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Abstract | In a multichannel context, the problem of

blind estimation of the channel can be parameterized ei-

ther by the channel impulse response or by the noisefree

multivariate prediction error �lter and the �rst vector

coe�cient of the vector channel. The noise subspace,

spanned by a set of vectors that are orthogonal to the

signal subspace, can be parameterized according to dif-

ferent linear parameterizations. In the �rst part of this

paper, we begin with the resaons due to which second-

order-statistics-based estimation techniques give accu-

rate channel estimates. In the second part, we focus on

the di�erent noise subspace parameterizations in terms

of blocking equalizers and classify them. We present

linear (in terms of subchannel impulse responses) noise

subspace parameterizations and we prove that using a

speci�c parameterization, which is minimal in terms of

the number of rows, leads to span the overall noise sub-

space.

I. Introduction

In blind channel identi�cation, a multichannel framework can

be obtained from oversampling a received signal and leads to a

Single Input Multiple Output (SIMO) vector channel represen-
tation. The multiple FIR channels we obtain in this represen-

tation can also be obtained from multiple received signals from

an array of antennas (in the context of mobile digital commu-
nications [1],[2],[3]) or from a combination of both. To further

develop the case of oversampling, consider a linear digital mod-

ulation over a linear channel with additive noise so that the

received signal y(t) has the following form

y(t) =
X
k

h(t� kT )a(k) + v(t): (1)

In (1) a(k) are the transmitted symbols, T is the symbol pe-

riod and h(t) is the channel impulse response. The channel is
assumed to be FIR with length NT . If the received signal is

oversampled at the rate m

T
(or if m di�erent samples of the

received signal are captured by m sensors every T seconds, or
a combination of both), the discrete input-output relationship

can be written as:

y(k) =

N�1X
i=0

h(i)a(k�i) + v(k) =HAN (k) + v(k) (2)

where y(k) = [yH1 (k) � � � y
H
m(k)]

H
;h(i) =

�
h
H
1 (i) � � �h

H
m(i)

�H
,

v(k) = [vH1 (k) � � � v
H
m(k)]

H , H = [h(N�1) � � �h(0)],

AN(k) =
�
a(k�N+1)H � � � a(k)H

�H
and superscript H de-

notes Hermitian transpose. Let H(z) =
PN�1

i=0
h(i)z�i =

[HH
1 (z) � � �H

H
m(z)]

H be the SIMO channel transfer function,

and h =
�
h
H(N�1) � � �hH(0)

�H
. Consider additive inde-

pendent white Gaussian circular noise v(k) with rvv(k�i) =
Ev(k)v(i)H = �

2
vIm �ki. Assume we receive M samples:

YM (k) = TM(h)AM+N�1(k) + V M(k) (3)

where YM(k) = [yH(k�M+1) � � �yH(k)]H and similarly for

V M (k), and TM (h) is a block Toepltiz matrix with M block
rows and [H 0m�(M�1)] as �rst block row. We shall simplify

the notation in (3) with k = M�1 to

Y = T (h)A+ V : (4)

We assume that mM > M+N�1 in which case the channel
convolution matrix T (h) has more rows than columns. If the

Hi(z); i = 1; : : : ;m have no zeros in common, then T (h) has full

column rank (which we will henceforth assume). For obvious
reasons, the column space of T (h) is called the signal subspace

and its orthogonal complement the noise subspace. The signal

subspace is parameterized linearly by h, and the quality of its
estimation, with a �nite amount of data, is illustrated in the

following section.

II. Accuracy of the Second-order Statistics in

Blind Estimation of Multiple FIR Channels

Recently, there has been an explosion of work dealing with

blind channel estimation and/or equalization based on (sam-

ple) Second-Order Statistics (SOS) of the received data. This
attention is generally justi�ed by the lesser complexity of the

second-order moment which makes the use of this class of blind

channel estimation methods more desirable compared to e.g.
Higher-Order Statistics (HOS)-based techniques. The fact that

SOS can be su�cient for channel identi�cation is due to the

multichannel aspect. In the sequel, we show that in the case of
SOS, the fact that the channel can be estimated fairly accurately

using relatively few data (a must for mobile communications)

is due to the perfect estimation of the signal subspace with this

few amount of data whereas the second-order moment can not

be perfectly estimated.

The structure of the covariance matrix of the received signal,

Y, is

RY Y = EYY
H
= T (h)RAAT

H
(h) + �

2
vImM ; (5)

where RAA is the symbols covariance matrix EAAH
> 0. The

covariance matrix RY Y can be decomposed into signal and noise



subspace contributions as follows:

RY Y = EYYH =

M+N�1X
i=1

�iViV
H
i +

mMX
i=M+N

�iViV
H
i

= VS�SV
H
S + VN�NV

H
N :

(6)

In the eigen decomposition of the covariance matrix, RY Y , given

in (6), the real nonnegative eigenvalues �i are ordered in de-
scending order, �i > �

2
v for i = 1; � � � ;M + N � 1 ; �N =

�
2
vI(m�1)M�N+1 and the sets of the eigenvectors VS and VN are

orthonormal: VHS VN = 0. Since Range fT (h)g = Range fVSg,
both T (h) and VS should span the signal subspace [3], [2]. An

analysis of the singular value decomposition of this noisy ma-

trix and the associated subspaces is presented in [10]. In order
to study the accuracy of the estimated signal subspace we use

the asymptotic distribution of the signal eigen vectors of the

sample covariance matrix. The signal and noise subspaces can
be consistently estimated from the eigen decomposition of the

sample covariance matrix

bRY Y =
1

T

TX
i=1

YM (i)Y H
M (i) = bVSb�SbVHS + bVNb�N bVHN : (7)

From the asymptotic theory of principal components [11], we

have the following result: the M+N�1 largest eigen vectors ofbRY Y are asymptotically (for large T ) normally distributed with

means and covariances given by

EbVk = Vk +O(T�1)

E(bVk � Vk)(bVl � Vl)
H = �kl

�k

T

mMX
i=1;i 6=k

�i

(�i � �k)2
ViV

H
i

+o(T�1)

E(bVk � Vk)(bVl � Vl)
T = (1� �kl)

��k�l

T (�k � �l)2
VlV

T
k

+o(T�1):

(8)

A measure of the error on the estimated signal subspace can be

obtained by considering the metric EkbVS �VSk2F =
X
k

E(bVk �
Vk)(bVk�Vk)H (where kAk2F is the Frobenius norm of the matrix

A). It is clear from (8) that E~Vk ~V
H
k = E(bVk � Vk)(bVk � Vk)

H

can be rewritten as the sum of two components: the �rst is due

to the signal subspace �S~Vk
and the second is related to the noise

subspace �N~Vk

E~Vk ~V
H
k =

�k

T

mMX
i=1;i6=k

�i

(�i � �k)2
ViV

H
i + o(T�1)

=
�k

T

M+N�1X
i=1;i6=k

�i

(�i � �k)2
ViV

H
i

+
�k

T

mMX
i=M+N

�i

(�i � �k)2
ViV

H
i + o(T�1)

= �
S
~Vk
+ �

N
~Vk
+ o(T�1):

(9)

In (9), the contribution of the noise subspace component �
N
~Vk

goes to zero as the SNR! 1, whereas the contribution of the

signal subspace component �S~Vk
does not inuence the estimated

signal subspace since the component ~V S
k = (bVk � Vk)

S remains

in the signal subspace. This shows that the signal subspace of

the sample covariance matrix (which is computed with a �nite

amount of data) is consistent in SNR. This conclusion is illus-

trated by simulation results in section xV. In the sequel, we
focus on the noise subspace and di�erent parameterizations for

it.

III. Different Noise Subspace Parameterizations

In [4], we introduced di�erent choices for the Noise Subspace

Parameterization (NSP) based on blocking equalizers. To begin
with, consider the case of two channels: m = 2. One can observe

that for noise-free signals, we have H2(z)y1(k)�H1(z)y2(k) = 0,

which can be written in a matrix form as [H2(z) �H1(z)]y(k) =
H?y(z)y(k) = 0. The matrix H?y(z) is parameterized by

the channel impulse response and satis�es H?y(z)H(z) = 0.

For m > 2, blocking equalizers H?y(z) can be constructed

by considering the channels in pairs. The choice of H?y(z)

is far from unique. To begin with, the number of pairs to

be considered, which is the number of rows in H?y(z), is not

unique. The minimum number is m�1 whereas the maxi-

mum number is m(m�1)

2
. We shall call H?y(z) balanced if

tr fH?y(z)H?(z)g = �Hy(z)H(z) for some real scalar � and

Hy(z) =HH(1=z�). People usually take the maximum number

of rows, which corresponds to a balanced H?y(z): H?y

bal;max(z).

The minimum number of rows in H?y(z) to be balanced is m.

We get for instance

H
?y

min(z) =

264 �H2(z) H1(z) � � � 0
...

...
.. .

...

�Hm(z) 0 � � � H1(z)

375 (10)

H
?y

bal;min(z) =

26664
�H2(z) H1(z) 0 � � � 0

0 �H3(z) H2(z) � � �

...
...

. . .
.. . 0

Hm(z) 0 � � � 0 �H1(z)

37775 :
(11)

By construction, the NSP introduced in [2] produces the ex-
act set of independent required vectors to span the noise sub-

space. The number of these vectors is equal to mM � (M +

N � 1) which is the dimension of the noise subspace. The
minimum NSP, for example the one given by (10), produces

(m� 1)(M �N +1) independent vectors of the noise subspace.

This means that by using this kind of parameterization, we need
(m� 2)(N � 1) extra independent vectors to span the totality

of the noise subspace. A linear NSP, H?y(z), can be written as

the z transform of the p�m sequence:
�
h
?(0); � � � ;h?(N � 1)

	
(m� 1 � p �m(m� 1)=2), as

H
?y(z) =

N�1X
i=0

h
?(i)z�i: (12)

In (12), the p�m elements h?(i); i = 0; � � � ;N � 1 are written

as a function of the elements of the vector h(i). For example,
for the NSP H

?y

bal;min(z) given by (11), where p = m, we have

h
?(i)=

26664
�h2(i) h1(i) 0 � � � 0

0 �h3(i) h2(i) � � �

...
...

. . .
. . . 0

hm(i) 0 � � � 0 �h1(i)

37775;i = 0; � � � ;N�1:

(13)



Let h
? be the p � mN matrix de�ned as h

? =�
h
?(N � 1) � � � h

?(0)
�
. We have h?h = 0 and the re-

lationship H?y(z)H(z) = 0 becomes in the temporal domain

TM�N+1(h
?

)T (h) = 0: (14)

In the sequel, we present the proof of the following result: the
use of a H?y

bal;min
(z) as a NSP leads to span the overall noise

subspace. The reasoning is developed for H?y

bal;min
(z) given by

(11) but it holds also for any other choice of H
?y

bal;min
(z).

For m = 2, H?y

bal;min
(z) and H

?y

min(z) are identical, the corre-

sponding matrix TM�N+1(h
?) has M�N+1 independent rows

that span the noise subspace (of dimension 2M�(M+N�1) =

M �N + 1). For m � 3, the basic idea is to count the number
of dependencies between the rows of the matrix TM�N+1(h

?).

Consider the case of m = 3 channels, we have�
H3(z) H1(z) H2(z)

�
H
?y

bal;min(z)

=
�
H3(z) H1(z) H2(z)

�" �H2(z) H1(z) 0
0 �H3(z) H2(z)

H3(z) 0 �H1(z)

#
=
�
0 0 0

�
:

(15)
In the case of m = 4 channels, we have

H
?y

bal;min(z) =

264 �H2(z) H1(z) 0 0

0 �H3(z) H2(z) 0
0 0 �H4(z) H3(z)

H4(z) 0 0 �H1(z)

375 :
(16)

When we multiply the following row vector�
H3(z)H4(z) H4(z)H1(z) H1(z)H2(z) H2(z)H3(z)

�
(17)

by (16), we obtain 01�4. For m � 3, let's call the row vector
multiplying H?y

bal;min(z) the vector g
?(z). This vector satis�es

g
?

(z)H
?y

bal;min(z) = 01�m: (18)

In the temporal domain, the expression (18) gives the ex-
act number of dependencies between the rows of the matrix

T (h?). Each element of the vector g?(z) is a product of

(m � 2) subchannel impulse responses Hi(z), with order equal
to (m� 2)N � (m� 3) = (m� 2)(N � 1) + 1 = K. Hence, the

expression given by (18) can be written in the temporal domain

as

TM�N+1�K+1(g
?

)TM�N+1(h
?

) = 0: (19)

Equation (19) gives the number of dependencies between the

rows of the matrix TM�N+1(h
?). This number is equal to M �

N + 1 � K + 1 = M � (m � 1)(N � 1). Hence the number of

linearly independent rows in the matrix TM�N+1(h
?) is

m(M�N+1)�M+(m�1)(N�1) =mM�(M+N�1) (20)

which is the dimension of the noise subspace, and hence the
columns of T H

M�N+1(h
?) span the noise subspace. This proves

that using the NSP: H?y

bal;min(z) leads to span the overall noise
subspace.

IV. Discussion

Since the rows of T (h?) corresponding to H
?y

bal;min(z) are a

subset of the rows T (h?) corresponding to H
?y

bal;max(z), and

sinceH?y

bal;min
(z) spans the noise subspace thenH?y

bal;max
(z) also

spans the noise subspace. This constitutes a proof simpler than

the one given in [7] to show that taking the maximum number
of rows in H?y(z) leads to span the overall noise subspace.

Indeed, the mecanism according to which the noise subspace

is spanned can be described as follows: a NSP H
?y

bal;min(z) in-

cludes a parameterization H
?y

min(z). It is this last parameteri-
zation that produces the (m� 1)(M �N +1) �rst independent

vectors of the noise subspace. The extra line in H
?y

bal;min
(z)

compared to H
?y

min(z) will produce a set of M � N + 1 vec-

tors. Any subset of (m� 2)(N � 1) vectors selected from these

last vectors will complete the previous (m � 1)(M � N + 1)

vectors in order to span the noise subspace, and the remaining

(M �N + 1 � (m� 2)(N � 1)) vectors become immediately a
linear combination of the vectors that have spanned the noise

subspace.

In [8] and [9], the authors propose a new parameterization
H?y(z) for the noise subspace, having (2m�3) rows (and then a

number of rows greater than the one of H?y

bal;min
(z)), that spans

the noise subspace under the constarint that H1(z) and H2(z)
dont share common zeros. From a frequency-domain point of

view, this parameterization can be written, when m > 2, as

H?y

AH(z) =

26666666666664

�H2(z) H1(z) 0 � � � 0

�H3(z) 0 H1(z)
. . .

...
...

...
. . .

. . . 0

�Hm(z) 0 � � � 0 H1(z)

0 �H3(z) H2(z) � � � 0
...

...
...

. . .
...

0 �Hm(z) 0 � � � H2(z)

37777777777775
=

24 H
?y

min(z)

H
?y

second(z)

35 :

(21)

Note that for m = 3, the parameterization H
?y

AH(z) is balanced.

The convolution matrix corresponding to H?y

AH(z) is

T (h?) =

24 T (h?min)

T (h?second)

35 ; (22)

where the matrices T (h?min) and T (h?second) correspond to

H
?y

min(z) and H
?y

second(z) respectively. The authors propose to

make a judicious choice of the rows of the matrixT (h?) in or-

der to span the noise subspace: they propose to consider all the
rows of T (h?min) (their number is equal to (m�1)(M�N+1)),

and then for each row of the (m�2) rows ofH?y

second(z), consider

the (N � 1) corresponding �rst rows in T (h?second). Hence, the
obtained total number is

(m�1)(M�N+1)+(m�2)(N�1) =mM�(M+N�1) (23)

which is the dimension of the noise subspace. The authors show

that this procedure of rows selection gives the exact set of in-

dependent vectors that span the noise subspace, provided that
the two �rst subchannels H1(z) and H2(z) dont share common

zeros. This seems to be of lesser interest to be adopted in a

blind identi�cation method using a NSP (such methods can be
found in [5] and [6]), since our parameterization H?y

bal;min(z) is

minimal and leads to span the overall noise subspace without

any constraint required on the subchannel impulse responses.



V. Simulation Results

In the simulation presented here, our idea is to study the be-
haviour of the estimated signal subspace and the second-order

moments (both estimated from a �nite amount of data) as a

function of SNR. The received signal covariance matrix is esti-
mated from a burst of 200 symbols. The oversampling factor is

m = 3 and the symbols are i.i.d. BPSK. The channel is complex,

i.i.d. randomly generated with length N = 3:

H =

"
�0:9712 + 0:9603i 0:6087 + 0:1392i 0:0243� 1:2639i

1:0701 + 0:8570i 0:0974 + 0:3818i �0:9887� 0:6548i
�0:1217 + 2:1088i 1:0908� 0:6647i �0:6495 + 0:4929i

#
:

(24)

The channel covariance matrix is considered with M = 10. The
Normalized Mean Square Error (NMSE) on the signal subspace

is computed over 300 Monte-Carlo runs as follows:

NMSE1 =
1

300

300X
i=1

�
1 �

kbV(i)H

S VSk
2
F

M +N � 1

�
(25)

where bV(i)

S
is the estimated signal subspace given by the M +

N�1 largest eigenvectors of the sample covariance matrix bRY Y

in the ith trial. In order to compare the accuracy of the esti-

mated signal subspace to the one of the estimated second-order

moments, we consider the �rst bloc element of the sample co-
variance matrix br(i)Y Y (0) in the ith trial and we de�ne the NMSE

as follows:

NMSE2 =
1

300

300X
i=1

kbr(i)Y Y (0)� rY Y (0)k
2
F =krY Y (0)k

2
F (26)

where rY Y (0) is the �rst bloc element of the channel co-

variance matrix computed using the exact statistics RY Y =

�
2
aT (H)T H(H) + �

2
vImM . In Figure 1, we plot NMSE1 versus

SNR: it is clear that with a �nite amount of data we are capable

of estimating accurately the signal subspace, wheras in Figure

2 the error remains constant from an SNR of about 20dB. This

implies that with a �nite amount of data we can not estimate

perfectly the second-order moments at any value of the SNR.

So the estimation of second-order statistics is not consistent in
SNR, whereas the subspace estimation is.
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