

Beyza Bozdemir¹, Gamze Tillem², Melek Önen¹, Orhan Ermis¹

¹EURECOM, France

²Cyber Security Group, Delft University of Technology, The Netherlands

Privacy goals in PAPAYA

PAPAYA Objectives

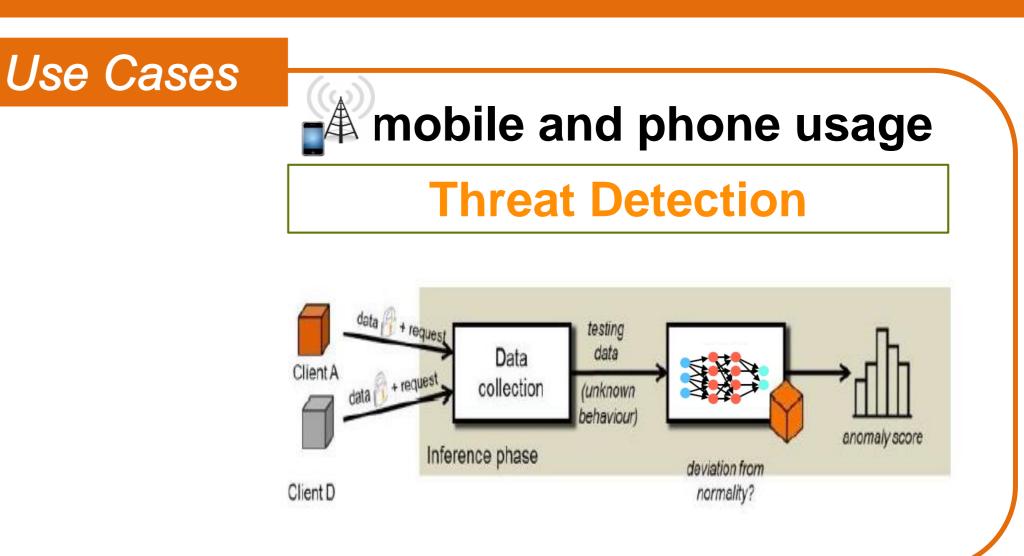
Privacy by Design

> PP analytics: Neural Networks (NN), clustering, statistics

Different Settings

- One data owner vs. multiple data owners
- > One querier vs. multiple queriers

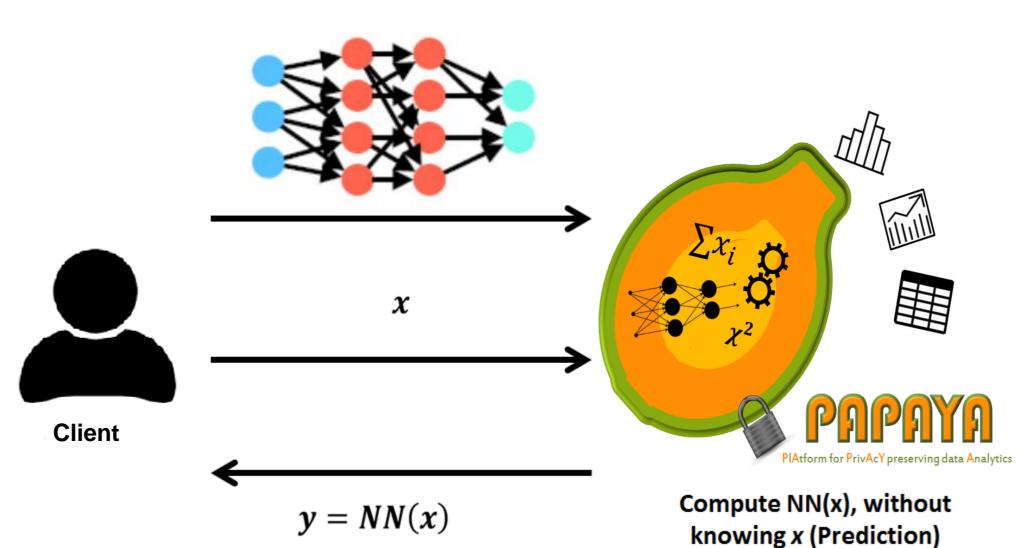
healthcare **Arrhythmia Detection**



Analytics example - Neural Network classification

NN Layers and Operations

- > Input Layer
- Hidden Layer
- Convolutional layer (matrix multiplications)
- Activation layer (sigmoid, tanh, etc.)
- Pooling layer
- Fully connected layer
- > Output Layer (softmax, etc.)



Privacy by Design Challenges

> Privacy vs. efficiency

Deep NN ⇒ Significant overhead with cryptographic tools

> Privacy vs. accuracy

Complex operations (sigmoid, softmax, etc.) \Rightarrow Not suitable to crypto tools

> Real Numbers

Privacy Preserving Neural Network Classification – Existing solutions

with Homomorphic Encryption [1]

- Non-interactive
- \triangleright Only linear operations (eg. AF is approximated to x^2)
- > Expensive in computation cost
- No communication cost

with Secure Two-party Computation [2]

- Interactive Client is involved
- > Linear operations and comparisons
- > Efficient in computation cost
- > Expensive in communication cost

Privacy Preserving Neural Network Classification: A Hybrid Solution

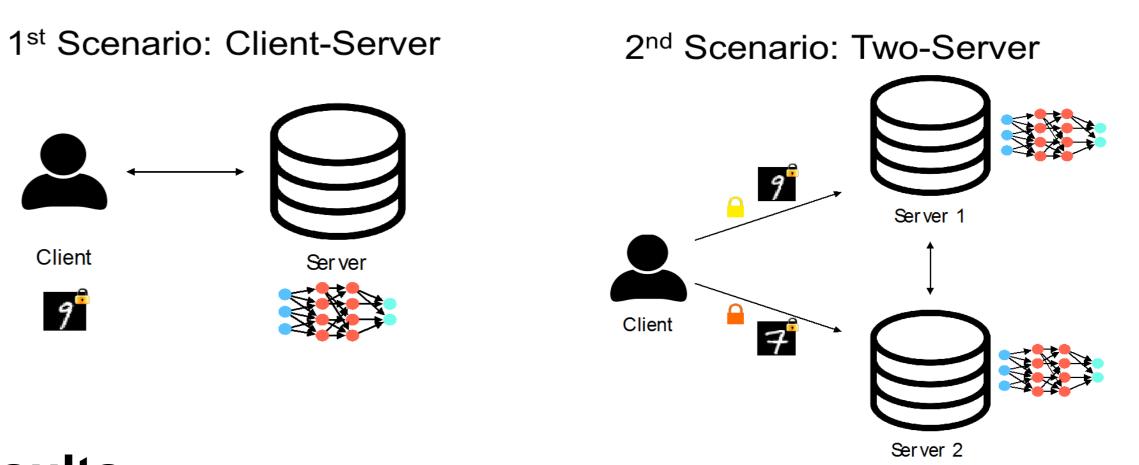
Hybrid Solution

Features

- Paillier for linear operations
 - ⇒ Optimized computational overhead
 - ⇒ Less computation time compared to [1]
- \triangleright Paillier for x^2
 - \Rightarrow New interactive protocol to compute x^2
- > 2PC for comparison only (ReLU case)
 - ⇒ Optimized communication overhead
 - ⇒ Less bandwidth usage compared to [2]
- > Similar level of accuracy as in [1, 2]

Input Convolution layer Activation layer (x2) Pooling layer (avg) Convolution layer Pooling layer (avg) Fully Connected layer Activation layer (x2) Fully Connected layer Output

Flexible solution: 2 settings



Results

- > Computation cost 30-fold better than [1]
- Communication cost 27-fold better than [2]

Technique	Computation Cost (s)	Communication Cost (MB)
HE [1]	297	372.2
2PC [2]	1.2	47.6
Hybrid Solution	10	1.73

References:

EURECOM

[1] Gilad-Bachrach, Ran, et al. "Cryptonets: Applying neural networks to encrypted data with high throughput and accuracy." International Conference on Machine Learning. 2016. [2] Liu, Jian, et al. "Oblivious neural network predictions via minionn transformations." Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2017.

