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Abstract—Intent-Based Networking (IBN) is a promising
paradigm for next generation networks, enabling automated
network management based on user-defined business network
requirements (Intents). However, current IBN approaches con-
sider that users require expertise in some formal and technical
models (e.g., Network Service Descriptors - NSDs) to define these
Intents, necessitating substantial effort. A natural progression
of IBN systems is to define Intents using natural language
instead of structured models. However, dealing with this becomes
challenging due to the unstructured and ambiguous nature of
natural language. Fortunately, Large Language Models (LLMs)
are becoming very powerful in understanding human language,
making them well-suited for this task. This paper proposes an
LLM-based Intent translation system that allows users to express
Intents in natural language, which the system subsequently
converts into NSDs. Moreover, we employ a Human Feedback
(HF) loop that enables the system to learn from past experiences.
Evaluations conducted at the EURECOM 5G facility [1] confirm
the effectiveness of our approach in generating accurate NSDs
suitable for deployment on an edge computing cluster.

Index Terms—Intent-based networking, next generation net-
works, natural language, large language models, human feed-
back.

I. INTRODUCTION

Intent-Based Networking (IBN) empowers autonomous net-
works by enabling users to define desired network outcomes
(Intents) at a high level of abstraction. These Intents communi-
cate goals and constraints to the Network Management System
(NMS) [2]. Subsequently, The NMS generates the necessary
low-level configurations to achieve the specified outcomes.
Despite being relatively new, IBN is actively undergoing stan-
dardization efforts by organizations such as the 3rd Generation
Partnership Project (3GPP), European Telecommunications
Standards Institute (ETSI), and TM Forum [3]. It involves five
steps, including Intent translation, activation, and assurance.
During Intent translation, high-level user Intents are converted
into low-level configurations that the NMS can execute. This
abstraction minimizes the complexity of low-level config-
uration details by providing standardized interfaces to ex-
press high-level user Intents, known as Northbound Interfaces
(NBIs). These NBIs use human-readable languages like JSON
or YAML. For instance, in ETSI standards [4], this high-
level Intent is defined using the Network Service Descriptor
(NSD), a JSON structure designed to deploy network services
comprising multiple applications. Using the NSD, users can
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Fig. 1. Network Service Descriptor (NSD) JSON structure.

specify the necessary applications within the network service,
their resource consumption, and how the applications are
exposed. The NSD is subsequently transmitted to the Network
Function Virtualization Orchestration (NFVO) in the NMS,
responsible for deploying and updating these services within
the infrastructure. In Fig. 1, the NSD structure is presented,
and more in-depth information is available in [5].

However, the current model of expressing Intents still
requires significant effort in writing the human-readable struc-
tures, demanding a detailed comprehension of the format
and model specified by the NBI. This process is not al-
ways straightforward, and adhering to the structure of these
NBIs is time-consuming. A natural evolution for IBN is
to move beyond the use of human-readable languages and
transition towards natural language. To illustrate, users could
simply state “We request a network service that contains
two applications, a Graphical User Interface (GUI), and a
database. Both should have at least 1Gb of RAM.”, then
the IBN system would translate this statement into low-level
configurations, and seamlessly deploy the services on the un-
derlying infrastructure. However, translating natural language
into low-level configurations poses a significant challenge.
The unstructured nature and the ambiguity of natural language
can make it difficult for IBN systems to extract the necessary
information and generate accurate low-level configurations.



Moreover, users from different regions can further complicate
this task, as it requires the development of an approach that
can comprehend Intents using various human languages, even
in the presence of grammatical errors. Fortunately, with the
rapid explosion in the Natural Language Processing (NLP)
area, Large Language Models (LLMs) become very powerful
in understanding human languages [6].

LLMs, such as OpenAI’s ChatGPT, are trained on vast
amounts of text data, enabling them to understand and gener-
ate human-like text across a wide range of topics. LLMs excel
in tasks such as language translation, text completion, and
question answering, showcasing their ability to comprehend
context and generate relevant responses. Utilizing LLMs to
translate natural language based Intent to NSDs and subse-
quently creating low-level configuration from the NSD by
the NFVO is a promising approach, addressing limitations in
the structure of standardized Intents (e.g., YAML or JSON).
LLMs can understand natural language, providing users the
freedom to express their needs without constraints, using
different languages. However, challenges still need addressing.
Pre-trained open-source LLMs, like Code Llama [7], lack
training on network-specific data, making them challenging
to employ for network management purposes without further
training. Furthermore, it is crucial for the system’s design to
prioritize meeting users’ needs. Essentially, the system should
understand users’ requirements, adapt to their writing styles,
and provide NSDs that align with each user’s specific desires.

To tackle the outlined challenges, we introduce an Intent
translation system based on LLMs to convert natural language
Intents into NSDs. However, other IBN procedures such as ac-
tivation and assurance, are beyond the scope of this paper. Our
approach leverages an open-source LLM, trained using few-
shot examples from a Knowledge Base (KB), which includes
user Intents and their corresponding NSDs. Additionally, we
integrate a Human Feedback (HF) mechanism to refine the KB
and improve the system’s performance over time. The main
contributions are:

• We designed an LLM-based Intent translation system that
leverages few-shot learning to generate NSDs from natu-
ral language. Moreover, we developed a validation agent
to ensure that the outputs respect the NSD structure.

• We designed a HF loop to improve the quality of our
system over time. The feedback is directly injected into
KB, without modifying the LLMs weights. This ensures
compatibility even with closed-source LLMs.

• We deployed the solution on a single A100 Nvidia GPU
40GB using the Code Llama LLM [7]. Subsequently, we
performed a real-world test on an edge computing cluster
managed by the EURECOM 5G facility [1].

The remaining sections of this paper are structured as
follows: Section II describes related works on Artificial In-
telligence (AI)-based Intent translation in IBN. In section III,
we present our Intent translation methodology. Section IV
provides an analysis of the solution’s performance. Finally,
section V concludes the paper.

II. BACKGROUND AND RELATED WORKS

IBN systems have attracted significant research attention
in recent years, with researchers proposing new AI-based
methods for Intent translation to simplify network manage-
ment. For example, researchers in [8] presented an Intent-
based framework for deploying network services, combining
NLP and Case-Based Reasoning (CBR) techniques to enhance
Intent translation. Additionally, tools like chatbot interfaces
have emerged to simplify Intent translation, such as LUMI [9],
which employs Google Dialogflow and learning methods to
translate user Intents into Nile Intents, which are compiled into
programs for network configuration changes. Furthermore,
Mahtout et al. proposed EVIAN in [10], which utilizes NLP
to create semantic Resource Description Framework (RDF)
graphs, which are translated into network commands.

At the same time, LLMs are being developed to support
a wide range of tasks, including text generation, machine
translation, and information retrieval [6]. These models are
trained on extensive datasets and can generate text based on
input, which could be a question or an instruction referred to
as a prompt. LLMs exhibit two fundamental functionalities:
semantic comprehension and generative capabilities. Semantic
comprehension enables LLMs to understand word meanings,
sentence structures, and contextual details. Meanwhile, gener-
ative capabilities allow LLMs to produce contextually relevant
text based on prompts. Despite excelling in various NLP tasks,
LLMs are not explicitly designed for network infrastructure
management. To adapt pre-trained LLMs to specific domains,
two primary approaches are utilized: supervised fine-tuning
and in-context learning [11].

Supervised fine-tuning involves refining the model’s per-
formance by training it on specialized datasets that contain
explicit reasoning tasks. For example, authors of [12] fine-
tuned BERT for Intent detection task. However, fine-tuning
requires a large amount of labeled data, which is difficult
and time-consuming to collect. In-context learning (e.g., zero-
shot and few-shot learning) is an alternative approach to
adapting LLMs to new tasks [13]. LLMs can be given a
few examples of the desired input-output behavior, and they
learn to perform the task based on this information. Few-
shot learning has been shown to be effective for a variety of
tasks, including code summarization [14], question answering
[15], and machine translation [16]. For instance, Lin et al.
[17] used few-shot learning with GPT-3 to translate natural
language into Python code. Nonetheless, previous research has
not focused on using open-source LLMs to translate natural
language Intents with a HF feature. In our approach, by
leveraging recent LLMs, we break away from the constraints
of predefined structures, enabling users to express their Intents
using their own language, even with grammatical errors. We
also introduced a HF loop to help the system learn from
previous interactions. In addition, our approach is adaptable
to closed-source LLMs, like GPT-3, as we do not modify their
internal weights. Moreover, our approach can also be applied
to other IBN layers, using the corresponding KB.



Intent: Create a network service that
contains two applications: UAV GPS tracking
northbound, and mongodb. The northbound
will be exposed to internet using port 80
and to mobile network on 9863. The database
will be exposed to container network.
Internal image repository should be used.
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Fig. 2. LLM-based Intent translation design.

III. METHODOLOGY

We have devised the Intent translation approach with the
capability to accept natural language based Intents as inputs
and subsequently produce the NSD. The high-level system
design is depicted in Fig. 2, employing a four-stage process
to establish an efficient Intent-to-NSD pipeline. In stage 1,
historical examples are retrieved from the KB. Moving to
stage 2, we use these examples as inputs into an LLM to
generate the NSD, enabling the LLM to learn from them.
Stage 3 involves validating the generated NSD to ensure its
correctness. If any issues are identified, the LLM is requested
to correct the NSD. Finally, in stage 4, users provide feedback
regarding the quality of the generated NSD. This feedback is
incorporated into the KB to improve the system’s performance
in the future. Below, we discuss each stage in more detail:

A. Few-shot examples extraction

In this stage, the user’s Intent, denoted as Qu, is processed
by an AI model that leverages a sentence transformer model.
The model’s objective is to retrieve relevant examples from
the KB where each entry is organized in a tuple structure
as (Qi, Ai). Here, Qi represents the queries corresponding to
historical user Intents, and Ai consists of NSDs previously
generated by the LLM, which have been validated either
through manual insertion or positive HF. The retrieval of
relevant examples involves measuring the cosine similarity
between the new input query Qu and each query Qi within

KB. The cosine similarity indicates the degree of similarity
between the queries and is calculated as:

S(Qu, Qi) =
Qu ·Qi

∥Qu∥∥Qi∥
(1)

where · represents the dot product of the query vectors, and
∥·∥ denotes the vector’s Euclidean norm. Subsequently, the AI
model extracts a set of n tuples, denoted as Topn, representing
the most similar historical examples. These tuples, in the form
(Qj , Aj), are then forwarded to the next stage.

B. NSD generation

The previously generated examples are assembled into a
prompt, which serves as an input for the LLM. This prompt
provides instructions to guide the LLM in its task, with a clear
directive stating, “Your job is to create an NSD.” Alongside
this instruction, the prompt includes additional rules defined
by the administrator, the few-shot examples (Qj , Aj), and the
Intent Qu. Upon receiving this prompt, the LLM will generate
the NSD as requested. However, it’s essential to note that
effective performance requires the LLM to have a substantial
context window (Input size), particularly when dealing with
a large number of few-shot examples. In addition, the LLM
should be pre-trained on code-related data, given its primary
mission is to generate JSON structures. In this context, we
have selected the Code Llama model [7], which was trained
on code-related data and has a context window of 100k tokens.



C. Closed loop validation

The validation agent ensures that the LLM’s output adheres
to the NSD structure illustrated in Fig. 1 through a three-
step process: syntax validation, the agent examines the NSD
JSON structure to ensure its conformity to the NSD schema;
semantic validation, the agent uses regular expressions to
verify the types and values of all parameters in the NSD;
correlation validation, the agent verifies the consistency of
parameter relationships by ensuring that all required param-
eters are present and valid within their specific contexts.
Moreover, it verifies NSDs compatibility with EURECOM’s
NFVO APIs. Examples of errors detected by the validation
agent are explained below:

• Syntax validation: These errors include common JSON
format errors such as missing opening quotes (”), missing
colons (:), and missing closing curly braces (}). They
also include errors related to NSD parameters, such
as mismatched parameter names (for example, ’apps’
instead of ’appD’).

• Semantic validation: These errors include mismatched
data types, errors in accessing nonexistent or duplicated
parameters within NSD components, and non respect
to regular expressions in defining parameters such as
software image path.

• Correlation validation: Attributes within NSDs are
highly correlated. Common parameters are extracted
from outside applications and referenced by an identifier
to avoid repetition. For instance, using the “virtualCom-
puteDescriptor” attribute, which specifies virtual memory
and CPU requirements, to avoid duplicating the same
information for different applications. This field must
exist before it is referenced.

• NFVO’s APIs compatibility: The NFVO requires some
additional conditions to be met. For example, the name of
the NSD must be in lowercase, and no numerical values
are allowed in interface names.

If the NSD passes the validation process, it is forwarded to
the users through the GUI. Otherwise, the LLM is requested
to correct the NSD using a specific prompt. This prompt
provides clear instructions to the LLM, directing it to correct
the NSD and including details about the errors detected by
the validation agent.

D. User feedback

When users are satisfied with the generated NSDs, they
can provide feedback to the administrator for inclusion in
KB. Alternatively, the user can correct the NSD and send
the corrected one. This mimics the concept of Reinforcement
Learning from Human Feedback (RLHF), but indirectly, as
we do not alter the LLM’s weights. The feedback, i.e., the
user’s query and the correct NSD (Qu, Au), will be used in
the future as a few-shot example when there are similar user
queries. We envision a future where users can create NSDs
directly without requiring human validation, if the trust option
is activated.

IV. PERFORMANCE EVALUATION

The section is structured into two subsections: Experi-
mentation Setup, which details the experimental setup, and
Experimentation Results, which presents and analyzes the
performance of the LLM-based Intent translation mechanism.

A. Experimentation Setup
Our experimental setup consists of two machines, each

equipped with 36 Intel(R) Xeon(R) Silver 4314 CPUs running
at 2.40GHz. The second machine has one single Nvidia
A100 GPU with 40GB of vRAM. The first machine runs
the Kubernetes-based test cluster and the EURECOM 5G
facility components [1]. The second machine hosts the Intent
translation agent, running the LLM on the single GPU using
a quantized version of the LLM. Additionally, it hosts the
validation agent. For our experiment, we use the LangChain1

framework to handle LLMs and ChromaDB2 to store KB
embeddings. We gathered our foundational KB data from EU-
RECOM’s past and ongoing research projects. We compared
several other popular open source LLMs, including Mistral 7B
and Llama 13B, and found that the Code Llama Instruct model
with 34B parameters3 produced the most accurate NSDs on
the first attempt. We used the MPNet v2 sentence transformer
model4. We set the maximum number of tokens to 3000, as
the longest NSD in our initial KB is 2000 tokens long. We set
n to 4, as it is the maximum number of few-shot examples
that fit on the single GPU with the LLM and the sentence
transformer model. Additionally, we set the LLM temperature
to 0.1. It’s important to note that these parameters are flexible
and can be adjusted to meet future requirements.

B. Experimentation Results
This subsection evaluates the system’s performance. First,

we present a video example to demonstrate the system’s
application in NSD generation. Next, given the primary goal
of the system, i.e., understand user Intents and adapt to diverse
writing styles, we highlight the system’s user satisfaction
over time. Finally, we examine the impact of the number
of requested applications on NSD generation time. To gather
performance data, we solicited feedback from 10 volunteer
users. Each volunteer evaluated our platform by creating 10
NSDs, resulting in a total of 100 NSDs for evaluation.

1) Example system application: In this video demonstra-
tion (https://youtu.be/SDyBge8WMt0), we showcase how to
use the system to create a network service. The user’s objec-
tive is to deploy a UAV GPS service that collects information
from drones and displays it on a GUI. This network service
comprises two applications: a UAV GPS tracking northbound
and a MongoDB database. The user enters a query describing
the Intent in natural language. The system then generates a
valid and correct NSD, which is then sent to the NFVO. This
latter deployed the network service on an edge cluster.

1https://www.langchain.com
2https://www.trychroma.com/
3https://huggingface.co/TheBloke/CodeLlama-34B-Instruct-GPTQ
4https://huggingface.co/sentence-transformers/all-mpnet-base-v2



2) User satisfaction: Users created accounts on the 5G
facility [1] and received a brief overview of NSD’s function-
alities, with no detailed explanation of NSD’s structure. They
then proceeded to generate 10 NSDs each. At the end of each
NSD generation, users were asked to rate the NSD on a scale
of 0 to 5, with 5 being the highest score, and then submit the
HF containing the correct NSD. Fig. 3 presents the average
rating of users for each NSD creation, along with the mean
cosine similarity between the initially generated NSD and the
corrected NSD submitted by the users. Cosine similarity is a
metric of similarity between two NSDs, with a score close to 1
indicating very similar NSDs and a score close to 0 indicating
dissimilar NSDs. The results indicate that users were initially
not fully satisfied, as they had to make some modifications
to the generated NSDs before submitting them to the NFVO.
However, the average rating was consistently above 3.75, and
the average similarity score was above 0.9, demonstrating
that only minor adjustments were needed, mostly related to
unfamiliar parameters. Over time, we can see from the figure
that both graphs are increasing, i.e., the system has learned
from past experiences, resulting in an increase in the average
rating to approximately 5 and the average similarity to 1.
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Fig. 3. Mean user satisfaction and similarity score over NSD generations.

3) NSD generation time: Fig. 4 illustrates the relationship
between the number of requested applications and the time
required to generate a valid NSD. As the number of requested
applications increases, the creation time also increases. As
illustrated in the figure, the creation time exceeds 1 minute
when generating NSDs containing 3 applications and more.
This is due to the latency of the LLM, which can become
a significant bottleneck for a large number of applications.
To ensure a seamless experience for all users, enhancing the
efficiency of NSD generation is a consideration for future
improvements. One potential approach is to implement task
decomposition for Intent translation.
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Fig. 4. Effect of varying number of applications on NSD generation time.

V. CONCLUSION

In this paper, we present an LLM-based approach, address-
ing the challenge of Intent translation in IBN. Our system
enables users to create low-level configurations from natural
language, leveraging few-shot learning on an open-source
LLM with a HF loop. Performance evaluations conducted on
an edge computing cluster demonstrate the system’s efficacy
in generating accurate NSDs ready for deployment. Addition-
ally, the system demonstrates a remarkable ability to learn
from past experiences, continuously adapting and improving
its performance to meet the needs of a wide range of users.
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