
AI‑DRIVEN PREDICTIVE AND SCALABLE MANAGEMENT AND ORCHESTRATION OF NETWORK
SLICES

Sławomir Kukliński
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Abstract – The future network slicing enabled mobile ecosystem is expected to support a wide set of heterogenous vertical
services over a common infrastructure. The service robustness and their intrinsic requirements, together with the hetero‑
geneity of mobile infrastructure and resources in both the technological and the spatial domain, signiϔicantly increase the
complexity and create new challenges regarding network management and orchestration. High degree of automation, ϔlexi‑
bility and programmability are becoming the fundamental architectural features to enable seamless support for the modern
telco‑based services. In this paper, we present a novel management and orchestration platform for network slices, which has
been devised by the Horizon 2020 MonB5G project. The proposed framework is a highly scalable solution for network sli‑
cing management and orchestration that implements a distributed and programmable AI‑driven management architecture.
The cognitive capabilities are provided at different levels of management hierarchy by adopting necessary data abstractions.
Moreover, the framework leverages intent‑based operations to improve itsmodularity and genericity. Thementioned features
enhance the management automation, making the architecture a signiϔicant step towards self‑managed network slices.
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1. INTRODUCTION
Network slicing is a relatively new approach associated
typically with a 5G System (5GS), but this technology can
be used in a generic, virtualised networking environment.
Themain value of network slicing is the ability of dynamic
creation of multiple service or network‑oriented, isolated
solutions. The concept requires slice lifecycle or runtime
management and orchestration procedures. They have
been deϐined in detail by the 3rd Generation Partnership
Project (3GPP) for 5G networks, but with several limita‑
tions and so far not fully implemented in commercial 5GS
deployments.

One of the main drawbacks of the 3GPP and European
Telecommunications Standards Institute (ETSI) Network
Function Virtualisation (NFV) approaches is centrali‑
zation and the high complexity of management. In
both cases, a single central Operations Support System
(OSS)/Business Support System (BSS) solution is pro‑
posed to cope with all deployed Network Slice Instances
(NSIs). Moreover, the monitoring data from all nodes or
functions of a slice have to feed the central OSS/BSS. The
overall management complexity depends on the number
of functions and intricacy of NSIs, and the number of NSIs
themselves, which is expected to be high. Furthermore,
the management and orchestration mechanisms have to

provide additional common and resource‑oriented ope‑ 
rations for all network slices. In fact, a single network 
slice may provide functionality similar to a classical net‑ 
work, therefore its management complexity can be com‑ 
pared to the management of a single network or a net‑ 
work combined with service(s). Such comparison shows 
well the complexity of management of multiple, poten‑ 
tially hundreds, of slices. As the number of running NSIs 
is changing dynamically, it is hard to predict the required 
performance of the management system. The manage‑ 
ment performance can be increased by the use of au‑ 
tomation, typically based on the Monitor‑Analyse‑Plan‑ 
Execute (MAPE) paradigm introduced over 20 years ago 
in the context of autonomic computing [1]. The main 
disadvantage of MAPE is the need for fast monitoring 
and analysis of the monitoring data in real time. MAPE 
is a preferred solution for network slicing management 
and orchestration, however.

In the paper, the MonB5G project concept that addresses 
the mentioned issues is presented. Its main goal is to 
provide a highly scalable and performant management 
plane for network slices to enable quick reactions to 
events. To that end, a distributed architecture with ope‑ 
rations driven by Artiϐicial Intelligence (AI) has been de‑ 
signed. The AI algorithms are used for efϐicient monito‑
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ring, anomaly detection and network reconϐiguration. To
increase themanagement scalability, each NSI has an em‑
bedded management plane and all management compo‑
nents are programmable.

In order to emphasize the value of the concept, in Sec‑
tion 2 of the paper, an overviewof the existing approaches
is discussed. Section 3 describes the design assumptions
and the architecture of the MonB5G system, whose com‑
ponents are presented in Section4. Section5 is devoted to
the implementation approach of the MonB5G system and
used technologies. Section 6 summarizes and concludes
the paper.

2. RELATEDWORK
The topic of network slices management and orchestra‑
tion has attracted immense efforts of both academic and
standardization bodies. The fundamentals of network sli‑
cing have been deϐined by the Next Generation Mobile
Networks (NGMN) Alliance [2]. According to NGMN, the
NSI is deϐined as a logical network that can be customized
for the speciϐic needs of some service or group of ser‑
vices. Each NSI is created on the basis of a pre‑deϐined
template and is built over a shared infrastructure com‑
posed of fully or partially isolated physical or logical com‑
putation, storage and transport resources. End‑to‑End
(E2E) NSI can be composed of a single slice or multiple
concatenated network sub‑slices. Moreover, there exists
a clear separation between NSI and end‑users’ services;
i.e., the interactions occur via Application Programming
Interfaces (APIs) and services are treated as external to
NSI. The NGMN vision has been followed by both the ETSI
NFV Framework as well as 3GPP in 5GS.

The network slices management and orchestration de‑
ϐined in the3GPPRelease17 adopts theETSINFVManage‑
ment andOrchestration (MANO) framework [3]. The run‑
time management and Lifecycle Management (LCM) pro‑
cesses are handled by a single, centralized OSS/BSS and a
single NFV MANO orchestrator, being responsible for the
analysis of the abstracted description of a slice, creating
an optimal placement strategy for the slice virtual func‑
tions and resource‑scaling during the slice runtime. 3GPP
deϐines four management levels of network slicing‑based
networks: network function, slice subnet, E2E slice, and
communication service management.

Other ETSI standardization groups, such as Experiential
Networked Intelligence (ENI) [4] andZero‑touchnetwork
and ServiceManagement (ZSM) [5], aim to further extend
the management and orchestration by applying network‑
speciϐic AI/Machine Learning (ML) techniques facilitating
automation. Application of these centralized concepts for
network slicing is difϐicult.

Some efforts are also conducted to implement AI/ML in
Radio Access Network (RAN) resources management. In
[6], the O‑RAN Alliance introduces network performance

improvements using a collection of RAN‑related metrics.
However, the provisioning of network slicing support is
still unclear.

On the basis of standardization, several open‑source com‑
munity projects have been launched to provide the im‑
plementation of the aforementioned concepts. In parti‑
cular, the most noteworthy initiatives include Open Net‑
work Automation Platform (ONAP) [7] and Open‑Source
MANO (OSM) [8]. ONAP is one of the main solutions to
implement a highly centralized framework accelerated by
AI/ML, which could satisfy the network needs in terms of
management and resource orchestration automation. In
spite of considerable efforts that resulted in several pub‑
lished releases, there are no real‑life commercial ONAP
deployments, yet. OSM is an ETSI NFV‑compliant MANO
orchestrator supporting slicing, developed by the Linux
Foundation. Moreover, it is noteworthy that both ONAP
and OSM have already started the work on AI/ML for au‑
tonomous management provisioning.

Numerous projects under 5G Infrastructure Public Pri‑
vate Partnership (5G‑PPP) have notably progressed in
terms of system architectures and facilitation towards ef‑
fective application of AI/ML for management and orches‑
tration. Their achievements are described in [9].

The essential aspect for supporting AI/ML in manage‑
ment and orchestration is provision of the required gra‑
nularity and distribution of the system. The 5G!Pagoda
[10] project was the ϐirst step towards management and
orchestration of a high number of parallel NSIs. The intro‑
duced reference architecture put a large emphasis on the
scalability of a management plane, proposing the In‑Slice
Management (ISM) concept [11], which enables the dis‑
tribution of management functions and their embedding
inside the NSI. However, the support for AI/ML‑driven
management has not been included.

Several advancements have been done in terms of
multi‑domain operation support. 5G‑VICTORI [12] pro‑
posed the architecture to facilitate the management of
slices, resources and orchestration of services across dif‑
ferent facilities and technological or administrative do‑
mains. The platform also supports seamless integra‑
tion with the NFV MANO platform by reϐlecting neces‑
sary extensions in each facility. Additional innovations
have been introduced by 5G‑MoNArch [13]. Apart from
the support of coordinated cross‑domain management
across slices and domains, the ϐlexibility of Virtual Net‑
work Functions (VNFs) orchestration has also been in‑
creased by employing cloud‑enabled protocols. The sup‑
port for highly performing algorithms has also been con‑
sidered by adopting experiment‑driven optimization and
ETSI ENI [4]. Moreover, some exploration of AI/ML for
network slices management has been conducted. How‑
ever, the solution might not scale well with the vast num‑
ber of NSIs, due to its high centralization. 5G‑CLARITY
[14], apart from proposing the AI‑based network mana‑
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gement system, extended the concept by providing the
intent‑based interfaces enabling network conϐiguration.

Signiϐicant progress has been also achieved regarding
the improvement of cognitive capabilities of network
slice management and orchestration. SELFNET [15]
and SLICENET [16] projects proposed mechanisms
to target self‑organization of the network built atop
NFV/Software‑Deϐined Networking (SDN) paradigms
and AI/ML technologies to simplify adoption of network
slices for verticals. Autonomic slice management has
been also approached by 5G‑ZORRO [17], and 5G‑Ensure
[18] projects that proposed zero‑touch management
architectures adopted for a multi‑stakeholder scenario
while putting emphasis on aspects of network security
and trust maintenance.

Major achievements can also be observed in terms of net‑
work slice management and orchestration optimization
algorithms. The autonomicity of these processes is a
crucial part of the vision in 5G/B5G networks. For this
reason, both academia and industry have generated sig‑
niϐicant state‑of‑the‑art algorithms and complete frame‑
works, generally speaking, as contributions to orchestra‑
tion problems in these scenarios. Some problems include
Service Function Chaining (SFC) embedding, VNF place‑
ment and orchestration [19], and admission control of
both VNFs and user service requests [20].

Along these lines of research, authors in [21] develo‑
ped a heuristic algorithm to optimize the network band‑
width consumption by taking advantage of the SFC place‑
ment. On the other hand, it is also possible to study
the placement or embedding problem using tabular me‑
thods in Reinforcement Learning (RL) and Deep Rein‑
forcement Learning (DRL). Developing heuristics that
generalizewell across different system scenarios has long
been proven to be a difϐicult task, due to the customized
nature of the heuristics design. In the process of further
advancing the sophistication of algorithms for SFC place‑
ment, the authors in [22] proposed DRL to perform the
placement of virtual network function forwarding graphs
considering the constraints of the underlying infrastruc‑
ture. The authors of [23] used DRL as in [22] for buil‑
ding an orchestration solution consisting of multiple DRL
agents with the objectives of minimizing latency across
SFCs andminimizing energy consumption. This approach
also has the capability of orchestrating VNFs across mul‑
tiple domains in a network.

The state‑of‑the‑art literature on Slice Admission Control
(SAC) is fairly extensive. Many algorithms have been pro‑
posed as solutions and many approaches formulate the
SAC problem as a combinatorial optimization problem
[24, 25], with sometimes heuristic solutions [26, 27], ana‑
lytic solutions for very speciϐic scenarios [28], ormore ad‑
vanced AI‑based algorithms, speciϐically using RL [29, 30]
or genetic algorithms [29, 31].

3. MONB5G SYSTEM ARCHITECTURE
The MonB5G framework has been designed for AI‑driven
management and orchestration of massive number of
NSIs. It supports operations of fault and security mana‑
gement, self‑healing, self‑conϐiguration, and performance
optimization (including energy‑saving). The framework
follows the MAPE paradigm [1] as well as the Interna‑
tional Telecommunication Union – Telecommunication
Standardisation Sector (ITU‑T) management system de‑
composition [32] and is founded on the key features,
which are inline with key ETSI ZSM [5] requirements.

The main features of the framework are the following:

• Hierarchical E2E slice orchestration. The proposed
approach uses onemaster orchestrator andmultiple
domain‑level orchestrators. Such distributed, multi‑
level orchestration improves its scalability.

• Hierarchical distribution of management operations.
These operations are AI‑driven, distributed and
pursue different goals. The hierarchy of the em‑
bedded management concerns node (or function),
(sub‑)slice, orchestration domain and the E2E slice.
It enables the processing of management informa‑
tion at each of the mentioned levels, thus reducing
the overall management data exchange. The scope of
operations of OSS/BSS of each orchestration domain
is limited to the NSIs’ lifecycle management and to
management and orchestration of resources of this
domain only. It is also agnostic to the deployed NSIs.

• Slice runtime management and orchestration as a
part of each NSI. The runtime management of each
NSI is not a part of OSS/BSS, but it is embedded
within the NSI as a part of its template. That way, the
isolation of management planes of individual NSIs
is provided, which is absent in the approaches of
ETSI NFV MANO or 3GPP. Moreover, the manage‑
ment plane is implemented as a set of VNFs that
contributes to the slice runtime management per‑
formance via dynamic resource allocation to these
functions and their proper placement. It enables di‑
rect management of NSIs by their tenants without
the need to use the orchestration domain OSS/BSS.
Each NSI may act as a service orchestrator, i.e.,
it may request its template modiϐications via the
Os‑Ma‑nfvo‑like interface [3] of the orchestrator.

• E2E slice management as a part of slice tem‑
plate. In order to provide the E2E management of
multi‑domain slices, a unique, inter‑domain compo‑
nent is deϐined as a part of the E2E slice template.

• Programmable infrastructure management. The
MonB5G mechanisms for slices deployment can be
reused by the infrastructure operator for the deploy‑
ment of infrastructure services.
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• Management as a Service (MaaS). The MonB5G
framework enables the creation of a “management
slice” only, i.e. a set of management dedicated VNFs.
It can be used for runtime management of multiple
NSIs instantiated using the same template. Such a
slice can be operated by an entity calledManagement
Provider.

ThehierarchicalMAPE/AI‑basedFault, Conϐiguration, Ac‑
counting, Performance, Security (FCAPS) management
implements control loops of different scopes, goals and
time scales, at the different levels are:

• Global level: control loop‑based E2E slice mana‑
gement and orchestration in the multi‑domain en‑
vironment, e.g., cross‑slice and cross‑domain opti‑
mizations.

• Orchestration domain level: control loop‑based or‑
chestration domain level FCAPS and resources ma‑
nagement, e.g., slice admission control, allocation of
resources to NSIs.

• Slice level: control loop‑based slice FCAPS manage‑
ment (embedded in slice template, also in the case of
multi‑domain slices) with an optional, direct mana‑
gement interface to slice tenant.

• Node/function level: control loop‑based manage‑
ment of FCAPS of a function or node. It can be
considered asmodiϐied, intelligent ElementManager
(EM), see MANO [3] and provide node or function
plug‑and‑play functionality.

All the listed MAPE‑based management subsystems co‑
operate towards an overall goal. The above hierar‑
chy features the fastest control loops at the local level
and increasingly slower ones as the scope widens (e.g.,
slice‑level, tenant‑level, etc.). The management informa‑
tion exchange is also decreasedwhile advancing upwards
in the hierarchy. Such hierarchization and timescale se‑
paration augment the overall system’s stability and pro‑
vides the ability to implement fast‑acting management
operations that are fundamental for networks supporting
time‑critical applications.

MS
AE

DE
ACT

Function/Node/Slice/Domain/...

Fig. 1 – MonB5G operations pipeline (generic)

The AI‑driven, multiple MAPE loops are used for level‑
speciϐic, control loop‑based optimization that is AI‑driven
in most cases. Each loop is implemented by the use of a
pipeline composed of a Monitoring System (MS), Analytic
Engine (AE), Decision Engine (DE) and Actuator (ACT), as
presented in Fig. 1. The MS is involved in intelligent mo‑
nitoring of a function, node, slice, etc. The AE looks into

anomalies or speciϐic interesting features in the monito‑
red data from the MS. The DE is responsible for making
the reconϐiguration decisions based on the data from the
MS and AE. The ACT decomposes high‑level information
from the DE into a set of atomic management operations.
The AI algorithms can be used for the implementation of
these components, but typically it is assumed that only
the AE and DE are AI‑driven. For each usage, the internal
functions of the AE, DE, ACT can be different. However, it
is expected that the MS is common and can be reused by
different AEs and DEs.

Distributed AI has additional advantages. It simpliϐies
inter‑subsystem interaction and contributes to the mini‑
mization of data exchange between the management sys‑
tem components. To that end, the intent‑based interfaces
can be used for the interchange of high‑level information,
typically translated into multiple, low‑level operations by
an AI‑driven engine. Moreover, the usage of Key Per‑
formance Indicators (KPIs) for the exchange of informa‑
tion between different subsystems of the architecture has
been proposed to reduce the monitoring data exchange.

The MonB5G framework, described in the forthcoming
sections, is composed of static and dynamic components.
The dynamic components are NSIs created on demand,
whereas the static components are the permanent enti‑
ties of the framework, enabling its overall orchestration
and management.

3.1 Static components of the framework
The static components of the framework, which consti‑
tute its skeleton, are presented in Fig. 2.

DMO

Infrastructure Layer

Slice 1 Tenant

MonB5G Portal

Slice 2 Tenant

MonB5G System OperatorSlice Management Provider

Business 

Layer

Management and 

Orchestration Layer

Infrastructure Provider 1

IopItpItp

Imt

Imp

Iid

Ipi

Iid

Iii

Idr

Itp

Infrastructure 

Domain 1

Infrastructure 

Domain 2

IDMO

DMO

IDM

Idr

IDM

Iii

Infrastructure Provider 2
Itp

Fig. 2 – Static components and business actors of MonB5G architecture
(no NSIs deployed)
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Three layers of the framework have been deϐined:

• Business Layer with relevant business actors inter‑
acts with the Management and Orchestration Layer
via aMonB5GPortal. The actors include theMonB5G
System Operator, Slice Tenants and Slice Manage‑
ment Providers. The latter ones may operate or ma‑
nagemultiple slice instances based on the same tem‑
plate in theMaaSmodel if requestedby Slice Tenants.
The MonB5G System Operator or the Infrastructure
Providers may play the role of Slice Tenants if they
need to deploy slices that enhance the functionality
of the Management and Orchestration Layer or the
Infrastructure Layer respectively. The Business La‑
yer contains no functional components.

• Management and Orchestration Layer is at the heart
of thewhole approach and includes theMonB5G Sys‑
tem Portal as well as domain and intra‑domain or‑
chestrators. The layer is operated by the MonB5G
System Operator.

• Infrastructure Layer, which consists of physical and
virtual resources with a resource‑focused manage‑
ment platform. This layer is operated by Infrastruc‑
ture Providers.

The static components of theManagement andOrchestra‑
tion Layer are as follows:

• MonB5G Portal. The portal (see Fig. 3) is used
for requesting NSI lifecycle operations (its deploy‑
ment, modiϐication, and termination) by Slice Te‑
nants, Slice Management Providers, MonB5G Sys‑
tem Operator and Infrastructure Providers. Infras‑
tructure Providers may request the orchestration of
infrastructure‑oriented management functions, si‑
milarly to SliceTenants requesting thedeployment of
NSIs. In both cases, the 𝐼𝑡𝑝 interface, typically web‑
based, is used. The MonB5G Portal exposes the ca‑
pabilities of the MonB5G framework (available slice
templates, etc.) and partakes in business negotia‑
tions during which it interacts with Inter‑Domain
Manager and Orchestrator (IDMO) via the 𝐼𝑝𝑖 inter‑
face. Afterwards, the 𝐼𝑝𝑖 interface is used for the
LCM of negotiated slices. The MonB5G Portal also
provides the 𝐼𝑚𝑝 interface to the Slice Management
Provider to maintain its awareness of new NSIs and
to the MonB5G System Operator via the 𝐼𝑜𝑝 manage‑
ment interface.

The MonB5G Portal is composed of: Access Manage‑
ment component, an entity responsible for users’ ac‑
cess to MonB5G framework features policy enforce‑
ment/management, and access authorization, in co‑
operation with MonB5G Subscribers Database con‑
taining the relevant information; System Health Mo‑
nitoring, an entity responsible for providing real‑
time high‑level monitoring data showing the cur‑
rent state of the network for the MonB5G System

Operator. In case of critical failures or instabilities
of the system, the MonB5G System Operator, based
on the accumulated monitoring data, can bring the
frameworkback to stable conditionsmanually; IDMO
Connector being responsible for communicationwith
IDMO concerning, i.a., slice LCM‑related requests,
contract negotiation, and high‑level system monito‑
ring data; Slice LCM API, the interface enabling the
Slice Tenant to make NSI LCM‑related requests, in‑
cluding slice templates selection from the Templates
Database (also part of the portal), NSI instantiation,
NSI termination, etc.

System Health and Stability 

MonitoringMonB5G Subscribers

Database

Access Management

IDMO Connector

Imp

Iop

Itp
Slice LCM API

Templates Database

Ipi

SML

Repository
SFL Repository

SFL+SML 

Repository

Fig. 3 – Internal components of MonB5G Portal (an example)

• Inter‑Domain Manager and Orchestrator (IDMO).
This entity interacts with instances of Domain Ma‑
nager and Orchestrator (DMO) via the 𝐼𝑖𝑑 interface
(can be considered as an extension of ETSI NFV
MANO Os‑Ma‑nfvo interface [3], providing LCM ab‑
stractions and exposing data and management ca‑
pabilities of DMO to IDMO) to coordinate the E2E
deployment of NSIs, based on the information from
DMOs. Hence, it can be considered as an E2E orches‑
trator (or umbrella orchestrator [33]). Its role is cru‑
cial in slice preparation and deployment phases by
negotiating deployment policy with slice requesters
(Slice Tenants, Slice Management Providers or In‑
frastructure Providers). According to the negotiated
contract, IDMO modiϐies the E2E slice template be‑
fore its deployment. The modiϐication includes slice
stitching mechanisms for setting up the E2E NSI and
proper adaptation of its management plane (corre‑
lation of events and KPIs from different domains in
which the slice is deployed). If there are multiple
Infrastructure Providers, IDMO may design the E2E
slice template split, driven by various factors, e.g.,
price, performance or energy efϐiciency, into single‑
domain templates before the deployment. To that
end, IDMO keeps its awareness of all involved infras‑
tructure domains and their resources’ status. IDMO
also contains a permanent Accounting Database to
store the accounting data, as theNSIs themselves and
their management parts are temporary. The inter‑
nal IDMO structure is decomposed into Functional
and MonB5G Layers (see Fig. 4 for details of IDMO
internal structure). Please note, that IDMO consists
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of Template Partitioner and Template Conϔigurator. 
The Template Partitioner is responsible for parti-
tioning a template if it is to be deployed in multiple 
domains of the same type. Such partitioning can 
be motivated by a lack of resources in a single 
domain for the deployment of the whole template. 
In the case where domains cover different 
geographical areas (or for economic reasons), for 
the sake of security, only part of a template is 
deployed in each do‑ main. The decision about 
partitioning is taken by the IDMO through 
cooperation with the Resource Broker. The 
Template Conϐigurator is responsible for the initial 
conϐiguration of NSI parameters and inter‑actions 
between subnetwork NSIs (parts of the E2E NSI 
that are deployed in a single domain). The mo‑ 
diϐied slice template includes mechanisms added by 
the IDMO for slice stitching to obtain the E2E slice 
and proper modiϐication of the E2E slice manage‑ 
ment plane (correlation of events and KPIs from dif‑ 
ferent domains that are used for slice deployments).

IDMO Functional Layer

Iid

Iid
Domain A

Orchestrator 

Handler
Active Slice 

Instances Database

EEM

Domain Template 

Configurator

Template 

Partitioner

Template 

Database

Accounting 

Database

IDMO MonB5G Layer

ID
M

O

M
an

ag
er

MS-Sublayer MS

Ipi

EEM EEM

Domain B

Orchestrator 

Handler

EEM

EEM EEM EEM

AE-Sublayer AE-2 

(Performance)

AE-3 

(Stability)

DE-Sublayer

DE Selector/Arbiter

DE-2 

(Performance)

Fig. 4 – Internal components of IDMO (an example)

The AI‑driven MonB5G Layer (management of
IDMO) uses MS/AE/DE triplets and other com‑
ponents of the management architecture (see
further).

• Domain Manager and Orchestrator (DMO). Within a
Slice Orchestration Domain (SOD), it is responsible
for the orchestration of NSIs and the management of
resources. In the case of an NFVMANO‑orchestrated
domain, the DMO can be considered as a combined
resource‑oriented OSS/BSS and MANO orchestrator.
In different technological domains, other orchestra‑
tors can be used. It has to be noted that IDMO does
not interact directly with the SOD orchestrator, but

with the SODOSS/BSS. The 𝐼𝑖𝑑 interface between the
IDMO and DMOs of different orchestration technolo‑
gies can therefore be deϐined similarly. The DMO is
focused on SOD operations concerning resources al‑
location to NSIs and the lifecycle of NSIs. It is ag‑
nostic to slices, including initial NSI conϐiguration,
and it deals with the software dimension of slices
only, whereas the runtime management is handled
by themanagement functions embedded in slices. Si‑
milar to the IDMO, all DMO operations are AI‑driven,
so the internal structure of the DMO is also com‑
posed of Functional and MonB5G layers as shown in
Fig. 5. These operations, as well as the exchange of
infrastructure‑related data (e.g., about energy con‑
sumption), are performed on the infrastructure via
the 𝐼𝑑𝑟 interface and aremostly associated with slice
admission, NSI lifecycle management and resource
sharing.

DMO Functional Layer
Idr

DMO MonB5G Layer

D
M

O

M
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er

MS-Sublayer MS

Iid
AE-Sublayer AE-2 

(Performance)
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DE-Sublayer DE-2 
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Embedded Element Manager 
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T
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Element Manager Element Manager 

Ivnf

Fig. 5 – Internal components of DMO (an example)

• Infrastructure Domain Manager (IDM). This entity
is responsible for infrastructure management (see
Fig. 6).

Infrastructure OSS/BSS 

(FCAPS)Energy Consumption 

Agent

NFVI Agent

Infrastructure Operator 

Portal

unsp.

Resource Brokering 

Support

Itp

Idr

Fig. 6 – Generic structure of IDM

The MonB5G framework enables programmability of
IDM, which can be enhanced by additional resource‑
oriented functions deployed in a way similar to NSI de‑
ployment. For this purpose, the Infrastructure Provider
(IDM operator), can use the MonB5G portal to send LCM
requests. Such functions are called InfrastructureOrches‑
trated Management Functionss (IOMFs) (see further).
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3.2 Dynamic components of the framework
The dynamic components of the architecture are consti‑
tuted by NSIs. In the MonB5G concept the term “slice”
has been slightly redeϐined, as it describes not only “net‑
work slices” per se, i.e., E2E communication networks, but
also any set of interconnected virtual functions serving a
speciϐic goal. The MonB5G generic slice is composed of
the Slice MonB5G Layer (SML) and Slice Functional Layer
(SFL) parts. The SFL part, built of virtual functions, pro‑
vides slice “core” (e.g., communication service‑related)
functionality, whereas the SML part, also built using vir‑
tual functions, provides SFL management. Three options
of SFL and SML integration are possible:

• In most cases, the SFL and SML create a single slice
template, i.e, the ISM approach is implemented. It
leads to self‑managed slices, with reduced informa‑
tion exchange between NSIs and external manage‑
ment components of the architecture.

• A single SML can be used for the management of
multiple SFL instances of the same type (SML is not
SFL‑agnostic in general). In fact, this is the imple‑
mentation of MaaS, which is usually motivated by
business requirements and reduction of the overall
footprint of several NSIs of the same type.

• The SFL part of a slice or part of it can be shared
among multiple SFLs. The shared functions avail‑
able in SOD (“shared VNFs”), called Dynamically
Shared Functions (DSFs), which are implemented
within the SFL part as the Physical Network Func‑
tion (PNF)/VNF or Cloud‑native Network Function
(CNF), may be used by all or some NSIs. This way,
both the deployed NSIs footprint and deployment
time are reduced. DSFs are grouped into a slice
to ease their management by the DMO and imple‑
ment in this manner the Platform as a Service (PaaS)
model.

If the E2E NSI spans multiple orchestration domains, an
entity responsible for the integration of SFLs of all do‑
mains is needed. To that end, an Inter‑Domain Slice Ma‑
nager (IDSM) entity is added. It interactswith SMLs using
preferably intents and KPIs. Moreover, it provides an in‑
terface to the Slice Operator (Slice Tenant).

A generic, internal structure of a self‑managed, single do‑
main slice (SML/SFL) is presented in Fig. 7. The SFL part
of the MonB5G slice template consists of AI‑driven EMs,
called Embedded Element Managers (EEMs). They in‑
clude functions for monitoring (Monitoring System Func‑
tion (MS‑F)), anomaly detection (Analytic Engine Func‑
tion (AE‑F)), decision‑making (Decision Engine Function
(DE‑F)) and actuation (Actuator Function (ACT‑F)) at the
node or function level. Legacy equipment with EMs [3]
can also be used. To reduce the outside exchange of mo‑
nitoring data, each EEM is involved in some local closed‑
loop management processes. The high‑level DE output
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(e.g., the action space of a deep reinforcement learning
algorithm) is to be translated by ACT‑F into a set of low‑
level primitives compliant with speciϐic API deϐinitions of
the controlled functions. EEMs and EMs indeed provide
a link between the SFL and SML parts of a slice. Both
the EM and EEM are required to contain a Management
Function (MAN‑F), which is responsible for the conϐigu‑
ration of other components of the EEM and can be used
for node/function manual management, if necessary.

The SML part is logically split into MS, AE, DE, and ACT
sublayers. An example processing of information of these
sublayers is as follows:

• The Monitoring System Sublayer (MS‑S) provides
generic, reusable and programmable monitoring of
certain granularities for all AEs.

• The monitoring data from the MS is analysed by
multiple AEs of the Analytic Engine Sublayer (AE‑S).
Each AE has a speciϐic goal, e.g., fault detection and
its root‑cause identiϐication, performance or security
attack identiϐication.

• Each DE of the Decision Engine Sublayer (DE‑S) is
linked with an appropriate AE. The entity on the ba‑
sis of analysed data and AE output may propose net‑
work reconϐiguration to solve detected problems.

• TheDEs’ decisions are transferred to theACT and the
respective ACT converts the DE decision into a set of
elementary actions. The ACT monitors their execu‑
tion and provides feedback information to the DE.

The control loop‑based management system may gene‑
rally have multiple goals which justiϐies multiple AEs and
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DEs as a part of the SML. This inevitably leads to con‑
ϐlicts between DEs’ outputs. In order to solve this prob‑
lem, the DE Selector/Arbiter component is present in the
DE‑S. It is involved in the observation of the system’s sta‑
bility and counteracting the ping‑pong effect or its chaotic
behaviour (random‑like reconϐigurations).

The DEs of the SML have both management and orches‑
tration capabilities. They may change SFL conϐiguration
parameters and also send new function (VNF) orchestra‑
tion requests using a direct connection between each SML
and DMO as well as decide about SML and SFL functio‑
nality updates. In contrast to the reactive resource sca‑
ling only by the NFV MANO orchestrator, the SML may
also proactively request an update of resource allocation
or scaling, based on the number of slice users’ Quality of
Experience (QoE) changes or spatial distribution of slice
usage.

Slice Orchestration Domain

NSI1,2 (SML  only,  MaaS)

 NSI1 (SFL only) NSI2 (SFL only)

MonB5G Portal

Slice 1 Tenant

Slice Management Provider

Imt Imp

unsp.

unsp.

Itp

Slice 2 Tenant

Itp
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unsp.

Fig. 9 – MaaS usage in MonB5G framework (example)

The already discussed options of slices’ deployment are
shown in Fig. 8:

• Option A – deployment of a self‑managed multi‑
domain slice supported by IDSM; a single domain
variant of such an option is not shown as trivial.

• Option B – deployment of slices with shared SFL
functions (i.e., DSF) and the use of MaaS operated by
Slice Management Provider (see Fig. 9).

• Option C – deployment of slice oriented to infrastruc‑
ture management, i.e., the IOMF slice.

The dynamic enhancement of the IDM functionalities sup‑
porting the infrastructuremanagement is provided by the
MonB5G framework by orchestration of additional ma‑
nagement services, called IOMFs. They can be orches‑
trated by the DMO upon the request of the Infrastructure
Provider via the MonB5G Portal. The IOMFs role is to co‑
operate with the IDM to achieve its goal (prediction of re‑
source consumption, energy saving, etc.).

4. MONB5G SYSTEM AUTOMATION
The MonB5G framework provides several features to fa‑
cilitate the incorporation of NSIs management automa‑
tion. Hereby, the main components supporting the cog‑
nitive capabilities of the system including monitoring
data acquisition, KPI calculation, analytics and decision‑
making are described. The adopted approaches are pre‑
sented in the context of FCAPS and Service Level Agree‑
ment (SLA) enforcement.

4.1 Monitoring data collection and processing
The MS‑S is responsible for the provisioning of generic
and reusable monitoring information to AEs, DEs, and
other MonB5G framework entities via the MonB5G Slice
Manager (see ϐigures 7 and 10). The monitoring informa‑
tion from the SFL may be consumed by each SML entity.
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TheMS of the SML is responsible for the collection, aggre‑
gation, ϐiltering and interpolation of the monitoring data
related to the NSI, including resources monitoring. It is
also in charge of collecting information about faults, to‑
pology changes, etc. as well as the calculation of NSI KPIs
on the basis of acquiredmetrics. Time granularity and de‑
grees of data aggregation can be tuned depending on the
deϐinition of the data collection and preprocessing stra‑
tegy to enable meeting the heterogeneous requirements
of each SML entity. The MS of the SML collects the moni‑
toring information from the EM and EEM and, in a generic
case, is composed of the following blocks:

• Monitoring Information Collector/Aggregator: an
entity interacting with sources of information (for
example EMs/EEMs of the SFL).

• Monitoring Information Database: storage of moni‑
toring data in raw and/or preprocessed format.

• Monitoring Information Processor: an entity respon‑
sible for ϐiltering, interpolation and prediction of the
monitoring data.

• Monitoring Sublayer Manager: an entity allowing re‑
mote conϐiguration of MS operations.

MS-Sublayer (generic)

Monitoring 

Information 

Database

Monitoring 

Sublayer

Manager

MS-bus

Monitoring Information

Collector/Aggregator

Monitoring Data 

Processor

Information sources

(EM, EEM, SM, DMO, ...)

Events handling

(alerts, topology 

change)

KPI

calculator 

AE-SManager DE-S

Fig. 10 – Generic structure of MS Sublayer (example)

The output of the MS is accessible to other components
of the SML via a dedicated message bus using a pub‑
lish/subscribe paradigm. In general, the MS has to inter‑
act with VNF‑speciϐic EEMs of different technological do‑
mains. However, several MS operations and queries are
generic, e.g., those related to computing resource avail‑
ability and consumption. Therefore, many of the inter‑
nal components of theMS can be reused formultiple slice
templates. The deϐinition of protocols for efϐicient com‑
munication between the SML andMS is out of this paper’s
scope.

4.2 Analytic Engines
For the MonB5G AE entities, we investigate and extend
diverse distributed ML and representation learning algo‑

rithms to fulϐil the requirements of 5G networks and be‑
yond and enable the decomposition of a traditionally cen‑
tralized AE into interconnected entities that can be de‑
ployed in a distributed manner in RAN, edge and cloud
domains. This allows highly intelligent, accurate, and
scalable reactions to non‑stationary network conditions,
new trafϐic patterns and evolving slice characteristics.
The distribution of the MonB5G AE includes multiple le‑
vels, such as learning concise representations of local data
to reduce the amount of information exchanged formana‑
gement purposes, as well as boosting slice‑level KPI pre‑
diction and the corresponding AI models with different
native data.

4.2.1 KPI calculation and prediction
To support automated and proactive decisions at the slice
level, AE components can provide predictions of NSI KPIs.
E2E slice‑level KPIs have been deϐined [34] and include,
i.a., upstream/downstream throughput for NSI, average
E2E uplink/downlink delay, virtualised resource utiliza‑
tion per NSI, etc. The collection of KPIs is supported by
the MS, as explained in Section 4.1. Despite being imple‑
mented in the legacy systems, slice‑level KPI prediction
in a 5G system requires a speciϐic approach as the num‑
ber of NSIs, as well as the amount of data collected, can
be large, implying the need for scalability. To address
this, we designed a Tensorϐlow‑based multivariate time
series prediction algorithm to investigate a variant of the
Recurrent Neural Network (RNN), i.e., Gated Recurrent
Units (GRUs). GRUs were shown to perform well with a
substantial reduction in training times when compared
to Long Short‑TermMemory (LSTM)models due to faster
convergence in training. Themodel takes themultivariate
input values (multiple features at the same time) as fea‑
ture vectors and the target NSI KPI to predict as the out‑
put.

As shown in Fig. 11, the input data sets are generated for
each NSI and include the Dataset Files (DSs) used by the
AE andMapping Files (MFs) that link the DS ϐiles with the
network elements and their functions. These ϐiles link the
items of the State 2D array of the data source ϐiles to the
network elements and their function and are intended to
be used as a dataset decoder for further analysis or ex‑
ploitation by the AE. As shown in Fig. 11, a useful ad‑
dition to the multivariate time series KPI prediction is a
model‑agnostic explainability method such as DeepLIFT
or SHAP that can give more insight (interpretable mo‑
dels) into which input KPIs affects the target NSI KPI
the most (this information can be later exploited by the
DE). The slice‑level KPI predictions results from the AI‑
driven AE are then synchronized and sent via a message
bus for further processing (storage in a database, used by
another AE or DE, etc.). Moreover, to further scale the
AEs towards managing a massive number of coexisting
NSIs, we also explore the federated learning techniques in
KPI prediction for downstream tasks, such as decreasing
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SLA violation. This AE function enhances the federated
learning method and introduces a set of well‑designed
statistical constraints with focus on distributed network
management. The novel function facilitates network sli‑
cing decentralized resource allocation while guarantee‑
ing very low SLA violations. In addition, novel Distributed
Deep Neural Network (DDNN) methods are tailored to
implement a decentralized AE towards connected intel‑
ligence. The AE enables distributed inference across dif‑
ferent technical domains, which fulϐils local analysis for
simple cases, and pushes the extracted low dimensional
data to a higher layer of the management hierarchy when
the local low‑resource AE is less conϐident of its predic‑
tions. The DDNN‑based AE also accelerates the feedback
processes.

Techniques for representation learning can also be en‑
hanced in order for the KPI predictors to become aware
not only of the speciϐic temporal behavioural patterns of
the features it predicts, but also to increase their aware‑
ness of the context of the performed predictions. A way
to make a KPI predictor to be context‑aware is to embed
knowledge, which can be expressed through analytical
formulations of the context at hand, into the predictor’s
training process. This context could be deϐined as know‑
ledge related to resource orchestration, admission con‑
trol, fault management, security, etc. Recapping Fig. 11,
the output from the AE (calculated/predicted KPIs) is ex‑
pected to be used by DEs, which perform state‑altering
decisions on the network. By enhancing the AEs to be
context‑aware and exploiting the distributed characteris‑
tic of the network through federated techniques, the DEs
are able to make their decisions using predicted future
states. This also enhances the DEs’ operation by enabling
their decisions to be statistically more proactive, rather
than reactive.

4.2.2 AI‑driven detection of anomalies inclu‑
ding security use cases

Fault detection and root cause analysis have always been
an integral part of telecom network management. The

rising volume of 5G network data [35] has contributed
to increased momentum in AI/ML‑based network ana‑
lysis and troubleshooting research. Available network
resources and services are impacted by changing pat‑
terns of use and deployment of NSIs. To ensure the in‑
frastructures provide a high level of robustness to cus‑
tomers, rule‑based systems, based on domain knowledge,
have traditionally been implemented to analyse and de‑
tect anomalies in the network. While these systems have
their place in the network management area, they can
be insufϐicient in a highly dynamic environment, where
NSIs are automatically deployed and changed tomaintain
SLAs.

The importance of intelligent monitoring and root cause
analysis is imperative for network operators and the area
of intensiϐied research. The sophistication of Deep Neu‑
ral Network (DNN) algorithms (often used for this pur‑
pose) has recently increased with the ability to process
massive network management data sets while extracting
useful features to quickly identify anomalies (e.g. for dif‑
ferent NSI KPIs).

Furthermore, the explainability part of our AE will pro‑
vide operatorswith actionable insights, enabling a deeper
investigation of the inϐluencing factors. This will improve
automated troubleshooting of anomalies across multiple
components of the network, thus reducing operational
costs and resources usage. Hereby, an interesting ex‑
ploration for the anomaly detection AEs is conducted,
which aims to use explainable time series forecasting for
cause analysis of NSI performance degradation. We ex‑
tract high order features from telemetry time series mo‑
nitoring the running of the related network components,
learn dynamic patterns between the E2E NSI KPI and the
telemetries, and ϐinally craft the impact indicators of the
telemetries based on the averaged gradients (also known
as saliencymap [36]) of the sampled time seriesmodels to
identify the causes of the performance degradation per‑
ceptively. We also consider the inϐluence of the model
uncertainty to make the inferred explanations more ro‑
bust against the randomness introducedby theprediction
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model itself. The AE function facilitates detection of the
root causes of NSI performance degradation for proactive
mitigation of SLA violations.

4.3 Distributed AI for network slices and in‑
frastructure optimization

An important 5G task that has been recently addressed
with data‑driven methods is NSI resource allocation with
DNNs. For example, the authors of DeepCog [37] have
used a DNN to directly predict the amount of NSI re‑
sources needed at a data centre/cloud serving assigned
Base Stations (BSs) to avoid both underprovisioning
(resulting in a costly SLA violation) and overprovisio‑
ning (wasting valuable resources to be used by another
NSI/tenant). Similarly, the authors of Context‑Aware
Trafϐic Prediction (CATP) [38] have also used a DNN, but
their approach predicts resource utilization considering
the costs and utilities related to resource orchestration,
provisioning and reconϐiguration in a more generalized
way. As a result, this control/decision problem can be
tackled with popular DNN architectures (e.g., convolu‑
tional networks or multilayer perceptrons), by training
an objective with appropriately tuned under and over‑
provision components. CATP considers resource recon‑
ϐiguration costs; DeepCog has been extended to include
them.

While these approaches are promising, the standard as‑
sumption of a centralized implementation of the DNN ar‑
chitecture faces challenges, when used to control key net‑
work functions. First, unlike the use of DNNs for some
application layer tasks (e.g., image classiϐication on a
phone) that can be “lazily” ofϐloaded to a central compu‑
tational cloud, the use of DNNs for controlling 5G edge re‑
sources (e.g., allocation of RAN resource blocks among te‑
nants, CPU allocation for Cloud‑RAN processing) requires
signiϐicantly lower latency; data transfer to a central DNN,
centralized decision‑making, and actuation of the desired
edge components, might violate these requirements. Se‑
cond, constantly sending raw monitored data over possi‑
bly already congested links towards a DNN architecture
lying deep in the Core Network (CN), or even outside, has
a prohibitive network footprint.

To that end, a key focus of MonB5G is to propose, train
and study a distributedDNN architectures for data‑driven
resource allocation problem. Some key contributions of
our work include:

• Proposing an appropriate distribution of the layers
of a 3D Convolutional Neural Network (CNN) archi‑
tecture, between an edge cloud and a core/remote
cloud, and investigation on joint training to provide
accurate local and remote NSI resource scaling deci‑
sions.

• At runtime, the local layers will communicate with
the remote layers and delegate the decision there,

only if there is limited conϐidence in the local deci‑
sion. We propose a novel way to evaluate local con‑
ϔidence, based on Bayesian methods, using dropout
during the forward pass. This is in contrast with
the standard dropout methods for regularization or
the entropy‑based uncertainty of recent distributed
DNN works in the ϐield of machine learning.

• Using real data, our results suggest the distributed
architectures are able to resolve up to 80% of deci‑
sions locally, while the uncertaintymeasure is able to
pick out the correct remaining decisions that would
beneϐit from a forward pass through the additional
remote layers; the layer distribution and ofϐload me‑
chanisms, in conjunction, can always achieve this
large overhead/latency reduction with minimal ob‑
jective degradation, and sometimes even improve
the objective, compared to a fully centralized archi‑
tecture with all layers involved in all decisions.

4.4 AI for network slicing security
The MonB5G architecture focuses on security inside a
single domain and inter‑domain security of the domains
that compose NSIs, employing the three key components:
MS, AE, and DE. These components offer an automatic
and intelligent closed‑loop to detect and mitigate secu‑
rity threats and attacks in real time. The real time data
collected from the VNF is ϐiltered by the MS and exposed
to the AE that analyses and detects abnormal behaviour
of the NSI components in the heat of the moment, which
makes DE intervention faster and in a timely manner be‑
fore the threat spreads.

Fig. 12 illustrates a simpliϐied viewof the systemarchitec‑
ture representing the MonB5G elements and their inter‑
actions with the components of a Massive Machine Type
Communications (mMTC) NSI. In this scenario, we as‑
sume an mMTC NSI with a high number of devices con‑
nected through different next generation NodeBs (gNBs).
The composite NSI consists of a dedicated NSI running
tenant applications and a shared Network Slice Subnet
Instance (NSSI) managed by the Infrastructure Provider.
The NSSI is permanent and composed of gNB and CN run‑
ning on top of a virtualised infrastructure. The gNBs are
considered as a shared PNF, while the CN elements are
VNFs shared among the NSIs. The DMO is informed about
each enforced DE decision, which in this case covers the
CN and RAN.

In the following paragraphs, wewill detail the role of each
element in the system.

MS:We assume that the mMTC devices are controlled by
an attacker that launches Distributed Denial of Service
(DDoS) attacks on the Access and Mobility Management
Function (AMF) [39] of the CN by generating a high num‑
ber of attach and detach requests. Each request generates
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several control plane messages, and if the number of re‑
quests is very high, the AMF may be overloaded, and the
provided service is disturbed. Therefore, the number of
attach and detach requests and their rate should be con‑
tinuously monitored and collected by the MS. Such infor‑
mation is provided by the EM of the AMF.

AE: To detect attacks in an mMTC NSI, it is important
to know the model of the mMTC trafϐic, which is typi‑
cally dependent on the application type. In that con‑
text three trafϐic types can be identiϐied. The ϐirst one
is “event‑based”, where the mMTC devices connect if an
event happens (ϐire‑detection, earthquake, etc.) and send
a small amount of trafϐic (few packets). The second one is
“trigger‑based”, where a remote server triggers a connec‑
tion to the device to gather data (temperature, humidity
measurements, etc.). The third one is “periodic”, where
themMTCdevices connect periodically to send data (tem‑
perature, humidity, etc.). While types two and three can
be easily predicted using information from theNSI tenant,
the ϐirst type is very difϐicult to anticipate. Knowing the
mMTC trafϐic model, different options can be considered
for the attack detection by the AE. One of the solutions is
the usage of a neural network (RNN, LSTM, or an associa‑
tionof both), which canbe trainedusing thenormal trafϐic
generated by mMTC devices of the NSI (either synthetic
one, generated through one of the models speciϐied by
3GPP or a real one). Then, the trained algorithm can run
as an Intrusion Detection System (IDS), and by analysing
the attach requests classify the trafϐic as normal or abnor‑
mal.

DE: The DE analyses the alerts, the attach requests ob‑
tained from the AE,makes their classiϐication and decides
which User Equipments (UEs) to disconnect or ban UEs
from network access. We have designed two versions of
the DE. The ϐirst one performs blacklisting a device if its

predicted value is higher than a conϐigurable threshold.
The second one analyses the whole event and checks if
a signiϐicant set of devices had higher than usual detec‑
tion rates. This is to achieve that the UEs are classiϐied
into three groups based on their score. If the number
of devices in the largest group is higher than the two
other groups, the DE will add their Subscription Perma‑
nent Identiϐier (SUPI) values to a table of blacklisted de‑
vices and disconnect them from the network. Otherwise,
the DE will add the SUPI values to a table of non‑trusted
devices. The DE can request from the AMF to detach the
concerned list of International Mobile Subscriber Identi‑
ties (IMSIs) involved in the DDoS attacks communicated
by the AE.

4.5 AI for solving multi‑domain issues
The inter‑slice DEs have a view of the network opera‑
tions and its performance, across multiple NSIs and do‑
mains. At large, their role is to coordinate the VNF pro‑
cesses across all technological domains inside the physi‑
cal network of the operator. The problem is highly com‑
plex, as the decisions taken in one domain can affect the
effects of decisions taken in the other domains. For exam‑
ple, overprovisioning, can waste resources in the domain,
if the rest of the domains that this NSI spans are not also
provisioned in harmony to ensure that the E2E KPIs are
satisfactory.

In the MonB5G project, we heavily leverage the dynamic,
AI‑based control methods to orchestrate resource alloca‑
tion and VNF placement across domains. Reinforcement
learning solutions can gradually learn to optimally place
the various VNFs comprising an NSI’s VNF chain across
domains, without requiring any a priori knowledge regar‑
ding their trafϐic demands. Nevertheless, the problem of
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placing multiple VNFs, across multiple nodes, and in dif‑ 
ferent domains, has restrictive complexity when it comes 
to vanilla RL. To that end, in MonB5G, we have two main 
paths to tackle issues arising in complex cross‑domain 
scenarios: state‑of‑the‑art DRL methods and the multi‑ 
agent RL solutions. Both approaches can efϐiciently cope 
with the large state spaces, however, the latter also radi‑ 
cally improves the solutions’ convergence. Furthermore, 
they are a natural match for cross‑domain orchestration, 
where each domain might have its own agent controlling 
its own actuators, nodes, and local VNFs, yet the agents 
communicate (possibly in a privacy‑preserving manner) 
to satisfy E2E KPIs and related SLA depending on the per‑ 
formance of the action in each domain.

5. IMPLEMENTATION REMARKS
The implementation roadmap, framework, and technolo‑ 
gies of the MonB5G system are explained below.

5.1 Implementation roadmap
The MonB5G architecture described in Section 3 is be‑ 
ing implemented according to the roadmap consisting of 
three phases described below.
In the ϐirst development phase, the functional compo‑ 
nents of the architecture are implemented in simulated 
environments. Referring back to ϐigures 4 and 7, the de‑ 
sign and implementation of the MS are quite generic, dis‑ 
tributed MS capable of collecting monitoring data from 
different sources, while the AE and DE need to be tailored 
to speciϐic requirements.
In the second implementation phase, the integration of 
different components and performance evaluation of the 
emulated and virtualised E2E 5G networks, depicted in 
Fig. 13, is done. The environment, not only emulates an 
E2E 5G network including the UE, RAN and CN but also 
provides an NFV ecosystem composed of:

• an NFV Orchestrator (NFVO) and a Virtual Net‑
work Function Manager (VNFM), both jointly imple- 
mented by the OSM;

• two Virtualised Infrastructure Managers (VIMs) for
Virtual Machine (VM)‑based and container‑based
virtual infrastructure implemented by OpenStack
[40] and Kubernetes [41] respectively.

The instances of the AE and DE for each technological do‑ 
main are deployed in this environment as VNFs/CNFs of 
the SML and integrated with the MS to provide a func‑ 
tional instance of the MonB5G architecture. The perfor‑ 
mance of the system is then evaluated using emulated 
trafϐic.

The ϐinal phase of the roadmap lies on the integration of 
the components and their deployment in the real 
network. The deployment of MonB5G in the real net‑ 
work is gradual. Hence, before the full migration to 
MonB5G architecture, the management of the network 
will be hybrid, which requires some kind of collabora‑ 
tion and cooperation between the traditional centrali‑ 
zed OSS/BSS and MonB5G. This can be implemented via 
the 𝐼𝑜𝑝 management interface shown in Fig. 2 through 
which the OSS/BSS can request management functions 
from MonB5G.

5.2 Implementation framework
The previous sections explained that the MonB5G archi‑ 
tectural framework is designed for automated, scalable, 
and AI‑driven orchestration of MAPE‑based NSIs.

The implementation framework of MonB5G, mainly the 
SML, is based on the concepts proposed in [42], in par‑ 
ticular the deϐinition of PaaS. Using PaaS brings beneϐits 
such as fast reconϐigurability, proximity to SFL compo‑ 
nents, reduced resource footprint, etc. To isolate and se‑ 
cure NSIs, the 3GPP recommendations [43] can be reused. 
For this purpose, Network Function (NF) discovery and 
registration must be authorized and should support con‑ 
ϐidentiality, integrity, and replay protection of data.
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By applying this concept to the SML of a slice, in cases
where a set of various SFL need to be managed, the SML
will act as the MonB5G Layer as a Service (MLaaS) and
contribute to the footprint in terms of resource consump‑
tion and cost. In addition, the PaaS instances offered to
MonB5G SFLs (as VNF Common/Dedicated Service) are
referred to as a DSF. Both concepts use the same im‑
plementation mechanisms and can be used concurrently
for the same slice instance, although the DSF and MaaS
are SFL template‑speciϐic in most cases. Since DSFs may
not be operated exclusively by a single Slice Tenant or
DMO operator, it is necessary to use a Slice Management
Provider (SMP) as an operator. From the management
point of view, the DSF andMLaaS are considered as slices.
Therefore, they can be considered as vertical stitching of
slices, where instances of MLaaS and DSF service can be
deployed by the IDMO.

The ETSI NFV framework [42] provides support for
container‑based service deployment and orchestration.
In general, most of the mechanisms described there are
applicable to the aforementioned PaaS use cases.

A simpliϐied version of a slice according toMonB5G archi‑
tecture from the implementation point of view is shown
in Fig. 14, which includes an SFL and MaaS. The former is
composed of tenants’ VNF and corresponding EEMs/EMs
that allow MaaS components to gather the required met‑
rics. On the other hand, MaaS is composed of a set of
VNFs providing a Container Infrastructure System (CIS),
which is Container Infrastructure Service Instance (CISI)
and Container Infrastructure Service Managers (CISM).
Moreover, it includes PaaS itself as a Container Orches‑
tration Engine (COE) to effectively act as a runtime envi‑
ronment for MonB5G administrative elements and com‑

ponents. MaaS management services are therefore con‑
ceived as cloud‑native applications build‑out of interac‑
tion among several MonB5G components of SML, which
is exempliϐied byNFVMANOand infrastructure optimiza‑
tions.

As mentioned earlier, a generic distributed MS has been
designed and implemented in MonB5G, as shown in Fig.
15. MS is capable of collecting data from the SFL via in‑
teractions with the EEM, providing an API for the AE to
control and consume monitoring data, transforming data
by adding semantic and contextual information, e.g., time‑
stamp, data source, etc., and storing the monitored data
in persistent storage for interpolation and extrapolation
of future requests.

5.3 Implementation technologies
Various state‑of‑the‑art open‑source technologies are
used in different domains to implement the MonB5G ar‑
chitecture. The infrastructure virtualisation solutions are
OpenStack [40], Docker [44], and Kubernetes [41] for
both local resources and remote resources in the pub‑
lic cloud. For the Management and Orchestration Layer
in the CN and Multi‑access Edge Computing (MEC), ETSI
OSM is used for VNF management and orchestration. In
addition, OpenDaylight, an open‑source SDN controller,
controls the virtual links between different nodes using
Open vSwitches. The components of MonB5G (SML), e.g.,
the MS, AE and DE, are deployed as CNFs on Kubernetes,
which acts as a PaaS, aligned with the ETSI NFV approach
[42]. FlexRAN [45] over OpenAirInterface (OAI) [46] is
used to control and slice the RAN domain. Themain com‑
ponents of the Business Layer are the web interfaces and
APIs with a database to store authentication credentials.
There are many open source tools to implement these
functionalities, e.g., Django [47]/Angular [48] and Swag‑
ger [49] used in theMonB5G are among themost popular.

As mentioned earlier, the MonB5G framework relies
heavily on the data‑driven AI, especially the AE and DE
components. The NetData [50] is used to implement the
MS component to collect and expose resource‑related and
network telemetry data fromdeployedVNF instances and
PNFs. Moreover, Prometheus [51] is used for automatic
scraping of custom metrics from SML components, leve‑
raging information from multiple custom agents to de‑
rive slice‑speciϐic KPIs. The implementations of AI‑based
components, i.e., AEs andDEsutilizeML frameworks such
as Python TensorFlow [52], PyTorch [53] and OpenAI
Gym [54]. The communication between MS, AE and DE
sublayers is based on Kaϐka [55] as the publish/subscribe
platform.

6. SUMMARY AND CONCLUSIONS
In this paper, the MonB5G framework for distributed,
AI‑driven orchestration and management of network

583
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slices has been presented. The proposed solution is cha‑
racterized by high scalability of management and orches‑
tration that has been achieved by distribution of mana‑
gement operations and by the use of AI. The adoption
of multilevel data processing allows for handling a large
amount of data locally and transferring abstracted mo‑
nitoring information to the components being higher in
the system’s hierarchy. Such an approach provides im‑
proved openness of the system and conϐigurability of the
management plane on a per slice basis. Altogether, the
framework’s characteristics contribute to its genericity,
thus facilitating the deployment of any slice types and
their thorough conϐiguration. The high degree of distribu‑
tion of the MonB5G framework also provides the ϐlexibi‑
lity in the decision‑making process. Due to the implemen‑
tation of slice management as a part of the slice, the slice
reconϐigurations can be handled in near real time thanks
to local analysis and processing of the monitoring events.
Moreover, minimizing the management information ex‑
change between components in comparison to centrali‑
zed approaches consequently increases the overall net‑
work scalability. The MonB5G solution strongly supports
the adoption of AI techniques for automation of the ma‑
nagement and orchestration processes. Nonetheless, the
architecture itself is agnostic to AI and does not assume
the implementation of the proposed methods, i.e. each
component or algorithm can be adjusted to suit the re‑
quirements of the speciϐic use case. The framework pro‑
poses tousepredicteddata (includingKPIs), which allows
for proactive management operations for SLA fulϐilment
or faults handling. Due to such a feature, the proposed
approach can signiϐicantly contribute to high service con‑
tinuity. In addition to the presentation of the framework
itself, the paper also provided an example description of
its implementation including open source tools that can
be used.
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