In his attempt to compare time-invari-
ant and optimal processing fairly, he averages SNR
in both cases over di!erent amounts of symbols,
estimating the known symbols also in the time-
invariant processing, whereas the number of un-
known symbols (to be equalized) is the same in
both cases. So the comparison appears unfair. Fur-
thermore, he summarizes the performance into one
SNR average number over the burst: as will be seen
in the paper, it appears important to consider on
the contrary the performance as a function of sym-
bol position.

The paper is organized as follows: in Section 2,
the multichannel model is presented as well as our
burst transmission model; in Section 3, the struc-
ture of the burst mode equalizers is derived and
their performance studied in Section 4; at last in
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Section 5, we explain how continuous processing is
applied to burst mode in order to minimize sub-
optimality. This paper is an extented version of the
conference presentation [12].

2. Problem formulation

2.1. Multichannel model

We consider a FIR multichannel model. This
model applies to di!erent cases: oversampling w.r.t.
the symbol rate of a single received signal [13}15]
or the separation into the real (in phase) and imagi-
nary (in quadrature) parts of the demodulated re-
ceived signal if the symbol constellation is real
[9,17]. In the context of mobile digital communica-
tions, a third possibility appears in the form of
multiple received signals from an array of sensors.
These three sources for multiple channels can also
be combined.

To further develop the case of oversampling,
consider linear digital modulation over a linear
channel with additive noise so that the cyclo-
stationary received signal can be written as

y(t)"+
k

h(t!k¹)a(k)#*(t), (1)

where the a(k) are the transmitted symbols, ¹ is the
symbol period and h(t) is the channel impulse re-
sponse. The channel is assumed to be FIR with
duration N¹ (approximately). If the received signal
is oversampled at the rate m/¹ (or if m di!erent
received signals are captured by m sensors every
¹ seconds, or a combination of both), the discrete
input}output relationship can be written as

y(k)"
N~1
+
i/0

h(i)a(k!i)#*(k)"HA
N
(k)#*

k
,

y(k)"C
y
1
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(k)D, *(k)"C
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(k)

F
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(k)D ,

H"[h(N!1)2h(0)],

A
N
(k)"[aH(k!N#1)2aH(k)]H, (2)

where the subscript j in the second equation de-
notes the jth channel. In the case of oversampling,

y
j
(k), j"1,2,m, represent the m phases of the

polyphase representation of the oversampled sig-
nal: y

j
(k)"y(t

0
#(k#j/m)¹). In this polyphase

representation, we get a discrete-time circuit in
which the sampling rate is the symbol rate. Its
output is a vector signal corresponding to a SIMO
(single input multiple output) or vector channel
consisting of m SISO discrete-time channels where
m is the sum of the oversampling factors used
for the possibly multiple antenna signals. Let
H(z)"+N~1

i/0
h(i)z~i"[HH

1
(z)2HH

m
(z)]H be the

SIMO channel transfer function. Consider addi-
tive-independent white Gaussian noise *(k) with
r** (k!i)"E*(k)*H(i)"p2

v
I
m

d
ki
. Assume we re-

ceive M samples:

Y
M

(k)"T
M

(H)A
M`N~1

(k)#V
M

(k) (3)

where Y
M

(k)"[yH(k!M#1)2yH(k)]H and sim-
ilarly for V

M
(k); T

M
(H) is a block Toeplitz matrix

with M block rows and [H 0
mC(M~1)

] as "rst block
row.

The channel length is assumed to be N which
implies h(0)O0 and h(N!1)O0 whereas the im-
pulse response is zero outside of the indicated
range.

Multichannels present a certain number of ad-
vantages w.r.t. single channels. The performance of
the equalizers is better for multichannels than for
single channels: as the number of subchannels in-
creases, performance gets better. In the case of
reception by multiple antennas, this can be intui-
tively explained: each time a subchannel is added,
diversity is added. In fact, if the number of indepen-
dent subchannels increases, the multichannel tends
to an allpass transfer function, in which case the
SNR at the output of a simple MMSE-ZF linear
equalizer becomes equal to the matched "lter
bound. This improvement also manifests itself in
the oversampling case (oversampling at a rate lar-
ger than the Nysquist frequency does not improve
performance any longer however). Furthermore, as
detailed in Section 2.3, under certain conditions on
the channel, ZF equalizers exist for multichannels
but not for single channels for a number of known
symbols present in the burst lower than the channel
memory.
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Fig. 1. Burst transmission.

2.2. Burst transmission

We consider a transmission by burst in which
detection is done burst by burst. We assume that
the channel is time-invariant during the transmis-
sion of a burst. In the input burst denoted A, a pre
and post-amble sequence of known symbols of
variable length is attached to the burst of data
symbols: n

1
known symbols at the beginning,

grouped in the vector A
K1

, and n
2

at the end,
grouped in the vector A

K2
: see Fig. 1. The total

length of the input burst is ¸#n
1
#n

2
; we want to

detect the ¸ central unknown symbols, grouped in
the vector A

U
. For that purpose, we consider as

observation data Y, the channel outputs that con-
tain only symbols of burst A (the symbols to be
detected or the known symbols of the burst), and
not outputs containing symbols of neighboring
bursts: see Fig. 1. The input}output relationship (3)
between the observation data Y and A is written in
simpli"ed notation as

Y"TA#V. (4)

More data could be considered also, but this possi-
bility will not be explored in this paper.

In the following, we consider the decomposition:

Y"TA#V"T
K1

A
K1

#T
U
A

U
#T

K2
A

K2

#V"T
K
A

K
#T

U
A

U
#V, (5)

whereT
i
A

i
represents the contribution of the sym-

bols in A
i
. A

K
"[AH

K1
AH

K2
]H groups all the known

symbols. As will be seen, the optimal process con-
sists "rst in removing the contribution of the
known symbols, all the "lters will then be applied

to the processing data Y
U
:

Y
U
"T

U
A

U
#V"Y!T

K
A

K
. (6)

It has to be noted that the derivations of the paper
are valid for any position for the known symbols.

2.3. Some useful properties of T and T
U

If M*N (with notations of Eq. (3)), the convolu-
tion matrix T"T

M
(H) is a tall matrix and has

full-column rank if and only if the multichannel
H(z) is irreducible [16]. A multichannel is said to be
irreducible if it has no zeros, i.e. ∀z, H(z)O0. This
is also equivalent to say that the subchannels of
H(z) have no zero in common.

When H(z) is irreducible, T admits then a left
inverse F, such that FT"I: this result will be used
for the derivation of ZF equalizers. In the case of
a single channel, T has more columns than rows
and admits no left inverses.

Now, assume that the multichannel H(z) is not
irreducible and admits N

z
zeros, then the column

rank of T is M#N!1!N
z

(M#N!1 is the
number of columns of T). If there are N

z
known

symbols in the burst, then T
U

has full column rank
[5] and admits a left inverse. For a single channel
(which can be seen as a limiting case of a multichan-
nel for which all the zeros are in common), pro-
vided that there are N!1 zeros in the burst,
T

U
has full column rank and admits then a left

inverse.

3. Burst-mode equalizers

In this section, we derive the expressions for
the di!erent equalizers in burst mode. Linear
equalizers (LE), classical decision feedback
equalizers (DFE) and the non-causal DFE
(NCDFE) are considered for the minimum mean
squared rrror (MMSE), the unbiased MMSE
(UMMSE) and the MMSE zero-forcing (MMSE
ZF) criteria.

The di!erent equalizers are linear estimators of
the input symbols.
f Linear equalizers give linear estimates based on

the received data Y and the known symbols A
K
.

E. de Carvalho, D.T.M. Slock / Signal Processing 80 (2000) 1999}2015 2003



f DFEs give linear estimates based on Y, A
K
, as

well as the decisions on the past input symbols.
f The NCDFE gives linear estimates given the Y,

A
K

and the decisions on the past and future input
symbols.

We shall assume those past (and future) decisions
to be error-free.

The di!erent equalizers are solutions of the MSE
criterion

min
F

DDA
U
!FY @DD2, (7)

where F is a matrix "lled out with "lter coe$cients
and Y @ groups the whole observation set (e.g. Y and
A

K
for the LE), under di!erent constraints:

f MMSE: no constraints.
f UMMSE: element-wise best linear unbiased esti-

mate (BLUE).
f MMSE zero-forcing: burst-wise BLUE.

In burst mode, the equalizer "lters are time vary-
ing. We de"ne the MSE of the ith symbol as

MSE
i
"(E(AK

U
!A

U
)(AK

U
!A

U
)H)

ii
(8)

where AK
U

is the vector estimate of the unknown
input symbols and the signal-to-noise ratio (SNR)
of the ith symbol:

SNR
i
"

p2
a

MSE
i

. (9)

3.1. Linear equalizers

3.1.1. The MMSE linear equalizer
The MMSE LE gives the unconstrained MMSE

estimate of the unknown symbols A
U

based on the
observations:

Y @H"[Y H AH
K
]H. (10)

The linear MMSE estimate of A
U

is

AK
U, MMSE LE

"R
AU

Y {
R~1Y{Y{

Y @"R
AU

Y
U
R~1Y

U
Y
U
Y
U
. (11)

The last equality, proved in Appendix A, shows
that linear estimation in terms of Y @ is the same as
in terms of Y

U
: the optimal processing can be seen

as eliminating "rst the contributions of known
symbols from the observation data Y to get Y

U
and

then applying the MMSE equalizer determined on
the basis of Y

U
. For the other equalizers, the pre-

vious result is also true but will not be restated.
When a sequence of known symbols of length

larger than the channel memory is present in the
middle of the burst, like in GSM, the processing
data Y

U
can then be decomposed into two indepen-

dent parts, and all the equalization process can be
done on the two parts independently. This situation
becomes equivalent to our proposed scenario of
known symbols at each end of the burst.

From Eq. (11),

AK
U,MMSE LE

"p2
a
TH

U
(p2

a
T

U
(h)TH

U
(h)#p2

v
I)~1Y

U

"ATH
U
T

U
#

p2
v

p2
a

IB
~1

TH
U

Y
U
. (12)

The last equality is obtained via the matrix inver-
sion lemma. We will denote

R"TH
U
T

U
#

p2
v

p2
a

I. (13)

Due to the presence of the regularizing term
(p2

v
/p2

a
)I, the matrix R is invertible and the MMSE

LE is always de"ned.
In the continuous-processing case, the MMSE

equalizer gives the output:

a(
MMSE LE

(k)"AHs(q)H(q)#
p2
v

p2
a

IB
~1

Hs(q)y(k), (14)

where Hs(z)"HH(1/zH) and q~1y(k)"y(k!1). By
analogy with the continuous-processing case, we
can "nd interpretations for the expression (12) in
"ltering terms:
f TH

U
represents the multichannel matched "lter,

matched to the "lter T
U
. When the length of the

two sequences of known symbols equals or is
larger than the memory of the channel N!1,
TH

U
is Toeplitz, banded and upper triangular,

which implies that the "ltering is time-invariant,
FIR and anticausal. When the length of the se-
quences are shorter however, the "lter is time-
varying at the edges.

f R is the FIR denominator of an IIR "lter, R~1 is
non-causal.

Fig. 2 shows the MMSE LE structure.
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Fig. 2. Structure of the MMSE and the MMSE-ZF LE.

The UDL decomposition of R"¸HD¸ can
be used to do a fast implementation of the
MMSE LE as mentioned in [8]. The Schur al-
gorithm can indeed be used to compute these
factors. R~1"¸~1D~1¸~H: the output of ¸~H,
Z@"¸~HZ N ¸Z@"Z, can be solved by back-
substitution. The same kind of remark is valid for
the output of ¸~1. So it becomes not necessary to
inverse R and the complexity is of order MN.

For the burst mode MMSE LE:

SNR
i
(MMSE LE)"

p2
a

p2
v
(R~1)

ii

. (15)

The SNR depends on the position of the symbol in
the burst and we will see the in#uence of the known
symbols on the SNR according to the position of
the symbols to be estimated. This remark will also
be valid for the other equalizers.

3.1.2. The general unbiased MMSE problem
A MMSE equalizer produces a biased estimate

of the symbol a(i): the MMSE equalizer output can
indeed be written as a(i)a(i)#n(i), where n(i) and
a(i) are uncorrelated (n(i) contains symbols di!erent
from a(i) and noise terms). This bias increases the
probability of error [2], as the decision devices are
made for unbiased data. The purpose of the unbias-
ed MMSE equalizer is to correct this bias. We then
derive the best equalizer, in the MMSE sense, that
gives unbiased symbol estimates: we will see that its
SNR gets reduced w.r.t. the MMSE, but that the
error probability gets increased. Note that ZF
equalizers are unbiased equalizers: they minimize
the MSE under the unbiasness constraint but also
the zero ISI constraint; the UMMSE are derived
under the unbiasness constraint only. So ZF and
UMMSE equalizers are di!erent except when there
is no ISI at the output of the UMMSE, which will
be the case for the NCDFE.

In terms of estimation theory, the unbiased
MMSE equalizer is the element-wise BLUE. We
give and prove here results that will be valid for all
the Unbiased MMSE equalizers (LE, DFE,
NCDFE).

Consider the estimation of symbol a(i). Y @ con-
tains all the information available for estimation,
Y
U

and AM : AM denotes here the past decisions w.r.t.
a(i) for the DFE, the past and future decisions for
the NCDFE, and is zero for the LE. Let us decom-
pose the processing data Y

U
onto the contribution

of a(i) and of the other symbols AM
U,i

.

Y
U
"T

U
A

U
#V"T

U,i
a(i)#TM

U,i
AM

U,i
#V, (16)

Y @"C
T

U,i
0 Da(i)#C

TM
U,i

AM
U,i

#V

AM D
"T@

U,i
a(i)#V@. (17)

The BLUE theory for this linear model gives us as
estimate for a(i):

a(
BLUE

(i)"(T@
U,i

HR@Y~1Y{
T@

U,i
)~1T@

U,i
HR~1Y{Y{

Y @ (18)

which can also be written as

a(
BLUE

(i)

"p2
a
(R

a(i)Y{
R~1Y{Y{

R
a(i)Y{

)~1R
a(i)Y{

R~1Y{Y{
Y @

hgigj
a( MMSE(i)

. (19)

The unbiased estimate for the whole burst is then

AK
U,UMMSE

"p2
a
(diag(R

AU
Y{

R~1Y{Y{
RY{AU

))~1
hggggiggggj

D

R
AU

Y{
R~1Y{Y{

Y@
hgigj

AK U,MMSE

,

(20)

AK
U,UMMSE

"DAK
U,MMSE

. (21)

The unbiased MMSE equalizer is simply a scaled
version of the MMSE equalizer.

The SNR of the UMMSE is related to the SNR
of the MMSE:

SNR
i
(UMMSE)"SNR

i
(MMSE)!1. (22)

The proof can be found in Appendix B.
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Fig. 3. Structure of the UMMSE LE.

3.1.3. The unbiased MMSE linear equalizer
For the speci"c case of the MMSE LE:

R
AU

Y{
R~1Y{Y{

RY{AU
"ATH

U
T

U
#

p2
v

p2
a

IB
~1

TH
U
T

U

N D"AdiagAATH
U
T

U
#

p2
v

p2
a

IB
~1

TH
U
T

UBB
~1

.

(23)

D can be further rearranged, and we get

AK
U,UMMSE LE

"AI!
p2
v

p2
a

diag[(TH
U
T

U

#

p2
v

p2
a

IB
~1

DB
~1

AK
U,MMSE LE

. (24)

As D is invertible AK
U,UMMSE LE

is always de"ned.
Fig. 3 shows the UMMSE structure.

In the continuous-processing case, the output of
the UMMSE LE has for expression,

a( UMMSE LE
(k)

"A1!
p2
v

p2
a
Q
dz

z AHs(z)H(z)#
p2
a

p2
v
BB

~1
a(
MMSE LE

(k).

(25)

3.1.4. The MMSE-ZF linear equalizer
A ZF equalizer has for property to leave the

signal part of the received data undistorted: a block
ZF equalizer F veri"es

FT
U
"I. (26)

As seen in Section 2.3, in the monochannel case, the
existence of the ZF equalizer is conditioned to the
presence of known symbols. When there are no
known symbols, T

U
"T admits no left inverse.

For a number of known symbols of exactly N!1,
the channel memory, T

U
is square and there is

a unique ZF equalizer which is also the MMSE ZF
equalizer. For a number of known symbols of more
than N!1, T

U
is strictly tall and full-column rank

and ZF equalizers exist.
For a multichannel and also for a single channel,

T
U

has full column rank if M*N and if there are
as many known symbols as the number of zeros.
These will be the conditions for a ZF equalizer to
exist.

When T
U

is strictly tall and has full column
rank, it admits several left inverses. Indeed,
let TM

U
be a matrix which columns are ortho-

gonal to those of T
U
, then TMH

U
T

U
"0.

F"(TH
U
T

U
)~1TH

U
, the Moore}Penrose pseudo-

inverse of T
U

veri"es FT
U
"I, but also

F"(TH
U
T

U
)~1TH

U
#CTMH

U
, where C is any

M]M matrix.
We shall here concentrate on the MMSE-ZF LE,

which give the lowest MSE among all the ZF LE
equalizers. The MMSE-ZF LE corresponds to the
block-wise BLUE based on Y

U
. Given the linear

model: Y
U
"T

U
A

U
#V, the BLUE is given by

AK
U,BLUE

"(TH
U
R~1Y

U
Y
U
T

U
)~1TH

U
R~1Y

U
Y
U
Y

"(TH
U
R~1VV T

U
)~1TH

U
R~1VV Y

U
. (27)

So the MMSE-ZF LE is

AK
U,MMSEvZF LE

"(TH
U
T

U
)~1TH

U
Y
U
. (28)

Consider now the UDL decomposition of
TH

U
T

U
"¸HD¸:

(TH
U
T

U
)~1"¸~1D~1¸~H. (29)

After the matched "lter, the optimal process con-
sists in whitening the noise by the "lter ¸~H. We
will "nd these two optimal steps (matched "ltering
and noise whitening) for all the ZF equalizers. If we
denote now R"TH

U
T

U
, the process is the same as

for the MMSE LE (see Fig. 2). The remarks on the
fast implementation are also valid here.

The output burst mode SNR is

SNR
i
(MMSE-ZF LE)"

p2
a

p2
v
((TH

U
T

U
)~1)

ii

. (30)

In the continuous-processing case, the MMSE-
ZF LE output is

a(
MMSEvZF LE

(k)"(Hs(q)H(q))~1Hs(q)y(k). (31)

2006 E. de Carvalho, D.T.M. Slock / Signal Processing 80 (2000) 1999}2015



Fig. 4. Structure of the MMSE DFE and MMSE-ZF DFE. Fig. 5. Structure of the UMMSE DFE.

3.2. Decision feedback equalizers

3.2.1. The MMSE decision feedback equalizer
The decision feedback equalizers consider the

linear estimation of symbol a(i) based on the pro-
cessing data Y

U
and the past decisions w.r.t. a(i)

assumed known that we denote A1
i
:

a(
MMSE DFE

(i)"F
i
Y
U
!B

i
A1

i
, (32)

where F
i
is the forward "lter and B

i
the feedback

"lter. Let Y @"[YH
U

A1
H

i
]H, and let us decompose

Y
U

onto the contribution of A1
i

the past symbols
and A&

i
grouping a(i) and the future symbols:

Y
U
"T1

U
A1

i
#T&

U
A&

i
#V, (33)

[F
i
!B

i
]"R

a(i)Y{
R~1Y{Y{

"[p2
a
TH

U,i
(p2

a
T&

U
T&

H

U
#p2

v
I)~1

!p2
a
TH

U,i
(p2

a
T&

U
T&

H

U
#p2

v
I)~1T1

U
]. (34)

Consider the UDL factorization of R"

TH
U
T

U
#(p2

v
/p2

a
)I"¸HD¸. After some manipula-

tions, it can be proven that F
i

is the ith row of
D~1¸~HTH

U
and that B

i
the ith row of ¸!I.

A proof for this result is provided in Appendix C.
The symbol estimate is then

AK
U,MMSE DFE

"D~1¸~HTH
U

Y
U
!(¸!I)dec(AK

U,MMSE DFE
).

(35)

The MMSE DFE is always de"ned like the MMSE
LE. The forward "lter consists in the cascade of the
multichannel matched "lter and an anticausal "lter
D~1¸~H. ¸!I is a strictly causal "lter, so that the
feedback operation involves only past decisions.
Fig. 4 shows the structure of the MMSE DFE. As

for the LEs, a fast implementation of the DFE
using the UDL decomposition is also possible here
[8]: the resulting complexity is of order MN.

The SNR is

SNR
i
(MMSE DFE)"

p2
a

p2
v
(D~1)

ii

. (36)

In the continuous-processing case:

a(
MMSE DFE

(k)

"

Hs(q)

dGs(q)
y
k
!(G(q)!1)dec(a(

MMSE DFE
(k)) (37)

where Hs(q)H(q)#p2
v
/p2

a
"Gs(q)dG(q), G(q) is

causal and G(R)"1.

3.2.2. The unbiased MMSE decision feedback
equalizer

Using the results of Section 3.1.2, we can prove
that the output of the unbiased MMSE DFE is

AK
U,UMMSE DFE

"AI!
p2
v

p2
a

D~1B
~1

AK
U,MMSE DFE

. (38)

Fig. 5 shows this structure. The burst output SNR
is decreased by 1 with respect to the MMSE DFE.

The continuous-processing equalizer output is

a( UMMSE DFE
(k)"A1!

p2
v

p2
a

expA!Q
dz

z
ln(Hs(z)H(z)

#

p2
a

p2
v
BBB

~1
a(
MMSE DFE

(k). (39)

3.2.3. The MMSE-ZF decision feedback equalizer
As for the ZF LE, there is a whole class of ZF

equalizers, and we derive here the ZF MMSE DFE
equalizer. Consider the UDL factorization of
TH

U
T

U
"¸HD¸. Then the forward and feedback
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Fig. 6. Structure of the NCDFE.

"lters are proven in Appendix D to be

F"¸~HD~1TH
U
,

(40)
B"¸!I,

we have the same structure as the MMSE DFE.
The same equalizability conditions as for MMSE-
ZF LE hold here also.

Let us end this section by noting that the expres-
sion of the MMSE and MMSE-ZF DFEs can be
recovered from the LEs: for the MMSE LE, we
consider the UDL factorization of R"¸HD¸ and
for the MMSE ZF LE, the UDL factorization of
TH

U
T

U
"¸HD¸. The ouput of these two equalizers

can then be written as

AK
U
"¸~1D~1¸~HTH

U
Y
U (41)

"D~1¸~HTH
U

Y!(¸!I)AK
U
.

The DFE operation consists of taking
(¸!I)dec(AK

U
) instead of (¸!I)AK

U
, where dec(.) is

the decision operation.

3.3. Non-causal decision feedback equalizers

3.3.1. The MMSE NCDFE
The NCDFE considers the linear estimation of

symbol a(i) based on the processing data Y
U

and the
past and future decisions w.r.t. a(i) assumed known
that we denote AM

U,i
. The burst mode equalizer is

implemented in an iterative way. At the "rst iter-
ation, the past and future decisions come from
another classical LE or DFE. The output the
NCDFE can then be used to reinitialized the
NCDFE, and other iterations can be done. As for
the DFE, we consider the past and future decisions
as correct:

a(
MMSE NCDFE

(i)"F
i
Y
U
!B

i
AM

U,i
, (42)

where F
i
is the forward "lter and B

i
the feedback

"lter. Let Y @"[YH
U

AM H
U,i

]H,

Y
U
"T

U,i
a(i)#TM

U,i
AM

U,i
, (43)

[F
i
!B

i
]"R

a(i)Y{
R~1Y{Y{

(44)

and we get

[F
i
B

i
]"[p2

a
TH

U,i
(p2

a
T

U,i
TH

U,i
#p2

v
I)~1

p2
a
TH

U,i
(p2

a
T

U,i
TH

U,i
#p2

v
I)~1TM

U,i
],

(45)

[F
i
B

i
]"CATH

U,i
T

U,i
#

p2
v

p2
a

IB
~1

TH
U,i ATH

U,i
T

U,i
#

p2
v

p2
a

IB
~1

TH
U,i

TM
U,iD.
(46)

Then,

F"AdiagATH
U
T

U
#

p2
v

p2
a

IBB
~1

TH
U
,

B"AdiagATH
U
T

U
#

p2
v

p2
a

IBB
~1

](TH
U
T

U
!diag(TH

U
T

U
)). (47)

The MMSE NCDFE has a very simple structure:
the forward "lter is proportional to the matched
"lter and the feedback "lter to the cascade of the
channel and the forward "lter without the central
coe$cient. Fig. 6 shows the structure of the
NCDFE.

All the ISI is removed if there are no errors in the
non-causal feedback: the NCDFE attains then the
matched "lter bound. But, like the decision feed-
back equalizer, the NCDFE su!ers from the error
propagation phenomenon.

The burst mode SNR is

SNR
i
(MMSE NCDFE)"

p2
a

p2
v
ATH

U
T

U
#

p2
v

p2
a

IB
i,i

.

(48)

In the continuous-processing case.

a(
MMSE NCDFE

(k)

" (Hs(q)H(q)#p2
v
/p2

a
)~1(Hs(q)y(k)

!(Hs(q)H(q)!DDHDD2)dec(a(
MMSE NCDFE

(k))).

(49)
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Fig. 7. SNRs at the output of the di!erent equalizers when no symbols are known (left) and when N!1 symbols at each end of the burst
are known (right).

3.3.2. The unbiased/ZF-MMSE NCDFE
As seen in Section 3.1.2, the unbiased MMSE

estimate AK UMMSE NCDFE
is a scale version of

AK
MMSE NCDFE

. We "nd

F"(diag(TH
U
T

U
))~1TH

U
,

G"(diag(TH
U
T

U
))~1(TH

U
T

U
!diag(TH

U
T

U
)).

(50)

As all the ISI is removed by the NCDFE, the ZF
NDFE and the UMMSE NCDFE are the same. If
n
1
"n

2
"N!1, the burst mode "lters of the

NCDFE are time-invariant. When n
1
(N!1 and

n
2
(N!1, the "lters vary only at the edges and

are otherwise time-invariant. It appears that an-
other interest of the burst mode NCDFE is that it is
as easy to implement than its continuous-process-
ing version.

The burst mode SNR is

SNR
i
(U/ZF-MMSE NCDFE)

"

p2
a

p2
v

(TH
U
T

U
)
i,i

. (51)

No special conditions are required for the
ZF and MMSE NCDFEs to be de"ned as

diag(TH
U
T

U
) and diagATH

U
T

U
#

p2
v

p2
a

IB are inver-

tible.

4. Performance comparisons

In this section, we discuss the performance of the
equalizers in terms of SNR and probability of error.
In Fig. 7, the SNR curves are drawn for a channel
H

1
of length 7 with 3 subchannels which coe$-

cients were randomly chosen (H
1

is given in Appen-
dix E). The SNR per channel is 10 dB. The input
symbols are drawn from a BPSK (p2

a
"1) and the

number of unknown input symbols in the burst is
¸"30.

4.1. Case of no known symbols

In Fig. 7 (left), the case of no known symbols is
shown. We notice that degradations appear at the
ends of the burst. The middle symbols appear in
N outputs. When no symbols are known, the "rst
and last unknown symbols of the burst appear in
strictly less than N outputs, so that there is less
information about those symbols in the observa-
tions.

The SNR in the middle of the burst converges to
the continuous-processing level as the burst length
increases.

4.2. Case of N!1 known symbols at each end
of the burst

We assume now that n
1
"n

2
"N!1. The

SNR curves are drawn in Fig. 7 (right). This time,
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Fig. 8. Probability of error for the MMSE-ZF DFE, the MMSE
DFE and the unbiased MMSE DFE.

burst processing performs better than continuous-
processing. The middle observations contain N
symbols. After eliminating the contributions of the
known symbols the outputs at the edges contain
strictly less than N symbols, so that there is more
information on those symbols. This explains why
the symbols are better estimated at both ends for
the LEs.

For the DFEs, things are slightly di!erent at the
beginning of the burst: the situation is as if the
feedback "lter had been correctly initialized and the
contribution of the past decisions removed, and as
the forward "lter is anticausal we tend to the con-
tinuous-processing case as the number of data
tends to in"nity. For the last symbol of the burst,
the estimation process is the same as that of the
NCDFE. We notice that the NCDFE has a con-
stant SNR over the burst equal to the one of
continuous-processing.

4.3. Equalizers comparisons

4.3.1. In terms of SNR
The following comparisons are deduced from the

amount of a priori information used for estimating
the unknown symbols.
f Within each class of equalizers, LE, DFE,

NCDFE:

SNR
i
(MMSE)*SNR

i
(UMMSE)

*SNR
i
(ZF-MMSE). (52)

f For each criterion, MMSE, UMMSE and ZF-
MMSE,

SNR
i
(NCDFE)*SNR

i
(DFE)*SNR

i
(LE).

(53)

4.3.2. In terms of probabilities of error
For unbiased equalizers, a higher SNR implies

a lower probability of error: MMSE ZF equalizers
will then have a higher probability of error than the
corresponding unbiased MMSE equalizers. How-
ever, it is not obvious to rank the MMSE equalizers
w.r.t. the ZF equalizers because they are biased. In
fact, people would tend to believe that a MMSE

equalizer performs better than the corresponding
MMSE-ZF equalizer.

In the case of constant modulus modulations,
MMSE equalizers have the same performance as
the corresponding unbiased MMSE equalizers
and so a higher performance than MMSE ZF
equalizers. For non-constant-modulus constella-
tions, the bias in MMSE equalizers may have
a stronger e!ect than its higher SNR compared to
MMSE-ZF equalizers. This is all the more true as
the di!erence in SNRs between the di!erent
equalizers tends to be lower as subchannels are
added.

Fig. 8 treats of the DFE case. We plot the prob-
abilities of error for the channel H

2
(see Appendix

E) for the di!erent DFEs. In the error probability
computations of the MMSE and UMMSE, the
symbols other than the current symbol of interest
are approximated as Gaussian random variables.
The input symbols belong to a 4-PAM constella-
tion. No symbols are assumed known; the number
of known symbols is equal to ¸"34. In order to
see better the di!erence between the di!erent
curves, we only plot the probability of error for
the central coe$cients. We notice here that the
MMSE equalizer has poorer performance than the
MMSE-ZF equalizer, and that the UMMSE per-
forms the best.
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5. Applying continuous-processing equalizers
to the burst case

As already mentioned, burst processing involves
time-varying "lters. We may wonder if it is worth
implementing these time-varying "lters, because of
complexity reasons, and if simply applying the
time-invariant "lters corresponding to continu-
ous-processing in burst mode could give acceptable
performance.

For that purpose we will consider the case of
N!1 known symbols at each end of the input
burst. We will show that the continuous-processing
"lters also give better SNR at the ends of the burst
than in the middle and always give strictly better
SNR than in the continuous-processing case.

For the LEs, the contribution of the known sym-
bols is removed at the end of the observation data.
For the DFEs, the initialization is done by putting
the N!1 leading known symbols in the memory
of the feedback "lter. Only the trailing known sym-
bols are removed from the processing data.

In both cases, we put the channel outputs before
and after the data to be processed equal to zero.
The only di!erence with the continuous-process-
ing case is that we have a "nite input symbol
sequence, but also a "nite noise sequence. As will be
seen in the simulations of the next section, for
the DFE, the way we proceed is equivalent to
the continuous-processing case at the beginning
of the burst.

For the LEs, the di!erent reasonings will be held
for zero delay non-causal continuous-processing
"lters. For the DFEs, the forward "lter is assumed
to be anticausal (zero delay) the feedback "lter is
causal and FIR (of the same length as the channel).
As the channel output is zero outside the time
interval of the processing data, these "lters will
involve only a "nite number of data.

In the MMSE ZF case, the MSE contains only
the noise contributions. Since the noise is only "nite
length, the MSE is smaller at the edges. The MSE
of MMSE (unbiased or not) equalizers outputs
contains residual ISI also. This variance gets also
reduced as the input sequence becomes "nite
length.

For the NCDFE, the leading and trailing sym-
bols are both put in the memory of the feedback

"lter. In this case, the optimal burst mode feed-
forward and feedback "lters are time invariant and
are the same as the continuous mode "lters. This
fact reinforces the interest of the NCDFE.

5.1. MSE calculations

The outputs of the di!erent linear equalizers
based on the continuous-processing "lters may be
written as:

AK
U
"FY

U
(54)

where F is a structured matrix containing the coef-
"cients of the continuous processing "lter.

In general,

MSE
i
"(p2

a
(FT

U
!I)(FT

U
!I)H#p2

v
FFH)

ii
, (55)

where FT
U
"I in the ZF case.

The outputs of the di!erent DFEs be may writ-
ten as

AK
U
"FY

U
!(B!I@)A@. (56)

A@ contains A
U

and the leading symbols, I@"[I 0],
F contains the coe$cients of the continuous-pro-
cessing forward "lter. B the coe$cients of the con-
tinuous-processing feedback "lter.

In general,

MSE
i
"(p2

a
(FT

U
!B)(FT

U
!B)H#p2

v
FFH)

ii
,

(57)

where FT
U
"B in the ZF case.

In Fig. 9, we present the case of the MMSE LE
and MMSE DFE: we compare performances for
channel H

1
. The input symbols are drawn from

a BPSK. The length of the "lters for the LEs and
for the feedforward "lter for the DFE is equal
to 3N. The number of unknown input symbols is
¸"30.

6. Conclusion

We have derived the optimal structure of the
burst mode equalizers for three classes of
equalizers: linear, decision feedback and non-causal
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Fig. 9. SNR curves: optimal burst processing compared to continuous processing applied to burst mode for the MMSE LE (left) and
MMSE DFE (right).

decision feedback equalizers. Three di!erent cri-
teria have been considered: the MMSE, the unbias-
ed MMSE, and the zero forcing criteria. The
problem of "nding the equalizer "lters have been
formulated in terms of linear estimation based on
the data and certain a priori information, which
allows an easy classi"cation of the equalizers in
terms of performance. The SNR degradations have
been studied as a function of the position of the
unknown symbols in the bursts and as a function of
the presence of known symbols. The more favor-
able situation for burst mode is when pre- and
postamble sequence of known symbols are at-
tached at each end of the burst: in this case burst
mode equalization performs better than continuous
processing. At last we have shown how time-vary-
ing burst mode "lters can be approximated by
time-invariant "lters in the situation where the pre-
and postamble sequences have the same length as
the channel memory: time-invariant "lters still have
better performance than the continuous-processing
level and allows a lower complexity for implemen-
tation than the time-varying optimal burst mode
"lters. The case of the NCDFE appears also of
particular interest: it is potentially the most power-
ful equalizer as it can eliminate all the ISI, and has
a particularly simple structure. In particular, when
the pre- and postamble sequences have the same
length as the channel memory, the NCDFE "lters
are time-invariant.

Appendix A
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Then, have the result

R
Au

Y{
R~1Y{Y{

Y @"R
Au

Y
U
R~1Y

U
Y
U
Y
U
. (A.8)

Appendix B

We prove that

SNR
i
(UMMSE)"SNR

i
(MMSE)!1. (B.1)

From expression (20), we deduce
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and we "nd
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Noting that
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a
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i
(MMSE)
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from which we get (B.1).

Appendix C

We derive the expressions of the feedforward
"lter F and feedback "lter B of the MMSE-DFE.
We do not use directly expression (34), but rather
a slightly more elegant way.

The expression of the estimate of the unknown
symbols by the MMSE-DFE is

AK
U,MMSE DFE

"FY
U
!BA

U
(C.1)

with B strictly triangular inferior. The MMSE cri-
terion is written as

min
F,B

DDA
U
!(FY

U
!BA

U
)DD2 (C.2)

and

A
U
!AK

U,MMSE DFE
"(I#B)A

U
!FY

U
. (C.3)

Using the orthogonality principle, which states that
the error on A

U
should be orthogonal to Y

U
, we

"nd

(I#B)p2
a
TH

U
!FRY

U
Y
U
"0 (C.4)

from which we get

F"p2
a
(I#B)TH

U
R~1Y

U
Y
U
NF

"(I#B)ATH
U
T

U
#

p2
v

p2
a

IB
~1

TH
U

(C.5)

and

A
U
!AK

U,MMSE DFE
"(I#B)(A

U
!AK

U,MMSE LE
).

(C.6)

Then

EDDA
U
!A

U,MMSE DFE
DD2

"p2
v
trM(I#B)R~1(I#B)HN (C.7)

(we recall that R"TH
U
T

U
#(p2

v
/p2

a
)I). Consider

the UDL decomposition of R:

R"¸HD¸, (C.8)

EDDA
U
!A

U,MMSE DFE
DD2

"p2
v
trM(I#B)¸~1D~1¸~H(I#B)HN. (C.9)

The minimization problem

min
MC> $*!'(C)/IN

trMCHD~1CN (C.10)

as for solution C"I.
Then (C.9) is minimized when I#B"¸. Then

F"D~1¸~HTH
U
,

B"¸!I.
(C.11)

Appendix D

We derive the expressions of the feedforward
"lter F and feedback "lter B of the MMSE-ZF
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DFE. We want to solve

min
F,B

FTU~B/I

EDDA
U
!(FY

U
!BA

U
)DD2, (D.1)

and with constraint that B be strictly triangular
inferior. Let the following decomposition of F onto
the rows of TH

U
and its orthogonal complement

TH M
U

(the rows of TH M
U

span the orthogonal comp-
lement of the rows of TH

U
):

F"F
1
TH

U
#F

2
TH M

U
,

F
2
TH M

U
TH

U
"0 N F

1
TH

U
T

U

"I#B N F
1
"(I#B)(TH

U
T

U
)~1 (D.2)

(D.1) Q min
F,B

FTU~B/I

EDDFVDD2 Q min
F,B

FTU~B/I

p2
v
DDFFHDD2

(D.3)

DDFFHDD2"trMF
1
TH

U
T

U
FH
1
N#trMF

2
TH M

U
TH M

H

U
FH
2
N

(D.4)

(D.4) gives F
2
"0:

(D.1) Q min
B

(I#B)(TH
U
T

U
)~1(I#B)H. (D.5)

Considering now the UDL factorization of TH
U
T

U
,

we obtain as in Appendix C:

F"D~1¸~HTH
U
,

B"¸!I.
(D.6)

Appendix E

The channels used in the simulations are the following:

H
1
"C

!0.7989 !0.0562 0.7562 0.3750 !2.3775 0.3180 1.6065

!0.7652 0.5135 0.4005 1.1252 !0.2738 !0.5112 0.8476

0.8617 0.3967 !1.3414 0.7286 !0.3229 !0.0020 0.2681D,
H

2
"C

!0.6776 !0.4710 0.4992 0.1558 !0.7209

0.4617 !0.5649 0.3827 !0.5692 0.3998

!1.1939 !0.4239 !0.0136 !0.7488 !1.3747D. (E.1)
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