
FlexVRAN: A Flexible Controller for Virtualized
RAN over Heterogeneous Deployments

Robert Schmidt, Chia-Yu Chang, Navid Nikaein
Communication Systems Department, EURECOM, France

Email: {robert.schmidt, chia-yu.chang, navid.nikaein}@eurecom.fr

Abstract—Alongside the mobile network evolution toward the
fifth generation (5G) era, it is expected that the radio access
network (RAN) will be the most challenging technology domain
to serve multiple service requirements. Specifically, three critical
aspects are particularly emphasized: (i) heterogeneous RAN
deployments, (ii) RAN functional splits between disaggregated
entities, and (iii) sliced RAN for multiple services. To synthesize
these three different aspects, a unified and customizable control
framework is needed to serve both needs of infrastructure
provider and slice owner. To this end, we propose the FlexVRAN
control framework as an extension to our previous work to
provide a two-level abstraction scheme between the underlying
physical infrastructures, logical base stations (BSs), and slice-
specific virtual BSs. We present a proof-of-concept prototype
of the proposed FlexVRAN over the OpenAirInterface (OAI)
and FlexRAN platforms, and the evaluation results show the
applicability and feasibility of software-defined RAN control over
heterogeneous deployments in support of network slicing.

I. INTRODUCTION

Several key technologies are widely considered toward
5G, e.g., millimeter-wave, network densification, and massive
multiple-input multiple-output [1], incurring new challenges.
For instance, network densification seems promising to im-
prove area traffic capacity and connection density; however,
the ways to coordinate densely-deployed base stations (BSs)
and to efficiently utilize resource for multiple network services
are still under study. To this end, the 5G architecture shall be
designed with a certain level of flexibility via incorporating
two essential principles: software-defined networking (SDN)
and network function virtualization (NFV).

Based on the above two design principles, 5G will provide
a paradigm shift to establish a flexible communication system.
Unlike several previous generations, 5G not only provides
a specific radio access technology (RAT) but also utilizes
the available spectrum bands (e.g., millimeter-wave, sub-6
GHz) and access technologies (e.g., Wi-Fi, 4G, 5G) in a
heterogeneous manner. In this sense, 5G can potentially fulfill
diverse service requirements by flexibly hosting customized
end-to-end networks using cloud and edge infrastructures,
physical and virtual network functions (PNFs/VNFs) across
various domains such as the radio access network (RAN) and
the core network (CN).

Especially regarding the RAN, two critical points need
particular investigation to achieve the required flexibility and
programmability. First, the network shall be used efficiently
and independently via crafting a logically separated space for
each service, termed RAN slicing [2]. Second, each sepa-
rated network can flexibly centralize its RAN processing at

across splits
centralization

across the network
coordination, slicing

across RATs
heterogeneity

(a)

logical BS network
technology

virtual BS sub-network
slicing/services

physical RAN entity
infrastructure

1st abstraction

2nd abstraction

(b)

Figure 1. The 5G network can be deconstructed into various dimensions:
(a) a RAT-split-network view, generalizing into (b) the physical, the logical,
and the virtual dimensions.

the centralized/edge cloud to compose the BS functionalities
among disaggregated RAN entities (i.e., centralized unit (CU),
distributed unit (DU), radio unit (RU)), termed as the Cloud
RAN (C-RAN) [3], according to the functional splits as
documented in 3GPP TR 38.801.

Based on these observations, we identify three dimensions
that the future 5G RAN will have to serve, depicted in Fig. 1a.
Nevertheless, the control complexity and efficiency over the
RAN domain across these three dimensions is still an open
issue. Therefore, we envision a RAN controller that can bridge
these dimensions by unifying different infrastructures, RATs
and slices into a common network, while also revealing slice-
specific sub-network views. As shown in Fig. 1b, the physical
infrastructure using functional splits and various RATs can be
abstracted to compose a logical base station (lBS) spanning
the full protocol stack, e.g., 4G eNB or 5G gNB. Such an
lBS can be seen as an enabler for effective management and
control of the network by reducing network complexity of
heterogeneous deployments. This lBS is further abstracted to
provide a virtualized slice-specific sub-network for network
slices, while still maintaining user plane programmability.
Such a virtual sub-network is formed from a set of virtual
BS (vBS) to reveal slice-specific resources and states serving
the slice requirements. In total, this two-level abstraction can
not only unify the disaggregated RAN control for network
operators but also customize the service deployment for slice
owners.

In summary, this work proposes a novel controller for
virtualized RAN, FlexVRAN, to offer a unified and customiz-
able RAN service environment considering heterogeneous
deployments (e.g., distributed, disaggregrated, centralized) in
multi-vendor, multi-RAT environments. Moreover, the afore-
mentioned two-level abstraction approach can be provided



by FlexVRAN from disaggregated RAN entities, to lBSs, and
further to vBSs forming a virtual sub-network. To this end,
our contributions in this work are summarized as:
• Introduce a two level abstractions (logical and virtual) for a

heterogeneous RAN that is applicable to current (LTE) and
future (5G New Radio) RANs, and

• Present a realizable RAN controller design to support BS
slicing through virtualization and customization,

• Provide a concrete implementation of FlexVRAN over the
OpenAirInterface (OAI) LTE [4] and FlexRAN [5] platforms
along with both system performance realization and use-case
demonstration.
The paper is organized as follows: In Section II, we review

the related work and highlight the goals of FlexVRAN. In
Section III, we describe the proposed FlexVRAN system, and
elaborate on the design details in Section IV. The implemen-
tation is assessed in Section V, and we conclude the paper in
Section VI.

II. BACKGROUND AND STATE OF THE ART

In correspondence to the aforementioned 5G RAN evolu-
tion, a unified and customized control is necessary for the
RAN domain. Such control scheme is essential to provide an
agile RAN programmability over heterogeneous and disaggre-
gated RAN entities for each network slice. In practice, two key
enablers are highlighted: RAN virtualization, and software-
defined RAN (SD-RAN). The former allows to compose a
virtualized RAN with high flexibility and scalability to serve
multiple innovative services, while the latter can decouple
the control plane (CP) processing from the user plane (UP)
processing to facilitate the customized RAN slicing.

RAN virtualization stems from the NFV technique to allow
multiple vBSs to share common resources for multiple ten-
ancies. For instance, the work of [6] provides the functional
isolation in terms of the customized and dedicated CP func-
tionalities for each mobile virtual network operator. In [7],
a slice-based “network store” architecture is proposed as a
platform to facilitate the dynamic network slicing based on
the VNFs on top of underlay infrastructures. Moreover, the de-
ployment of virtualized RAN shall consider the disaggregated
resource. This RAN disaggregation is surveyed by the open
network foundation (ONF) to provide the virtualization and
slicing out of many disaggregated components. As highlighted
in [8], the RAN disaggregation can offer the potentials of
flexibility, scalability, upgradability and sustainability via the
RAN service chaining notion.

As the second enabler, the SD-RAN concept is studied
in several works arguing the level of centralization of CP
functionalities. Fully centralized architectures are proposed in
OpenRAN [9] and SoftAir [10] that may face the challenge
of real-time control given the inherent delay between the
controller and the underlying RAN. The SoftRAN architec-
ture [11] statically refactors the control functions into the
centralized and distributed ones based on the time criticality
and the required central view. Moreover, the SoftMobile
approach [12] abstracts these CP processing across network

layers based on their functionalities and can perform the
control functionalities through the application programming
interfaces (APIs). Furthermore, FlexRAN [5] realizes an SD-
RAN platform and implements a customized RAN south-
bound API through which programmable control logic can be
enforced with different levels of centralization, either by the
controller or RAN agent.

Orion [13] introduces the BS hypervisor to simultaneously
isolate slice-specific control logics and share the radio re-
sources. Moreover, the underlying PRBs are grouped into
vRBs to be provided only to the corresponding slice. It
exploits the prerequisites of function isolation and resource
virtualization, while it does not consider a common slicing
control system to support multi-cell coordination across dif-
ferent slices (e.g., in case of conflict) and different RAN
deployment scenarios (e.g., monolithic and disaggregated), nor
it provides control over the network topology to infrastructure
owners.

We can observe that these above studies only focus on a
part of enablers. To this end, the proposed FlexVRAN aims to
provide a controller that exposes different levels of monitoring,
control and coordination for infrastructure and slice owners
using a common description for BSs along physical, logical,
and virtual dimensions.

III. PROPOSED FLEXVRAN CONTROL FRAMEWORK

Based on the aforementioned objective of FlexVRAN, we
show how it can achieve the two-level abstraction from physi-
cal deployment over logical to virtual base stations in order to
form a virtual sub-network that is revealed to a slice. For our
purposes, we define a base station descriptor (BSD), whether
it is physical, logical or virtual, as a triple of:
Resources describing radio spectrum resources which can be
divided into bands, carriers, and physical resource blocks.
For our purposes, we assume that all types of resources are
provisioned by an orchestrator during the deployment phase.

Processing defining a set of functional blocks to perform
CP/UP operations, separated through functional splits and de-
scribed through capabilities, whether they are active, passive,
or customized.

State is the status of the BS CP/UP processing and the
associated configuration that are built up during runtime.
The FlexVRAN controller interacts with a number of split-

aware RAN runtimes [2], which act as a local execution envi-
ronment on top of each monolithic/disaggregated RAN entity.
The underlying heterogeneous physical RAN entities host a
number of RAN PNFs/VNFs for CP/UP processing1. They are
annotated with (a part of) the BSD and the runtime exposes
it to the FlexVRAN controller. Due to RAN disaggregation

1Some passive RAN entities do not possess the local RAN runtime due to
their limited processing capabilities and therefore rely on the in-band control
through the remote RAN runtime on top of other entities. For instance, as can
be seen in Fig. 2a, the RU relies on in-band control through the DU. To this
end, the operating functionalities and the relation toward other RAN entities
for these RUs are maintained explicitly by the connecting DU. Also, since
the RU is not activated without the DU, we assume the DU to possess the
radio resources.



(1) merge

FlexVRAN

R2

C2

S2

Resources

C1Processing

S1State

C3

S3

from
RU

from
DU

from
CU

lBS from
RU, DU, CU

Runtime: S1, S2

5G DU
C2 = MAC, RLC

R2

5G CU
C3 = PDCP, RRC

Runtime: S3

F15G RU
C1 = PHY

In-band
comm.Out-band

comm.

(2) create network topology

lBS1lBS2

lBS3

lBS4

lBS5

lBSn

(a)

(3) split

Res. Proc. State

lBS1

vBS1,1
vBS1,2
vBS1,3

lBS2

vBS2,1
vBS2,2

lBS3 vBS3,2

...

lBSn

vBSn,1

vBSn,3

(4) embed subnetwork

common slice 1 on
lBS1, lBS2 and lBSn→vRAN

vBS1,1
on lBS1

vBS2,1
on lBS2

vBSn,1
on lBSn

(b)

Figure 2. The operations of FlexVRAN to provide the (a) first-level abstraction with operations (1) and (2), and (b) second-level abstractions with operations
(3) and (4). Note that the lBS triple in the second-level abstraction only represents customized state, processing, and resources, while common BS functionality
remains in the lBS BSD. A missing topological relation between lBSs (dashed line) is present in the virtual sub-network.

coupled with heterogeneous deployments and technologies,
it might however not be possible or feasible to provide a
complete BSD of one BS. Hence, for the first-level abstraction
from physical to logical BS, the FlexVRAN controller performs
the operation of (1) merging BSDs of multiple RAN entities
into one lBS and (2) creating a view of the network topology
and annotating the lBS with the complete BSD, as shown in
Fig. 2a. By matching capabilities of different RAN entities
reflecting the actual chaining, i.e. if ∀Ci,

⋃
i Ci = Cfull with

Cfull being the capabilities needed for an operational BS,
the lBS is created as a unified representation of different
deployments with a common data model. After this, the overall
network topology is shown to represent the network cell
structure in its spatial distribution.

To account for the heterogeneity of the underlying system,
stemming from multi-vendor usecase-driven deployments, the
BSD is represented as a unified data model like the network
resource model defined by 3GPP in TS 28.541. The granularity
of information in the BSD remains the same through merging.
In fact, the first abstraction retains information granularity but
consolidates the heterogeneity of the physical infrastructure
(e.g., through functional splits) into mentioned data model
(though certain operations like a reconfiguration of splits might
need to expose information about splits, subject to access
control). Due to this direct relation of the physical and logical
representations, the infrastructure owner is able to perform a
direct mapping between those two. At this stage, it is possible
for the infrastructure owner to apply specific network operator
control logic and operate FlexVRAN as an SD-RAN controller.

The FlexVRAN controller performs a second-level abstrac-
tion from lBS to vBS, creating a virtual sub-network specific
to each slice owner. As shown in Fig. 2b, the controller
performs the operation of (1) splitting (slice-wise customiz-
able) lBSs into vBSs and (2) embedding them into the logical
network topology in order to reveal a customized view of the
virtual network (vRAN) to the slice owner. Splitting refers
to storing slice-specific state and configuration, customizing

functionality to tailor to the slice requirements, and possibly
reserving resources exclusively for such a slice in the BSD of a
vBS. This includes slice-specific control logic, to be enforced
by the slice owner, described in the BSD of a vBS, which
differs from the BSD of an lBS. Shared processing and state
remain available read-only for all slices, e.g., monitoring, as
long as there is no need for customization. Embedding on
the other hand maps the vBSs within the topology of lBSs
while decoupling it from the actual geographical position. This
withholds network topology information from slice owners2

and allows easier management of resource conflicts among
BSDs. Thus, a slice owner might see a network of vBSs which
do not expose the actual geographical position. For instance,
vBSs might be moved from one lBS to the next following the
user mobility pattern.

Through the capabilities, a slice owner is able to detect
which processing functions exist and might customize slice-
specific functionality, e.g., hand-over control logics. However,
the information granularity, e.g., for specific system parame-
ters, is adjusted depending on the specific SLA. For isolation
purposes, the mapping of vBSs to lBSs (and hence to the
physical infrastructure) or other slices is not possible from
the slice owner’s view. By revealing the embedded virtual
sub-network, a slice can retain its service requirements via
controlling its sub-network and the associated users.

Finally, one important task is to resolve conflicts occurring
across different levels of abstraction. In general, the conflicts
are resolved on the level that “creates” the corresponding level
of abstraction.

• The slice owner can handle the slice-specific conflicts in its
viewed vBSs.

• FlexVRAN is responsible for resolving the conflicts to
compose an lBS, e.g., the proper chaining of RAN enti-
ties to compose available lBSs, and between slices when

2A slice owner might be an untrusted third party, or physical user location
needs to be protected while verticals need to identify who uses their service.



FlexVRAN controller

1

RU

DU
CUF1

2

DU+RU

F1

3

Monolithic BS

4
5

RRU
RRU

BBU

(a)

FlexVRAN controller

1

lBS

2

lBS
3

lBS

4

lBS
5

lBS

(b)

FlexVRAN controller

1

4 vBSs

2

3 vBSs

3

4 vBSs

4

2 vBSs

5

3 vBSs

(c)

FlexVRAN controller

1

2
3

4
5

(d)

Figure 3. First- and second-level abstractions: (a) underlying RAN entities provided by the RAN runtime to the FlexVRAN controller, (b) the FlexVRAN
controller exposes a number of lBSs, (c) each lBS hosts a number of vBSs belonging to different tenants, (d) one slice owner applies its control logic toward
its viewed vBSs. The colors represent different slice owners.

customization attempts are made or new slices are to be
instantiated.

• The RAN entity resolves conflicts among the underlying
CP/UP processing, states and resources.

Nonetheless, there might be some conflicts that are not de-
tectable by a given level; thus, the underlying level may
reject or amend the control decisions. For instance, when
the slice owner aims to configure the spectrum bandwidth of
its vBS beyond the capability of the corresponding lBS, the
FlexVRAN controller can override this control decision in the
corresponding vBS configuration.

Fig. 3 represents the first- and second-level abstractions
as created by FlexVRAN. As for the first-level abstraction,
it merges the information of RAN entities into lBS BSDs
and provides the topological information. The second-level
abstraction further includes the RAN slicing notion by splitting
lBS into vBS and embedding a virtualized and customized
sub-network into the logical network topology for each slice
owner.

IV. DESIGN ELEMENTS OF FLEXVRAN

FlexVRAN follows a hierarchical design suitable to realize
real-time operation, and it is composed of a centralized con-
troller and RAN runtime, one or two for each BS. The runtime
might act as a local controller with a limited network view,
handling control delegated by the controller, or in coordination
with other runtimes and the controller.

A. RAN runtime

The RAN runtime [2] aims to provide a flexible execution
environment to run multiple virtualized RAN instances with
the requested levels of isolation and sharing of the underlying
RAN modules for each slice instances. It can flexibly support
various slice requirements (e.g., isolation) and elastically im-
prove multiplexing benefits (e.g., sharing) in terms of (1) radio
resource abstractions, (2) customized processing composition

for modularized RAN, and (3) flexibility and adaptability to
both monolithic and disaggregated deployments. On one hand,
it allows the slice owner to create and manage slices, to
perform customized control logic and CP/UP processing, to
operate on a set of virtual resources or performance indicators,
and to access the respective CP/UP states. On the other hand, it
enables the infrastructure owner to efficiently and dynamically
multiplex resources, processing, and states among multiple
tenants to reduce the expenditures.

Moreover, the RAN runtime needs to provide several in-
formation to the FlexVRAN controller to compose the lBS.
In practice, the RAN runtime provides its operator identity,
underlying RAN entities’ capabilities and RAT-specific infor-
mation, supported user capability, the RAN runtime service
capability, and so forth. The information from different RAN
runtimes will be used to abstract the underlying physical
infrastructure deployments into lBSs.

B. FlexVRAN controller

The FlexVRAN controller is the core element in our en-
visioned framework, and its components and interfaces are
provided in Fig. 4. It has five main services for managing
BS-specific or common information: (a) lBS manager, (b)
virtualization manager, (c) task manager, (d) event notification
service, and (e) conflict resolver.

First, the lBS manager is responsible to compose the lBS
via interacting with the underlying RAN runtime instances
through the south-bound interface by performing the opera-
tions of the first abstraction as described. For instance, it can
merge the underlying RAN entities’ capabilities to form an
lBS comprising the baseband and protocol processing ranging
from PHY up to RRC for both monolithic and disaggregated
deployments. Note that the controller will withhold partial
information of a BS and wait for the corresponding RAN
runtime to connect. This abstraction is mainly used by the
infrastructure provider gaining a simplified view on the RAN



Northbound Interface

Slice 1 Slice 2 Slice n. . .

Southbound Interface

FlexVRAN controller

lBS Manager

lBS Information Base
1st Abstr.
Op. 1+2

Virtualization Manager

vRAN12nd Abstr.
Op. 3+4

vRAN2 vRANn. . .

Conflict Resolver

Task Manager

Event Notification

Applications

BS-specific BS-common

Runtime
5G CU

PDCP, RRC

Runtime
5G DU

MAC, RLC
F15G RU

PHY

Runtime
5G BS

L1, L2, L3

Figure 4. Components and interfaces of FlexVRAN controller.

including topological information. The formed lBSs will then
be stored in the lBS information base and can be updated on-
the-fly according to the dynamics of physical infrastructures
and their capabilities.

Moreover, these lBSs can be treated as resources to be
further abstracted as vBSs into vRANs based on the needs of
the slice owner. This second-level abstraction is done by the
virtualization manager, which abstracts the vRANs as virtual
sub-networks based on slice owner’s request. The northbound
interface of the controller can restrict a slice’s access to its
vRAN, therefore isolating slices from each other through
access control. Different levels of virtualization is supported
by managing a slice context in the corresponding vRAN, such
as the slice service level agreement (SLA) and customization
configuration.

There are multiple common services provided by the
FlexVRAN controller. In the first place, the task manager
handles messages from the underlying RAN runtime instances.
Via the southbound interface, the RAN runtime can update its
capability and register itself toward the FlexVRAN controller
together with the aforementioned information in Section IV-A.
On the other hand, the task manager can perform basic create,
read, update, and delete operations on the slice data from the
provided network slice descriptor defining the required vBS,
processing, resources, and states (as agreed between the slice
owner and the network operator). When the slice admission
control is finished, a slice can start to consume the services
provided by the FlexVRAN control framework.

The event notification service provides updated information
to managers and applications at the controller with the required
level of granularity. It can happen in a periodic process with a
larger window T than the underlying operating period, or on
per event basis. For instance, when one physical infrastructure
is deactivated, the corresponding life-cycle event will be
notified toward the corresponding slice vBSs.

The conflict resolver provides a shared control logic for
multiple slices. It aims to admit the customized control logic
from different slice-specific control applications, resolve their

conflicts, and enforce a feasible policy to underlying lBSs. For
instance, two different slices may want to balance the load
for its vBSs that are mapped from the same lBS; however,
these two control decisions will incur a contradiction due to
the limitation of the maximum number of supported users. To
this end, the conflict resolver can either apply a policy-based
method to decide which control application to be executed or
use a learning-based method to generate a predictive model
from the historical lBS state for decision making.

Finally, the FlexVRAN controller has both north- and south-
bound interfaces toward each slice instances and the RAN
runtime, respectively. In the south-bound, the protocol mes-
sages are exchanged through an asynchronous interface. Since
the FlexVRAN controller has no a priori knowledge about the
connected RAN runtime, RAN runtime information (identity
and capability) is exchanged in between. The north-bound
interface connects a slice to the FlexVRAN controller; through
this, a slice runs in a separate process, either local or remote,
and the interface provides a communication channel between
a slice and its vRAN. Hence, each slice can be executed in
isolation from each other either at the host or guest level
leveraging well-known OS and virtualization technologies,
such as containers or virtual machines.

V. EVALUATION AND CASE STUDY

To validate the FlexVRAN control framework, we built a
prototype of the FlexVRAN controller3 supporting multiple
RAN runtime instances based on the OpenAirInferface [4] and
FlexRAN [5] platforms. In this work, we also developed the
F1 functional split between the RLC and PDCP sub-layers,
which is standardized by 3GPP in TS 38.470, in OAI4. The
developed controller prototype supports both monolithic and
disaggregated deployments. Our experiments are carried out
using a USRP B210 software-defined radio connected to an
x86 infrastructure, in which OAI-based RAN and CN are
deployed with the FlexVRAN controller and RAN runtime.
Also, we use commercial-off-the-shelf (COTS) Nexus 6P and
Pixel 2 as user equipments (UEs) connected to the BS using
frequency division duplex (FDD) mode with band 7.

A. Framework feasibility evaluation

First of all, we assess the feasibly of the proposed control
framework by investigating the CPU and memory usage over-
head at the RAN runtime, when connecting a BS under both
monolithic and disaggregated deployment scenarios, toward
the FlexVRAN controller in Fig. 5. These measurements of
the RAN runtime overhead can justify the deployability of
the RAN runtime together with the underlying RAN entities
(i.e., BS, CU, or DU), while the FlexVRAN controller could be
deployed on another physically separated x86 infrastructure.
Moreover, we evaluate this overhead in two different scenarios:
(1) zero connected UE (i.e., no user traffic), and (2) one
connected UE saturating DL throughput with a video stream.

3Tag v2.1 of FlexRAN: https://gitlab.eurecom.fr/flexran/flexran-rtc
4F1 split in OAI develop: https://gitlab.eurecom.fr/oai/openairinterface5g/,

measurements were done with commit 2f23047



NO SPLIT F1 SPLIT

34
.7

65
.7

33
.3

65
.9

0.
0

9.
8

8.
1

13
.4

10
.0

10
.6

11
.1

9.
7

0 UE 1 UE 0 UE 1 UE

0
2
0

4
0

6
0

8
0

1
0
0

C
PU

us
ag

e
(%

)

BS DU CU

Monolithic R. CU R. DU R.

NO SPLIT F1 SPLIT

10
47

.1

10
47

.9

10
47

.0

10
50

.0

23
.4

24
.533
.5

33
.7

33
.3

33
.5

0 UE 1 UE 0 UE 1 UE

0
5
0
0

1
,0
0
0

M
em

or
y

us
ag

e
(M

B
)

BS DU

CU Runtime

Figure 5. Comparison of OAI and FlexVRAN-enabled OAI. Note that the sum
of memory usage of RAN runtimes is given for disaggregated deployment.

0 UE 1 UE 2 UE 3 UE 4 UE

0
0
.2
5

0
.5

0
.7
5

1
1
.2
5

0.62

0.47

0.33

0.18

0.027

0.94

0.72

0.49

0.27

0.027

Si
gn

al
in

g
ov

er
he

ad
(M

bp
s)

R
un

tim
e
→

Fl
ex

V
R

A
N Monolithic R.

DU R.

CU R.

0.016

0.10

0.19

0.26

0.35

Figure 6. Signaling overhead from RAN runtime to FlexVRAN controller.

Further, the UE statistics and runtime configuration data to the
controller were sent every 10 ms and 1 s, respectively.

We see that both monolithic (BS) and disaggregated (DU,
CU) deployments have similar CPU usage. As a side note,
we can observe that the extra processing for F1 interface
of the disaggregated deployment is negligible. However, the
two RAN runtimes of the disaggregated deployment (CU
runtime and DU runtime) will both interact with the FlexVRAN
controller, equally contributing to the CPU usage, whereas
only one (BS) runtime is needed in the monolithic case.

As for the memory, we can first observe the overall memory
usage of the disaggregated deployment (DU and CU) being
slightly higher than the monolithic one (BS). The reason
behind this is the extra memory overhead for the two RAN en-
tities. Moreover, the RAN runtime introduces small overhead
on the overall memory usage, which justifies the deployability
of the RAN runtime over the underlying disaggregated RAN
entity. Also, the number of connected UEs has little impact
on the memory usage and it will not impact the applicability
of the proposed FlexVRAN framework.

Furthermore, we investigate the signaling overhead for
exchanging the control information between RAN runtime and
FlexVRAN controller in Fig. 6, now sending statistics every
1 ms. Such signaling overhead is crucial when deploying the
FlexVRAN control framework over disaggregated infrastructure
with a capacity-limited fronthaul/midhaul network. We can see
that the generated overhead mainly depends on the number
of UEs in order to exchange user information periodically.
However, the signaling overhead remains far lower than user
plane traffic which might attain Gbps. For disaggregated
deployments, the additional overhead is negligible.

10
MHz

Res.

caps

Proc.

lBS1

stats
conf

State –

Res.

–

Proc.

–

State

(default) vBS1,1

10
Mbps – IMSI vBS1,2

DU

CU

Figure 7. A BSD as merged from DU and CU for the small cell, then split
into two vRANs (one default, one with resource reservation).

B. A slice owner’s virtual sub-network through FlexVRAN

To illustrate the advantages of the controller framework
especially for the slice owner, we consider a RAN network
composed of two BSs in direct neighborhood using different
operating frequencies in the same band. One BSs is a mono-
lithic deployment as macro cell with a single runtime and
5 MHz bandwidth and the other is a small cell using the F1
functional split with each a runtime for DU and CU, operating
on 10 MHz bandwidth. Both deployments serve one UE. All
three runtimes are connected to the FlexVRAN controller which
discovers two full capability sets and merges three RAN
runtimes into two lBSs (cf. operation 1, Fig. 2a) with associ-
ated BSD. Further, FlexVRAN can build the topology of the
network (cf. operation 2). More specifically, it only contains
two unconnected lBSs due to inter-frequency deployment.

Regarding the deployed service, one slice owner aims to
provide a video service with reserved resources for a specific
event via requesting 10 Mbps of maximum guaranteed bit rate,
and then associates its UEs to the corresponding vBS using
their IMSIs. The applied FlexVRAN controller APIs are used
as follows:

POST /install_vnetwork/10000000
POST /associate_ue_vnetwork/3 ←↩

--data-binary @imsi_list.json

The controller calculates the needed resource share, compares
it with existing slices in both lBSs (each with a default slice
that can be shrunk), and sends a command to the RAN
runtimes to split the lBSs (cf. operation 3, Fig. 2b). The
resulting vBS’s BSD contains configuration of associated UEs
in the state, with no customized processing and dedicated
resources reserved for the requested bit rate. An example
for such a vBS BSD split from a lBS BSD is given in
Fig. 7. As discussed in Section III, an instantiation of slices
in the runtime is subject to conflict management that might
override a decision. If the instantiation succeeds, the controller
embeds the sub-network into the previously built topology
using two inter-connected vBSs to reflect that both vBSs serve
instantiated video services in the same vRAN (cf. operation 4).

The reduction of control complexity through FlexVRAN
controller is depicted in Fig. 8. A single read for the requested
vRAN information can substitute multiple status read opera-
tions from RAN entities. Also, the following request write
and optional check operations can largely reduce the control
overhead of programming the RAN.

We measure UE performance based on the above exper-
iment setup for throughput and delay jitter using iperf as
well as latency using ping with 20 kB packets and an inter-



Read

Write

Check

(a)

Read BS

Read DU

Read CU

Config.
Decision Write DU

Write BS

Write CU

Check BS

Check DU

Check CU

(b)

Figure 8. Reduced control complexity of slice creation: (a) With FlexVRAN
(b) Without FlexVRAN.

Macro Small
0

10

20

30

9.8 9.9
7.3

24.9

D
L

T
hr

ou
gh

pu
t

(M
bp

s)

Macro Small
0

0.2

0.4

0.6

0.8

1
0
.5
7

0
.5

0
.6
6

0
.5
1

D
L

D
el

ay
Ji

tte
r

(m
s)

Macro Small
0

20

40 3
4
.4

3
5
.4

3
3
.2

3
5
.1

R
T

T
(m

s)

Figure 9. Comparison of a monolithic macro cell using 5 MHz and an F1-
split small cell using 10 MHz. The dark bars show the performance of the UE
in the video slice, the white ones show the UE using the default slice.

packet interval of 200 ms. The results shown in Fig. 9 indicate
that the slice owner’s requested throughput (dark bars) is
almost achieved for both UEs for both deployment types.
Deviations from the requested bit rate are mainly due to
wireless channel variations as well as the fact that our current
implementation rounds a bit rate to resource block groups,
leading to “scheduled” bit rates that deviate from the requested
bit rate. In both cases, similar jitter and delay performance are
attained. Note the small additional delay overhead due to the
additional hop between CU and DU. We highlight the fact that
even with heterogeneous deployments, the proposed control
framework can not only use one simple API call to instantiate
the requested slice but also facilitate slice owners to customize
and control their own virtualized sub-networks.

Finally, we show how a slice owner can control its slice
through the vBS BSD. As shown in Fig. 10, the video slice
owner requests a bit rate of 18 Mbps which is later increased
to 22 Mbps, then 25 Mbps. Indeed, the requested bit rate
is attained shortly after reconfiguration which confirms the
applicability and feasibility of the proposed FlexVRAN control
framework.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we propose the unified and customized
FlexVRAN control architecture framework to deal with the
ever-evolving RAN deployments for multiple services. It pro-
vides a two-level abstraction scheme to serve the needs of both
infrastructure providers and slice owners without introducing
significant overhead in disaggregated and monolithic deploy-
ments. Finally, we implement its prototype over the OAI and
FlexRAN platforms and show its feasibility.

In the future, we plan to extend the current work in the fol-
lowing directions: (1) a theoretical analysis of the abstractions,
(2) an evaluation of “on-the-fly” change of functional splits,
and (3) an investigation of the scheduling impacts of multiple
services over the devised FlexVRAN control framework.

0 5 10 15 20 25 30
0

10

20

30
change to 22 Mbps change to 25 Mbps

Time (s)

T
hr

ou
gh

pu
t

(M
bp

s)

Video slice default

Figure 10. Network throughput after successive writes to the BSD of the
corresponding vBS.

ACKNOWLEDGMENT

This work receives funding from the European Union’s
Horizon 2020 Framework Programme under grant agreement
No. 762057 (5G-PICTURE) and No. 761913 (SliceNet).

REFERENCES

[1] M. Shafi et al., “5G: A tutorial overview of standards, trials, challenges,
deployment, and practice,” IEEE J. Sel. Areas Commun., vol. 35, no. 6,
pp. 1201–1221, Jun. 2017.

[2] C.-Y. Chang and N. Nikaein, “RAN runtime slicing system for flexible
and dynamic service execution environment,” IEEE Access, vol. 6, pp.
34 018–34 042, Jun. 2018.

[3] A. Checko et al., “Cloud RAN for mobile networks - A technology
overview,” IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 405–426,
Firstquarter 2015.

[4] N. Nikaein et al., “OpenAirInterface: A flexible platform for 5G re-
search,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 5, pp.
33–38, Oct. 2014.

[5] X. Foukas et al., “FlexRAN: A flexible and programmable platform
for software-defined radio access networks,” in Proc. of the 12th
International on Conference on Emerging Networking EXperiments and
Technologies (CoNEXT ’16), Dec. 2016, pp. 427–441.

[6] Y. Zaki et al., “LTE mobile network virtualization,” Mobile Networks
and Applications, vol. 16, no. 4, pp. 424–432, Aug. 2011.

[7] N. Nikaein et al., “Network store: Exploring slicing in future 5G
networks,” in Proc. of the 10th International Workshop on Mobility in
the Evolving Internet Architecture (MobiArch’15), Sep. 2015, pp. 8–13.

[8] A. Tzanakaki et al., “Optical networking interconnecting disaggregated
compute resources: An enabler of the 5G vision,” in Proc. of 2017
International Conference on Optical Network Design and Modeling
(ONDM), May 2017, pp. 1–6.

[9] M. Yang et al., “OpenRAN: A software-defined RAN architecture via
virtualization,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 4,
pp. 549–550, Aug. 2013.

[10] I. F. Akyildiz et al., “SoftAir: A software defined networking architecture
for 5G wireless systems,” Computer Networks, vol. 85, pp. 1–18, Jul.
2015.

[11] A. Gudipati et al., “SoftRAN: Software defined radio access network,”
in Proc. of the Second ACM SIGCOMM Workshop on Hot Topics in
Software Defined Networking (HotSDN ’13), Aug. 2013, pp. 25–30.

[12] T. Chen et al., “SoftMobile: Control evolution for future heterogeneous
mobile networks,” IEEE Wireless Commun., vol. 21, no. 6, pp. 70–78,
Dec. 2014.

[13] X. Foukas et al., “Orion: Ran slicing for a flexible and cost-effective
multi-service mobile network architecture,” in Proceedings of the 23rd
Annual International Conference on Mobile Computing and Networking
(MobiCom ’17), 2017, pp. 127–140.


