
STORING DIGITAL DATA INTO DNA:
A COMPARATIVE STUDY OF QUATERNARY CODE CONSTRUCTION

Melpomeni Dimopoulou, Marc Antonini

Université Côte d’Azur
I3S, CNRS, UMR 7271

France

Pascal Barbry

Université Côte d’Azur
IPMC, CNRS, UMR 7275

France

Raja Appuswamy

Eurecom
Campus SophiaTech

France

ABSTRACT

The exponential increase of digital data that is being generated ev-
ery year along with the capacity and durability limits of conventional
storage devices are raising one of the greatest challenges for the
field of data storage. The use of DNA for digital data archiving is
a very promising alternative as the biological properties of the DNA
molecule allow the storage of a huge amount of information into a
very limited volume while also promising data longevity for cen-
turies or even longer. In this paper we present a comparative study
of our work with the state of the art solutions, and show that our
solution is competitive.

Index Terms— DNA coding, data storage, quaternary code, se-
quencing noise robustness

1. INTRODUCTION
In the last decade several studies have been carried out on the use
of DNA as a means of digital data storage to deal with the prob-
lem of storage capacity and durability. It is strongly believed that
the DNA is a molecule appropriate for the efficient storage of digital
data, which can outperform by far the existing storage means. More
precisely it has been proven that DNA can store about 215 petabytes
in a single gram of DNA. This is in line with the great chemical sta-
bility of the DNA molecule as long as it is protected from contacts
with water and oxygen. Indeed, scientists have managed to decode
the DNA of a woolly mammoth that had been trapped in permafrost
for 39,000 years. DNA is complex molecule corresponding to a suc-
cession of four types of nucleotides (nts), Adenine (A), Thymine (T),
Guanine (G), Cytosine (C). It is this quaternary genetic code that in-
spired the idea of DNA data storage which suggests that any digital
information can be encoded into a DNA sequence of A, T, C, G. The
main challenge lies in the restrictions imposed by the biological pro-
cedures of DNA synthesis (writing) and DNA sequencing (reading),
which are involved in the encoding process and introduce significant
error in the encoded sequence. Furthermore, the high expenses for
DNA synthesis and sequencing yield the need for finding solutions
for reducing the total cost for storing data into DNA. More precisely,
it cost today $7000 to synthesize 2 megabytes of data into DNA, and
another $2000 to read it by sequencing. Recent works tackle the
problem of digital data storage onto DNA. For example, in [1] there
has been a first attempt to store data into DNA while also provid-
ing a study of the main causes of biological error. In order to deal
with errors previous works in [2] and [3] have suggested dividing
the original file into overlapping segments so that each input bit is
represented by multiple oligos. However, this procedure introduces
extra redundancy and is poorly scalable. Other studies ([4],[5]) sug-
gest the use of Reed-Solomon code in order to treat the erroneous

sequences while in [6] a new robust method of encoding has been
proposed to approach the Shannon capacity. Finally, latest works
in [7] have introduced a clustering algorithm to provide a system
of random access DNA data storage. Nevertheless, all of these ap-
proaches mainly try to transcode a bit stream onto a DNA sequence
without taking into account the original input data characteristics. In
[8] we have made a first attempt to build an efficient image coder for
the storage of digital images into DNA. The proposed encoder uses
the classical DNA data storage workflow used in the state of the art
introducing an extra sub-part of image compression to allow control
of the high DNA synthesis cost. Furthermore as the encoding algo-
rithms suggested by previous works have some disadvantages when
used along with image compression methods we have presented a
new quaternary encoder which is suitable for the proposed work-
flow. In this work we present a more detailed theoretical study of the
efficiency and the advantages of our encoding algorithm comparing
it with the existing state of the art encoding methods for DNA data
storage. For further information about the experimental details and
results of our proposed solution, readers can refer to [8] where a wet
lab experiment has been carried out.

2. GENERAL OVERVIEW
DNA data storage is a new emerging field of research which can
be described by the general workflow of figure 1. The classical
workflow is composed by five main sub-processes. The first part
is the encoding of a sequence of digital symbols into a quaternary
sequence of A, T, C and G. Then the encoded sequences need to
be synthesized into DNA. As the DNA synthesis is error free under
the constraint that the strands to be synthesized are no longer that
200nts, the encoded data has to be cut into smaller chuncks (oligos)
using a formatting procedure in which special headers should also
be added denoting the order of the information in the initial long se-
quence. Then the oligos are synthesized into DNA in vitro and stored
into special capsules which prevent it from contacts with water and
oxygen, promising reliable storage for hundreds of years. To read
back the stored data we use some special machines that are called
sequencers. A main drawback of the sequencing part is the fact that
it is prone to errors and there are some particular ill-cases that pro-
duce high error rates. Those ill-cases can be avoided by respecting
the following rules in the encoding of the DNA sequence:

• No homopolymer runs. Repetition of the same symbol more
than 3 times should be avoided

• %A, T ≤ %G,C. The content of G and C should not be
greater than the percentage of as and Ts. A good ratio being
1.5 AT for 1 GC.

• No repetitions of short patterns.

Fig. 1: General workflow of DNA data storage

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

/k

40

42

44

46

48

50

52

54

56

58

60

p
e
rc

e
n

ta
g

e

%A,T for l=6 nts

%GC for l=6 nts

%A,T for l=7 nts

%GC for l=7 nts

Fig. 2: Evolution of the percentages of A,T (blue curves) and G,C
(red curves) for a centered Gaussian source of variance σ2 and mean
µ = k

2
(k denoting the number of different source symbols) in func-

tion of the source dynamic normalized by k. The full line and dashed
curves represent two different cases of codeword length l of 6 and 7
nucleotides respectively.

By avoiding the above cases the sequencing will be more reliable but
not error free. The addition of extra redundancy using PCR ampli-
fication (a specific biological process) that uses a special enzyme to
create many copies of the synthesized strands, may improve the re-
liability of the sequencing. Furthermore the sequencers themselves
are adding extra redundancy as they are producing copies while read-
ing the strands. For further information readers may refer to [9]. The
sequencing results in many copies of the original synthesized oligos
many of which will contain errors. Thus, one needs to select which
oligos are the less corrupted. Under the hypothesis that the most
frequent oligos will be the most representative ones, it is those se-
quences that will be selected for the decoding. In addition to this
selection, error correction can further improve the quality of the re-
constructed information. Finally using the inverse procedure of the
one followed during the encoding, the initial information is retrieved.
At this point it is important to point out the fact that this is the stan-
dard format of the digital data storage workflow and it is being used
in the literature.

3. PROPOSED ENCODING SOLUTION

3.1. Code construction

The encoding algorithm proposed in [8] for the construction of the
code C∗ is guided by the first two restrictions of DNA data coding
described in the previous section. The third and last restriction will

be handled in the following section. The main idea is the creation
of codewords from a set of duplets (pairs of symbols) which create
an acceptable sequence when assembled in a longer strand. More
precisely, the codewords are constructed by selecting elements from
the following dictionaries:

• C1 = {AT,AC,AG, TA, TC, TG,CA,CT,GA,GT}
• C2 = {A, T,C,G}

Then, the code C∗ is created by selecting elements from C1 and
C2. Codewords of an even length l are constructed only by selecting
l
2

pairs from dictionary C1. Codewords of an odd length are con-
structed by selecting l−1

2
pairs from C1 also adding a symbol from

C2 at the end of the codeword. To ensure that the code does not cre-
ate homopolymers, the dictionary C1 does not contain pairs of the
same symbol. This means that the pairs AA, TT, CC, and GG are
omitted as their consecutive repetition could create homopolymers.
Furthermore, to keep the C and G percentage lower or equal to the
one of A and T the pairs GC and CG are also not included. To ver-
ify this last claim we have computed the evolution of the A,T and
G,C percentages created using our code for a source of symbols that
follows a Gaussian distribution, in function of the variance σ2 of the
source. The result is illustrated in figure 2. As expected, we can see
that the amount of GC content tends to 40% while the one of AT
tends to 60% when the source becomes uniform (big values of σ).

3.2. Mapping

In order to encode a source sequence onto DNA we define the code Γ
as the application: Γ : Σ → C? where C? is a dictionary composed
byL ≥ 2k codewords ci of length l, and Σ the set of source symbols.
We denote Γ(si) = ci the codeword associated with a value si ∈ Σ.

When the source symbol distribution to be encoded is not uni-
form, repetition of the same symbol can occur allowing to the cre-
ation of pattern repetition in the DNA code. The use of existing
algorithms for the encoding of such a sequence into DNA would
thus create pattern repetitions. In this work, in order to avoid those
repetitions, we developed a new algorithm based on pseudorandom
mapping which associates a source symbol to more than one possi-
ble codewords. By doing so, we ensure the representation of each
symbol by at least two codewords so that in the case of repetition
of the same symbol there will be more than one possible codewords
that can be chosen so that no patterns are created. More precisely
our algorithm maps the index i to the codewords of C∗ as described
in figure 3b. The code Γ is constructed so that each value in Σ is
mapped to a set of different non-empty quaternary codewords in C?
following a one-to-many relation in such a way that it is uniquely
decodable. Since we ensure L ≥ 2k, the pseudorandom mapping
can at least provide two possible codewords for one input symbol.
More precisely, the mapping is described by the following steps:

1. Compute the number of times m that k can be replicated into
the total size L of the code C∗: m = bL

k
c,

2. The mapping of the value si to a codeword ci is given by:
Γ(si) = C∗(i+ rand(0,m− 1) ∗ k).

3.3. Discussion

The mapping described in the previous section requires L ≥ 2k
and thus ensures that every symbol in Σ must be represented at least
twice in the code C∗ to avoid pattern repetition. However, when
L ≤ 2k (as in the case described by figure 3a), to exploit the wasted
words in C∗ we can perform a multiple assignment of the wasted
codewords to the most frequent symbols in Σ. In the extreme case
where L ≥ 2k each symbol will have at least two assigned code-
words in C∗.

Fig. 3: Mapping symbols to codewords: (a) k ≤ L ≤ 2k and (b)
L ≥ 2k. The gray area corresponds to unused codewords, if they
exist.

4. COMPARISON TO THE STATE OF THE ART

DNA data storage is a new field of research which is expected to
make a breakthrough in the domain of “cold” digital data archiving.
As briefly described in section 1, some existing pioneering works
suggest different algorithms for encoding the digital information into
a quaternary sequence of A, T, C, G. In this section, we describe the
advantages of the encoding algorithm proposed in this work in com-
parison to existing encoding methods. The first attempt of encoding
digital data into DNA is described in [1] by the works of Church et
al. In this work each binary bit is encoded to one nucleotide giving a
total coding potential of 1 bit/nucleotide. To improve the coding po-
tential as well as the robustness of the encoding to errors following
works have adopted some more complicated encoding algorithms.
More precisely Goldman et al. in [2], have proposed an algorithm
that respects the constraint from section 2 of avoiding homopolymer
runs to improve the quality of sequencing. This encoding applies
a ternary huffman algorithm to compress the binary sequence into
a ternary stream of three symbols (trits). Then, each of the trits is
encoded into a symbol from the dictionary {A, T,C,G} each time
avoiding the symbol that has been previously used. However, unlike
our proposed algorithm, in the encoding of a quantized or a sparse
signal (as for instance the wavelet coefficients of a DWT transform
where a same quantized value can be consecutively repeated many
times), this encoding algorithm can create pattern repetitions which

Codec JPEG 2000 JPEG
PSNR (dB) 57 48.1 40.2 35.9 61.5 49.2 40.6 35.6

Our rate (bits/nt)
k ≤ L ≤ 2k

3.8 6.4 16 32 2.46 3.86 9.4 23.6

Our rate (bits/nt)
L ≥ 2k

2.7 5.3 13.3 26.6 2.05 3.21 7.7 19.72

Goldman et al.
rate (bits/nt) 2.9 5.7 14.4 28.8 2.25 3.53 8.6 22.4

Table 1: Comparison of Our encoder with L ≥ 2k and our encoder
with k ≤ L ≤ 2k to Goldman et. al. [2] Here the rate is expressed
in bits per nucleotide (bits/nt) to highlight the coding potential of the
different solutions.

is an ill-case leading to a higher error probability at the phase of
sequencing [10]. Another interesting work has been proposed by
Blawat et al [5].

This encoding proposes the use of 5 nucleotides to encode 8 bits
of information using a method for avoiding homopolymers. Further-
more the encoding inserts some randomization in the selection of the
codewords which can be exploited for avoiding pattern repetitions
as well as for correcting some types of errors that may occur. The
coding potential of this method is 5 nucleotides per 8 bits of binary
sequence which is equivalent to 1.6 bits/nt.To encode 8 bits (255 dif-
ferent symbols), our proposed algorithm also needs 5 nucleotides.
Nevertheless, a strong advantage of our algorithm is the fact that it
can be extended to the encoding of more than 8 bits of information
and it can be applied to any type of input data (binary or not). In
the works of Grass et al [4], the encoding is performed using Reed
Solomon codes. This encoding achieves a coding potential of 1.187
bits/nt introducing redundancy in order to introduce error correction
but similarly to [5] it is being applicable only in a binary stream.
Bornholt et al in [3] have applied the same encoding as in [2] im-
proving the encoding scheme and avoiding the fourfold redundancy
which is suggested by the latter and synthesizes each DNA chunk
in 4 shifted copies of the initial sequence. For further information
about the fourfold redundancy the reader can refer to [2].

Finally, Erlich et al [6] have implemented an encodig using
Fountain codes to reach a high coding potential. Similarly to most
of the previously mentioned works, despite the efficiency in terms
of information density, this type of encoding is only applicable to
binary information while also being very expensive in computational
cost. To evaluate the efficiency of our encoding algorithm we have
compared it to the one proposed by [2]. The choice of this work for
the comparison is for two main reasons. Firstly, the work proposed
by [2] is one of the most popular ones and is to our knowledge the
most widely used until this day. Secondly, similarly to our encoding,
the algorithm proposed by this work can be applied to any type
of symbols and is not limited to the encoding of binary data. For
the comparison we have used the JPEG and JPEG2000 codecs to
compress a set of 10 different images 1 of size 1510 × 5120 pix-
els to different compression rates. Each byte of the binary stream
produced by JPEG and JP200 codecs represents a different symbol
and thus k = 28 = 256. We then compare our algorithm to the
one proposed in [2] to encode the binary stream into a quaternary
sequence of A, T, C and G and have built the curves of coding po-
tential (expressed in nts/pixel) in function of the PSNR. The results
of this comparison are illustrated in figure 4. In table 1 we also show
the coding rates expressed in bits/nt for different values of PSNR.
More precisely, in our results we compare the encoder of [2] to the
one proposed in this work for two different cases of mapping. The

1https://people.xiph.org/˜tdaede/pcs2015_vp9_vs_
x264/png/

https://people.xiph.org/~tdaede/pcs2015_vp9_vs_x264/png/
https://people.xiph.org/~tdaede/pcs2015_vp9_vs_x264/png/

Parameter Church
et al. [1]

Goldman
et al. [2]

Grass
et al.[4]

Bornholt
et al.[3]

Blawat
et al. [5]

Erlich
et al.[6]

Our work
(raw data)

Input data
(Mbytes) 0.65 0.75 0.08 0.15 22 2.15 0.26

Coding potential
(bits/nt) 1 1.58 1.78 1.58 1.6 1.98 1.6

Redundancy 1 4 1 1.5 1.13 1.07 1
Error correction No Yes Yes No Yes Yes No

Table 2: Comparison to previous works

first case (L ≥ 2k), is the mapping of one symbol to at least two
different codewords as proposed in section 3.2, and the second case
(k ≤ L ≤ 2k) corresponds to the mapping of the most frequent
symbols to the codewords that are left unused as proposed in the
discussion in 3.3. Those results reveal the fact that our proposed en-
coder’s efficiency in terms of coding potential in the encoded stream
of nucleotides is comparable to the encoder proposed by Goldman
et al and even slightly better. It is also very interesting to point out
again that thanks to mapping repetition our encoder ensures that the
encoded sequence of nucleotides does not contain pattern repetitions
which endanger the reliability of the sequencing and can therefore
produce sequencing errors.

Furthermore, the encoding solution proposed in [2] embeds a
ternary Huffman tree to transform the output bitstream of some
codecs (like JPEG and JPEG2000) into a ternary sequence of 0,1
and 2 and then encodes it into a sequence of A, , C and G. Because
of the use of Huffman, the probabilities of the different input sym-
bols should be known or transmitted to the decoder as well. To the
contrary, our proposed quaternary coder produces a simple fixed
length code that doesn’t require the transmission of any side infor-
mation, allowing easier error correction in case of an insertion or
deletion error. Hence, given also the fact that the proposed algorithm
is flexible to modifications according to the encoding needs, those
results are very encouraging while proposing a highly robust code.
A comparison of the coding potential that has been reached using
the different encoding approaches proposed by the state of the art
are presented in table 2.

5. CONCLUSIONS
In this paper we have presented a further comparative study on a
new robust encoder which has been proposed in our work in [8]. In
this comparison, we have discussed the main advantages of our en-
coder including the fact that it can be applied on any type of source
symbols and not only on binary data as in the case of most of the
encoders proposed by previous works. Furthermore, our algorithm
avoids creating pattern repetitions which can create more errors in
the sequencing process. Finally we have proposed a comparison be-
tween our algorithm and the one of Goldman et al [2], by tanscoding
the output bitstreams of JPEG and JPEG2000 encoded images into
a quaternary sequence. This comparison has shown that the creation
of a codebook using our proposed encoder can outperform the algo-
rithm of Goldman et al. However our solution allows to deal with
pattern repetition. Summing up all the assets of our proposed encod-
ing, it is interesting to denote that such an algorithm would be ap-
propriate to use for image coding: unlike previous works which use
transcoding, it can be directly applied to the quantized coefficients
of some transforms. In addition to this, it can also avoid the pattern
repetitions that can occur due to the quantization. Consequently, this
algorithm is a good candidate to be embedded to a workflow for im-
age coding for DNA data storage.

Fig. 4: Comparison to the encoding algorithm of Goldman et. al.
For the encoding we consider each byte (8 bits, k=256) as a symbol
to be encoded. The figures show the evolution of the PSNR (dB)
in function of the Rate (nts/pixel) for different compression quali-
ties using the JPEG codec (top figure) and the JPEG2000 (bottom
figure).

6. REFERENCES

[1] George M Church, Yuan Gao, and Sriram Kosuri, “Next-
generation digital information storage in DNA,” Science, p.
1226355, 2012.

[2] Nick Goldman, Paul Bertone, Siyuan Chen, Christophe Dessi-
moz, Emily M LeProust, Botond Sipos, and Ewan Birney, “To-
wards practical, high-capacity, low-maintenance information
storage in synthesized DNA,” Nature, vol. 494, no. 7435, pp.
77, 2013.

[3] James Bornholt, Randolph Lopez, Douglas M Carmean, Luis
Ceze, Georg Seelig, and Karin Strauss, “A DNA-based archival
storage system,” ACM SIGOPS Operating Systems Review,
vol. 50, no. 2, pp. 637–649, 2016.

[4] Robert N Grass, Reinhard Heckel, Michela Puddu, Daniela
Paunescu, and Wendelin J Stark, “Robust chemical preser-
vation of digital information on DNA in silica with error-
correcting codes,” Angewandte Chemie International Edition,
vol. 54, no. 8, pp. 2552–2555, 2015.

[5] Meinolf Blawat, Klaus Gaedke, Ingo Huetter, Xiao-Ming
Chen, Brian Turczyk, Samuel Inverso, Benjamin W Pruitt, and
George M Church, “Forward error correction for DNA data
storage,” Procedia Computer Science, vol. 80, pp. 1011–1022,
2016.

[6] Yaniv Erlich and Dina Zielinski, “DNA fountain enables a
robust and efficient storage architecture,” Science, vol. 355,
no. 6328, pp. 950–954, 2017.

[7] Lee Organick, Siena Dumas Ang, Yuan-Jyue Chen, Randolph
Lopez, Sergey Yekhanin, Konstantin Makarychev, Miklos Z
Racz, Govinda Kamath, Parikshit Gopalan, Bichlien Nguyen,
et al., “Scaling up DNA data storage and random access re-
trieval,” bioRxiv, p. 114553, 2017.

[8] Melpomeni Dimopoulou, Marc Antonini, Pascal Barbry, and
Raja Appuswamy, “A biologically constrained encoding solu-
tion for long-term storage of images onto synthetic DNA,” in
EUSIPCO, 2019.

[9] I Illumina, “An introduction to next-generation sequencing
technology,” 2015.

[10] Todd J Treangen and Steven L Salzberg, “Repetitive DNA and
next-generation sequencing: computational challenges and so-
lutions,” Nature Reviews Genetics, vol. 13, no. 1, pp. 36, 2012.

	 Introduction
	 General overview
	 Proposed encoding solution
	 Code construction
	 Mapping
	 Discussion

	 Comparison to the state of the art
	 Conclusions
	 References

