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Abstract—Caching popular content at the network edge
can benefit both the operator and the client by alleviating
the backhaul traffic and reducing access latency, respectively.
Recommendation systems, on the other hand, try to offer
interesting content to the user and impact her requests,
but independently of the caching policy. Nevertheless, it
has been recently proposed that designing caching and
recommendation policies separately is suboptimal. Caching
could benefit by knowing the recommender’s actions in
advance, and recommendation algorithms could try to fa-
vor cached content (among equally interesting options) to
improve network performance and user experience. In this
paper we tackle the problem of optimally making caching
and recommendation decisions jointly, in the context of the
recently introduced “soft cache hits” setup. We show that
even the simplest (one user, one cache) problem is NP-hard,
but that the most generic problem (multiple users, femto-
caching network) is approximable to a constant. To the best
of our knowledge, this is the first polynomial algorithm with
approximation guarantees for the joint problem. Finally, we
compare our algorithm to existing schemes using a range of
real-world data-sets.

I. INTRODUCTION

Storing popular content at the edge of future wireless
networks has recently rekindled interest in caching re-
search. Placing content in caches close to the user ensures
a better delivery with higher bitrate, shorter delay, etc. [1]
as well as reduced congestion on the transport links and
core servers. At the same time, recommendation systems
greatly affect user requests. It is reported that up to 80%

of requests on popular content distribution platforms come
from user recommendations [2], [3]. Nevertheless, the
traditional role of a recommendation system has been to
bring forward items from a vast catalogue that best match
the users’ interests. Where the content is cached and how
this affects delivery (e.g., streaming rate) does not usually
play a role in the decision of most recommenders.

Recently, major content providers like Netflix and
Google started partnering with Internet Service Providers
(ISPs) to implement their own CDN solutions inside the
network [4], [5]. This naturally brings together content
caching and recommendations, as now the same entity
can control and coordinate both, towards better user
experience, lower network costs, or both. As a result,
some recent works propose caching and recommendation
policies that take into account this interplay [6]–[12]. Nev-
ertheless, many of these works still focus on one side of
the problem, e.g., network-friendly recommendations [7],
[12], or recommendation-aware caching policies [8]. Some
works that do try to modify both the caching and rec-
ommendation policies are usually based on heuristics [9],
[11].

Our focus, in this paper, is in the recently proposed con-
text of soft cache hits [8]. There, if the requested content
is not locally cached, the user might agree to accept an
alternative (but related) content that is locally available.
One reason for this acceptance might be better streaming
quality for similarly interesting content (e.g., it is known
that low bitrate can lead to increase in the abandonment
rate [13]). Another reason is that the network or content
provider that benefits thus from network cost reduction, is
willing to offer appropriate incentives to counterbalance
the occasional utility loss (e.g. zero-rating). While soft
cache hits were formally introduced in [8], [14], other
related works also implicitly or explicitly assume soft
cache hits. E.g, the pliable index coding of [12] allows for
content of lower preference to be served to the user, if that
benefits the transmission scheme, while the works of [9],
[10] introduce a “distortion” parameter that allows lower
(but bounded) relevance content to be recommended, if
that content is cached. Hence, the framework of soft cache
hits targetted in this work has more general applicability.

In this paper we depart from the assumption of [8]
that any content in the cache can be recommended to
the user. This new setting is significantly more realistic,
since standard caches at the edge can contain in the
order of 100-1000 contents [4], while only a few 5-20
contents may be recommended to the user in small devices
such as smartphones or laptops. However, we now need
to choose not only the contents to cache but also the
recommendations offered to the user, which renders the
problem considerably more challenging.

Our main contributions can be summarized as follows:

• Starting from the framework of [8], we introduce (per
user) recommendation variables, and formulate the
problem of jointly optimizing both sets of (caching
and recommendations) variables.

• We show that even the simplest version of the
joint problem (one user, one cache) is NP-hard,
and that straightforward application of existing
submodularity-based frameworks [8], [15] does not
lead to approximation guarantees.

• We show that using a primal decomposition of the
joint problem into an inner (recommendation related)
problem and an outer (caching related) problem,
leads to an iterative yet efficient (i.e., polynomial)
algorithm with constant approximation to the jointly
optimal solution. To our best knowledge, this is the
first approximability result of such a joint problem.

• Using a range of real-world datasets we show that
the proposed algorithm always outperforms existing



heuristics, and discuss the implications of different
content types on relative and absolute performance
of these schemes.

II. PROBLEM SETUP

We tackle the problem of jointly designing which con-
tents to cache at each small cell (SC) and what contents
to recommend to each user in the network. The goal
is to maximize the number of requests served with the
local caches either by (i) providing the user with her
original request (“direct” cache hit) or (ii) offering her an
alternative content related to her request and stored locally
(“soft” cache hit). Our model relies on the hypothesis that
since most of the material distributed by content providers
such as Netflix and YouTube is entertainment-oriented,
the user can be flexible and may accept (with a certain
probability) a substitute that is close enough to her original
request. Indeed, recommendations have shown to have a
significant impact on the user behavior when browsing
in entertainment-oriented platforms [16]. Thus our model
seeks to provide the user with good recommendations not
only from the point of view of showing relevant content
that might interest her, but that can also be retrieved easily
to have it fast and in good quality. We describe each of
the components of our system model in detail below.

A. Network and Caching Model

We consider a set of SCs M and a set of users I,
each of them connected to at least one SC in M. We
indicate whether a user i can retrieve content from a base
station m with the binary variables qim 2 {0, 1}. Our
model can be easily extended to consider the uncertainty
in the user-SC association by making qim 2 [0, 1] the
probability of finding user i in the range of SC m. Each
SC is equipped with a cache memory of capacity C, i.e.
that can store up to C contents1. We use variables xkm 2
{0, 1} to indicate whether content k is stored in the cache
of helper m. A user can only retrieve contents from the
SCs she is connected to and only if the cache contains the
file.

B. Content Model

We denote with K the catalogue of contents from which
the users make their requests. Since many pairs of contents
in K may be related to each other, the catalogue can be
represented by a graph where each content is a node and
related contents are linked by a weighted edge indicating
the level of relevance of one content with respect to the
other. For example, if K is a catalogue of music videos,
two songs of the same artist will be linked with a high
weight and two songs from different artists but of the same
genre will be linked with a low weight. Thus the relations
between the contents in K can be represented with an
adjacency matrix U = {ukn 2 [0, 1]}, k, n = 1, . . . ,K

indicating the relative value that a content has to replace
another. The values are normalized to have ukn = 1 if
n = k.

1We assume for simplicity that each content has roughly equal size
(e.g., video chunks), as is commonly assumed in related work [8], [15],
[17]. However, our method can be applied to variable size content as
well, giving rise to ‘knapsack-type’ constraints [18].

C. Recommendation-driven Content Access Model

In our model each user generates random i.i.d requests
for contents in catalogue K where content k is requested
with probability pk that might be different for each user
(in which case we will have p

i
k). In our simulations the

pk follow a Zipf distribution as shown in related literature
[19].

When a new request for a content k arrives from a user
i three things can happen:

1) Direct hit (qim = 1, xkm = 1): The content is found
in one or more caches that the user is connected to.

2) Soft hit (xkm = 0 8m/qim = 1; 9 n,m : ukn >

0, xnm = 1, qim = 1): The caches do not contain the
requested content k but the user is offered a maximum of
N alternative contents n (the recommendations) that are
related to the request and found in the caches. If the user
accepts to take any of the recommendations instead, a soft
hit occurs whose value depends on the ukn.

3) Cache miss (xkm = 0, ukn = 0 8i, k, n,m/qim =

1, xnm = 1): Neither the requested item nor any related
content is found in the accessible caches.

Our model assumes that given a request for content
k that is not locally available, the user will be sequen-
tially offered alternative contents n that she might accept
with a certain probability vkn 2 [0, 1]. It is reasonable
to assume that the probability of accepting a substitute
depends directly on how related the substitute is to the
content originally requested (and this is what standard
recommenders do, e.g. through collaborative filtering).
Thus, in the following we will assume vkn = ukn, and
discard the notation vkn. This model for soft cache hits
was first introduced in [8]. However, here we make the
assumption that the number of contents accessible by the
user is limited by the number of recommendations. While
in [8] it was assumed that any content stored in the cache
could be offered to the user as a substitute of her request,
this is actually unrealistic, since the number of contents
in the cache may be much larger than what is practical
to recommend through an application interface. This new
assumption, however, introduces an additional variable
to optimize over (the ykn) and an additional constraint
(⌃nykn  N ).

We also consider the possibility that even if two contents
k and n are related, the utility of getting one of them when
the other is requested depends on the user’s particular
preferences and thus it may differ between users. Thus in
the multi-user case we will consider individual matrices
U

i
= {ui

kn} for each user i. Since the utility of each
content has a direct impact on whether it is recommended
or not, we will define the user-specific recommendation
matrices Y

i
= {yikn} analogously.

Table I summarizes the notation of the variables de-
scribed above.

III. PROBLEM FORMULATION AND ALGORITHMS

Based on the previous problem description, it is clear
that there are two sets of variables to optimize: what is
cached where (variables xkm) and what to recommend
to each user (variables y

i
kn). We formalize our objective

below.



TABLE I
IMPORTANT NOTATION

M Set of SCs (|M| = M )
I Set of users (|I| = I)
qim User i is in range of SC (qim = 1) or not (qim = 0)
C Storage capacity of a SC
xkm Content k is stored in SC m (xkm = 1) or not (xkm = 0)
K Set of contents (|K| = K)
u

i
kn Utility of content n for a user i requesting content k

pk Probability of content k being requested

y

i
kn

Recommend n when i requests k (yikn = 1) or
not (yikn = 0)

A. Joint Optimization for a Single Cache

In order to better illustrate the problem’s hardness, our
methodology, and intuition behind it, we will first tackle
the problem of designing the caching and recommendation
variables in the single-user single-cache scenario, and we
will then extend this result to the multi-user femto-caching
setting.

Optimization Problem 1 (Joint Caching and Recommen-
dation - Single User Single Cache).

maximize
x,Y

KX

k=1

pk

"
1�

KY

n=1

(1� xn · ukn · ykn)
#

(1)

s.t.
KX

k=1

xk  C (2)

KX

n=1

ykn  N, 8k (3)

xn, ykn 2 {0, 1} (4)

In the problem above the objective function (1) com-
putes the expectation of a cache hit over all contents in
the catalog. A (potentially soft) hit occurs when a content
k is requested and a related (ukn > 0) content n that is
cached (xn = 1) is recommended (ykn = 1). In case of a
direct hit, we assume that ukk = 1 for all k, and we set
ykk = 1, i.e. a requested content is always recommended
if it is cached (and the user accepts it with probability 1,
since she got what she wanted). It is easy to see that the
product term in (1) corresponds to the probability that no
content n leads to a cache hit: this is clear if the content is
not cached (xn = 0), or it is not recommended (ykn = 0);
if it is cached and recommended, then the user rejects
it with probability 1 � ukn. Constraint (2) states that we
cannot cache more contents than the capacity of the cache
and constraint (3) limits the number of recommended
items to N . Altogether, our general objective could be
loosely described as “maximizing the cache hit rate for
the operator, while at the same time making sure that the
recommendations to each user are relevant”.

Previous works considering the possibility of enhancing
the cache hits through recommendations [8]–[10] solve a
different or partial version of this problem. In [9], [10] the
model captures the “distortion” by alternative recommen-
dations in a different manner (as a constraint outside the
objective), and the algorithm solves the problem for xn

only and amends the recommendations in a posterior step.
In [8] only the caching problem (choosing xn) is solved
without accounting for the selection of the limited number
of recommendations to show to the user. Problem 1 can

be reduced to that of [8] by setting N = C and making
ykn = 1 8k, n.

Note that the above problem is already NP, even for
a single cache and one user, since the simpler problem
in [8] considering variables xn only is already NP. How-
ever, the objective can be decomposed to optimize over
each variable separately and iteratively, which allows to
define a polynomial-time algorithm with approximation
guarantees. We remark that this is not always the case, and
submodularity methods such as those in [8], [15] cannot
always be extended directly on both sets of variables (this
is easy to see with a counterexample and was proved
formally in [10]).

Our method solves a primal decomposition of the joint
problem in (1): An outer problem that maximizes its
objective respect to x and an inner problem that, for a
given x, maximizes the objective in (1) respect to y. This
decomposition is equivalent to the original problem and
allows to define a “nested” algorithm where the outer loop
tries to find the best content to add to the cache, and
the inner loop selects the best recommendations for the
user for each potential cache configuration. We provide
the details in the following.

B. Submodularity-based Approximation Algorithm for
Problem 1

Let us first assume that the caching vector (variables
xn) are given and consider the subproblem of maximizing
(1) with respect to variables ykn. We will show first that
this can be done in polynomial time, so that it can be used
as a subroutine next.

Let us denote the terms in the objective as
fk(x, Y ) = 1�⇧n (1� xn · ukn · ykn) . (5)

Let us further denote as
f

⇤
k (x) = max

Y
{1�⇧n (1� xn · ukn · ykn)}. (6)

Lemma 1. Let
F

⇤
(x) = max

Y
{⌃kpk [1�⇧n (1� xn · ukn · ykn)]},

then F

⇤
(x) =

P
k pk · f⇤

k (x).

Proof. This follows easily from the fact that the con-
straints for Y (i.e. Eq. (3)) are decoupled per line, so find-
ing the optimal recommendations, given a caching vector,
decouples to K independent subproblems of maximizing
one term in the sum (corresponding to a row k of Y )
subject to the respective constraint (3) for line k.

Hence, we can focus on optimizing each term in the sum
(corresponding to each line k of matrix Y ) separately. Let
us denote set S as S = {j 2 1,K : xj = 1}, i.e. the set
of cached elements, and use notation f

⇤
k (S) and f

⇤
k (x),

interchangeably.

Lemma 2. Let u

(j)
k (S) denote the j

th order statistic of
elements {ukn : n 2 S}, i.e., the j

th largest element in
that set. Then,
f

⇤
k (S) = 1�(1�u

(1)
k (S))·(1�u

(2)
k (S)) . . . (1�u

(N)
k (S)).

(7)

Proof. Our choice per line consists of choosing at most
N contents to recommend, so as to maximize 1 �
⇧n2S (1� ukn · ykn). Assume that choosing the N el-
ements with the highest ukj is not optimal, as claimed



above, and recommending another element l 2 S leads to
a better objective. Let us further assume that l replaces the
N

th highest content. Then,
1� (1� u

(1)
k (S)) . . . (1� u

(N�1)
k (S)) · (1� ukl) >

1� (1� u

(1)
k (S)) . . . (1� u

(N)
(S))

) (1� u

(N)
(S)) > (1� ukl) ) u

(N)
(S) < ukl

which is clearly a contradiction, since we assumed that l
is not among the N -highest ukj values in set S.

It is easy to see that the proof holds (in fact strengthens)
when replacing any other order statistic(s) in Eq.(7).

Lemma 3. f⇤
k (S) is a monotonically non-decreasing func-

tion of |S|, the cardinality of set S.

Proof. The proof can be found in Appendix A.

Theorem 1. The function f

⇤
k (S) is submodular in S, for

any k.

Proof. The proof can be found in Appendix B.

Corollary 2. The objective of Problem 1, i.e., eq. (1) is
monotone submodular in x.

Proof. The objective of Problem 1 is equivalent to
maximize

x
F

⇤
(x) ⌘ maximize

x

X

k

pk · f⇤
k (x)

since it holds that [20]:
max
X,Y

g(X,Y ) = max
X

⇣
max
Y

g(X,Y )

⌘

Therefore the objective is a positive weighted sum of
monotone submodular functions f⇤

k (S), and hence the sum
is monotone submodular as well [18].

The submodularity and monotonicity properties of the
objective function of Problem 1 allow us to define a primal
decomposition algorithm with performance guarantees.
We propose Algorithm 1 to design the cache vector x and
recommendation matrix Y defined in the problem.

The Algorithm works as follows: in an outer loop (lines
4-13) it looks for the content j that maximizes the marginal
gain obtained from adding that content to the cache, as is
standard with greedy algorithms for submodular problems.
However, for each candidate content it performs an inner
loop that resorts the utility values for the new cache con-
figuration and chooses the recommendations in accordance
with Lemma 2 (function ChooseRecommendations() in
line 9), i.e. for each content k it selects the N cached
items with highest ukn and sets ykn = 1. The procedure
is then repeated until the cache is full.

Theorem 3 states the approximation guarantees of Al-
gorithm 1 for the Joint Caching and Recommendation
problem for a single cache:

Theorem 3 (Approximation Guarantee of Greedy). Let
xOPT be the optimal caching vector to Problem 1 and x

⇤

the caching vector returned by Algorithm 1.2 It holds that

F

⇤
(x

⇤
) >

✓
1� 1

e

◆
F

⇤
(xOPT )

Proof. As stated by Corollary 2, the objective function of
Problem 1 is monotone submodular, and the problem has

2Note that the optimal recommendation matrices YOPT and Y

⇤ are
immediately obtained from xOPT and x

⇤ respectively by recommending
the N cached elements with the highest utility (see Lemma 2)

Algorithm 1 Joint Caching and Recommendation Design
Input: U,N,C, p

Output: x, Y

1: x = 0K , Y = 0K⇥K

2: while t < C do
3: x

aux
= x,R = 0K

4: for j = 1, . . . ,K do
5: if xj == 1 then . If content j is already

cached
6: continue
7: else
8: x

aux
j = 1

9: Y = ChooseRecommendations(xaux
, N, U )

10: Rj = ⌃kpk(1�⇧n(1� x

aux
n · ykn · ukn))

11: x

aux
j = 0

12: end if
13: end for
14: j

⇤
= argmaxj R

15: xj = 1

16: end while
17: Y = ChooseRecommendations(x,N,U )
18: return x, Y

a cardinality constraint. It is known that for this class of
problems the greedy algorithm achieves in the worst case
a (1� 1

e )-approximation solution [18].

C. Joint Optimization: Multi-User Multi-Cache

The results obtained above for a single cache can be
extended to prove submodularity and monotonicity also
in the multi-user femtocaching (i.e. multi-cache) scenario.
In this new setting, a user i 2 I may be connected
to one or more helpers m 2 M. We will indicate this
association with the indicator matrix qim. We also consider
now that the utility of a content to replace another may
be user-dependent, and thus now we have a per-user
content relation matrix U

i
= {ui

kn} and an associated
recommendation matrix Y

i
= {yikn}. We will use U and

Y to denote the 3-dimensional arrays resulting from the
concatenation of the U

i and Y

i matrices, respectively. The
problem of maximizing the cache hit ratio with soft cache
hits and limited number of recommendations in this new
scenario is stated in Problem 2.

Optimization Problem 2 (Joint Network Caching and
User-specific Recommendation).

maximize
X,Y

KX

k=1

UX

i=1

p

i
k

"
1�

KY

n=1

 MY

m=1

(1� xnm · qim)+ (8)

⇣
1�

MY

m=1

(1� xnm · qim)
⌘
(1� u

i
kn · yi

kn)

�#

s.t.
KX

k=1

xkm  C, 8m 2 M (9)

KX

k=1

y

i
kn  N, 8k 2 K, 8i 2 U (10)

xnm, y

i
kn 2 {0, 1} (11)

The steps in the proof of Theorem 1 allow us to easily
extend the submodilarity and monotonicity results to the



multi-user femtocaching scenario of Problem 2, as shown
next.

Corollary 4. The problem of joint “femto-caching” (i.e.
multiple co-dependent caches) and recommendation is
also submodular (subject to matroid constraint).

Proof. The proof can be found in appendix C.

A greedy algorithm analogous to Algorithm 1 can
be defined for Problem 2, where now the outer loop
goes through all potential (content, cache) assignments
(see appendix C). This algorithm can guarantee a 1

2 -
approximation of the optimal solution, since Problem 2
is a maximization problem with a submodular objective
and a matroid constraint [21].

IV. EXPERIMENTAL RESULTS

We performed simulations with both synthetic and real-
world data to test the performance of our algorithms for
jointly designing the caching and the recommendation
(from now onward denoted JCR) against two alternative
approaches. These are two suboptimal decomposition al-
gorithms that correspond to existing approaches for which
the caching and recommendation decisions are taken sep-
arately:

Caching policies:
1) Soft Cache Hits (SCH): Chooses the contents to

store taking into account the possibility of having soft
cache hits but without considering the limited number of
recommendations. This method is identical to that in [8]
and implicitly assumes that all cached contents can be
recommended.

2) Popularity (POP): Caches the most popular contents
until the cache is full. This approach is completely blind
to the possibility of the user acquiring benefit through
accepting related content.

Recommendation policy: The recommendations in the
two approaches above are chosen after having filled the
cache with their respective criteria, and these are chosen
in accordance with Lemma 2 (for each content k, the N

contents with highest ukn are recommended).
For our implementation of the greedy-based approaches

(JCR and SCH) we used the lazy evaluations method,
which exploits the submodularity property of the objective
to significantly accelerate the greedy search process (due
to lack of space we redirect the interested reader to [18]
for a nice explanation of this method).

We performed experiments with synthetic data to ob-
serve the effect of the graph structure and the network
parameters on the performance of the algorithms. This
allowed us to appreciate the relative performance of the
schemes in a controlled environment for different setup
parameters before testing them on the real-world data.
Figure 1 shows these results for a synthetic content
graph generated with the Barabassi-Albert model and two
different scenarios: (1) catalog size K=500, cache size
C=50 and number of links added by each new node
n=10, and (2) K=1000, C=75 and n=2. In both cases the
recommendations were N=1, the popularity Zipf exponent
↵=1 and the ukn=0.5.

Figure 1 shows that JCR can beat the other two al-
gorithms in both scenarios and achieve over a 10% of
difference with the weakest, but there is a trade-off that
(with this particular graph structure) does not allow it to
significantly beat both at once. In Scenario 1 the high
C/K ratio and the large number of edges favor the
“confusion” of SCH, which adopts the strategy of trying to
accumulate many soft hits but in the end its performance
is constrained by the limited number of recommendations.
On the contrary, POP can accrue a lot of direct hits thanks
to the large C, and its CHR is further boosted by the soft
hits obtained thanks to the high connectivity of the graph.
The situation is reversed in Scenario 2: low connectivity
and low C/K ratio harm the performance of POP but push
SCH towards adopting a strategy more similar to that of
JCR, where the fractions of soft and direct hits are more
balanced than in Scenario 1. The differences between JCR
and SCH will be more notorious when N ⌧ C ⌧ K,
as in real scenarios. However, to appreciate them in our
limited-size datasets we had to set it to N = 1. As can be
expected, increasing N with C fixed makes SCH perform
more similarly to JCR, and identically in the limit N = C.

Fig. 1. Expected cache hit ratio (CHR) of the three algorithms tested in
the two synthetic scenarios. The fraction of CHR earned by direct and
soft hits have both been indicated in each bar in dark and light color,
respectively.

For our experiments with real data we considered four
datasets:

MovieLens (K=3306): for this dataset we built U from
the user ratings using collaborative filtering (see details of
preprocessing in [8]).

YouTube (K=2098) [22]: here we built matrix U set-
ting ukn to non-zero if k is in the list of recommended
videos for n or vice versa.

We also considered two datasets not related to video
content to further compare the algorithms:

Amazon Videogames (Azn-VG, K=5614) and Ama-
zon for Android applications (Azn-Apps, K=8229) [23]:
For these we built U from the “also bought” list of the
datasets, setting ukn 6= 0 when items k and n were bought
together.

In all cases we kept the largest component of the dataset
graphs, and we set the off-diagonal elements of U to ukn

= 0.5. Since the Amazon datasets did not contain the
content popularity distribution, we synthetically generated
random popularity values for each content following a Zipf
distribution with exponent ↵ = 2. In our experiments we
set the cache size C to be 5% the size of the dataset catalog
and N = 1 recommendation was shown to the user for each
content request.



Figure 2 shows the performance of our algorithms in the
single-cache scenario for all datasets. We have indicated
the fraction of cache hits coming from direct and soft hits
in dark and light colors, respectively. Our experiments with
the femto scenario (not included here) showed very similar
trends. Below we make some remarks on these results.

The joint approach outperforms the other two in all

cases. In all cases JCR achieves a higher CHR that the
other two approaches (both in real and synthetic datasets).
This demonstrates the importance of not only accounting
for the possibility of soft cache hits, but also for the limited
number of recommendations. It is worth noticing that even
if greedy has a worst case approximation in theory, in
practice it performs very close to optimal.

The magnitude of the difference between JCR and

the other algorithms depends very much on the source

of the greatest fraction of hits (direct or soft). Whether
JCR can beat one or both of the other algorithms by a
large difference depends on how it does so. In the YouTube
dataset, for example, all approaches perform similarly and
they go for a lot of direct hits. This suggests that for this
dataset the gains are dominated by the popularity values
and even JCR and SCH tend to adopt the strategy of
POP. Conversely, for MovieLens it seems that the graph
structure benefits the acquisition of soft hits. Thus in this
case the approaches accounting for soft hits (JCR and
SCH) prioritize this source of CHR and adopt a similar
strategy that significantly outperforms POP. The greatest
gains of JCR respect to the other two are better appreciated
when similar gains can be obtained either by caching
popular items or by exploiting the soft hits, as observed
in the Azn-VG and Azn-Apps datasets.

The overall performance of each algorithm and the

differences between them highly depend on the graph

structure. As shown in the experiment with synthetic data,
by just modifying the graph properties we can invert “who
JCR beats by a large difference”. The real traces provide
further insight into this effect, but due to their complex
structure interpreting what is happening in these cases is
harder. In future work we will further explore how graph-
specific properties affect the algorithm performance when
cache hits can be accrued through recommendations.

Fig. 2. Expected CHR of the three tested algorithms in all four datasets.

V. CONCLUSION

Caching and recommendation are two distinct technolo-
gies that impact on each other but that are currently op-
timized separately. We have proposed a simple algorithm

with provable approximation guarantees that can jointly
design the caching and recommendation strategies in very
general scenarios and consistently outperform schemes
that take these choices separately. We observed how the
magnitude of the gains highly depends on the graph
structure of the dataset. Future work will be dedicated to
better understand how the graph properties of the content
matrix impact on the algorithm performance when soft
cache hits are allowed.
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APPENDIX A
PROOF OF LEMMA 3

According to Lemma 2, for set S, it holds that f⇤
k (S) =

1� (1� u

(1)
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(2)
k (S)) . . . (1� u

(N)
k (S)). Now,

assume that we add some element i in S. Then, there exist
two cases:

(a) If uki  u

(N)
k (S), then f

⇤
k (S [ {i}) = f
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k (S), the

objective remains unchanged.
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where in (a) we used the fact that f

⇤
k (S)  1. This

completes the proof.

APPENDIX B
PROOF OF THEOREM 1

Consider the powerset F of {1, 2, . . . ,K}. Now, assume
that we add element i to some set S 2 F . We denote

�f(S, i) = f

⇤
k (S [ {i})� f

⇤
k (S). (12)

Then, we can consider the following cases:⇣
uki u

(N)
k (S)

⌘
) �f(S, i) = 0.
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⌘
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h
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(N)
k (S)

i
(13)

To show submodularity, we need to prove that
�f(A, i) � �f(B, i) � 0, for any sets A,B 2 F , such
that A ⇢ B, and any i 2 {1, 2, . . . ,K}. There are three
separate cases to consider:

(Case 1) �f(A, i) = �f(B, i) = 0: Adding element i
to either set A or B does not improve the objective (i.e.,
the new content i added in the cache, has a value uki that
is lower than the top N values of contents already in A

(or B)).



(Case 2) �f(A, i) > 0,�f(B, i) = 0: Then,
�f(A, i)��f(B, i) = (1�u

(1)
k (S)) . . . (1�u

(N�1)
k (S))·

[uki � u

(N)
k (S)], according to eq. (13), which is strictly

higher than 0.
(Case 3) �f(A, i) > 0,�f(B, i) > 0: In this case, it is

easy to see according to Lemma 3, that the highest order
statistics of sets A and B will coincide up to some order
m, and will differ from order m + 1 up to N Then, we
can write
�f(A, i) = (1� u

(1)
k (B)) . . . (1� u

(m)
k (B))(1� u
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Let’s denote the common term in the product as C,
and as CA and CB the different terms in each product,
respectively. Then,

�f(A, i)��f(B, i) =

= C

h
CA

⇣
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Eq. (16) follows from the fact that f⇤
k (S) is monotonically

increasing and thus
f

⇤
k (B) � f

⇤
k (A) ) 1�C ·CB � 1�C ·CA ) CA � CB .

Eq. (17) also follows easily from Lemma 3, as all order
statistics are monotonically increasing in the cardinality of
the considered set.

Finally, the case �f(A, i) = 0,�f(B, i) > 0 cannot
occur due to f

⇤
k being monotonically increasing in the

cardinality of the chosen set of elements. This concludes
the proof that �f(A, i) � �f(B, i) � 0 for all possible
cases, and thus that f⇤

k is submodular.

APPENDIX C
PROOF OF COROLLARY 4

We may denote the terms between the outer square
brackets as fki(X,Yi

) and f

⇤
ki(X) = maxYi

fki(X,Yi
).

We may then repeat the argument of Lemma 1 to show
that F ⇤

(X) =

P
k

P
i p

i
kf

⇤
ki(X), since we can maximize

the terms in the sum for each k and i independently.
Let us denote S = {(`,m), ` 2 {1,K},m 2 {1,M} :

x`m = 1} the pairs (content, helper) such that content ` is
stored in helper m. We will use the notation f

⇤
ki(S) and

f

⇤
ki(X) interchangeably. Furthermore, let Si ⇢ S be the

subset of pairs in S such that user i has access to a helper
m 2 S, i.e. qim = 1. Note that since a user cannot get any
benefit (cache hit) from a helper that she is not connected
to, f⇤

ki(S) = f

⇤
ki(Si), and furthermore

f

⇤
ki(Si) = 1�(1�u

(1)
k (Si))·(1�u

(2)
k (Si)) . . . (1�u

(N)
k (Si))

by the same arguments used in Lemma 2. Therefore if
we decouple the problem per user and take the elements
of S to be the pairs (`,m) we can repeat the steps of
Lemma 3 and Theorem 1 to show submodularity and
monotonicity for f

⇤
ki(S). Since the objective F

⇤
(X) of

Problem 2 is a positive weighted sum of f

⇤
ki(S), it is

monotone submodular as well.
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