
1

Multi-Agent Deep Reinforcement Learning for
Large-scale Traffic Signal Control

Tianshu Chu, Jie Wang, Lara Codecà, and Zhaojian Li Member, IEEE

Abstract—Reinforcement learning (RL) is a promising data-
driven approach for adaptive traffic signal control (ATSC) in
complex urban traffic networks, and deep neural networks
further enhance its learning power. However, centralized RL
is infeasible for large-scale ATSC due to the extremely high
dimension of the joint action space. Multi-agent RL (MARL)
overcomes the scalability issue by distributing the global control
to each local RL agent, but it introduces new challenges: now the
environment becomes partially observable from the viewpoint of
each local agent due to limited communication among agents.
Most existing studies in MARL focus on designing efficient
communication and coordination among traditional Q-learning
agents. This paper presents, for the first time, a fully scalable and
decentralized MARL algorithm for the state-of-the-art deep RL
agent: advantage actor critic (A2C), within the context of ATSC.
In particular, two methods are proposed to stabilize the learning
procedure, by improving the observability and reducing the
learning difficulty of each local agent. The proposed multi-agent
A2C is compared against independent A2C and independent
Q-learning algorithms, in both a large synthetic traffic grid
and a large real-world traffic network of Monaco city, under
simulated peak-hour traffic dynamics. Results demonstrate its
optimality, robustness, and sample efficiency over other state-of-
the-art decentralized MARL algorithms.

Index Terms—Adaptive traffic signal control, Reinforcement
learning, Multi-agent reinforcement learning, Deep reinforcement
learning, Actor-critic.

I. INTRODUCTION

As a consequence of population growth and urbanization,
the transportation demand is steadily rising in the metropolises
worldwide. The extensive routine traffic volumes bring pres-
sures to existing urban traffic infrastructure, resulting in every-
day traffic congestions. Adaptive traffic signal control (ATSC)
aims for reducing potential congestions in saturated road
networks, by adjusting the signal timing according to real-time
traffic dynamics. Early-stage ATSC methods solve optimiza-
tion problems to find efficient coordination and control poli-
cies. Successful products, such as SCOOT [1] and SCATS [2],
have been installed in hundreds of cities across the world.
OPAC [3] and PRODYN [4] are similar methods, but their
relatively complex computation makes the implementation less
popular. Since the 90s, various interdisciplinary techniques

Tianshu Chu and Jie Wang are with the Department of Civil and
Environmental Engineering, Stanford University, CA 94305, USA. Lara
Codecà is with the Communication Systems Department, EURECOM,
Sophia-Antipolis 06904, France. Her work was partially funded by the
ANR project ref. No. ANR-11-LABX-0031-01 and EURECOM partners:
BMW Group, IABG, Monaco Telecom, Orange, SAP, ST Microelec-
tronics and Symantec. Zhaojian Li is with the Department of Mechan-
ical Engineering, Michigan State University, East Lansing, MI 48824,
USA. Email: cts198859@hotmail.com, jiewang@stanford.edu,
Codeca@eurecom.fr, lizhaoj1@egr.msu.edu.

have been applied to ATSC, such as fuzzy logic [5], genetic
algorithm [6], and immune network algorithm [7].

Reinforcement learning (RL), formulated under the frame-
work of Markov decision process (MDP), is a promising
alternative to learn ATSC based on real-world traffic mea-
surements [8]. Unlike traditional model-driven approaches, RL
does not rely on heuristic assumptions and equations. Rather
it directly fits a parametric model to learn the optimal control,
based on its experience interacting with the complex traffic
systems. Traditional RL fits simple models such as piece-
wise constant table and linear regression (LR) [9], leading
to limited scalability or optimality in practice. Recently, deep
neural networks (DNNs) have been successfully applied to
enhance the learning capacity of RL on complex tasks [10].

To utilize the power of deep RL, appropriate RL methods
need to be adapted. There are three major methods: value-
based, policy-based, and actor-critic methods. In value-based
methods, such as Q-learning, the long-term state-action value
function is parameterized and updated using step-wise expe-
rience [11]. Q-learning is off-policy1, so it enjoys efficient
updating with bootstrapped sampling of experience replay.
However its update is based on one-step temporal difference,
so the good convergence relies on a stationary MDP transition,
which is less likely in ATSC. As the contrast, in policy-based
methods, such as REINFORCE, the policy is directly param-
eterized and updated with sampled episode return [12]. RE-
INFORCE is on-policy so the transition can be nonstationary
within each episode. The actor-critic methods further reduce
the bias and variance of policy-based methods by using another
model to parameterize the value function [13]. A recent work
has demonstrated that actor-critic outperforms Q-learning in
ATSC with centralized LR agents [14]. This paper focuses on
the state-of-the-art advantage actor-critic (A2C) where DNNs
are used for both policy and value approximations [15].

Even though DNNs have improved the scalability of RL,
training a centralized RL agent is still infeasible for large-
scale ATSC. First, we need to collect all traffic measurements
in the network and feed them to the agent as the global state.
This centralized state processing itself will cause high latency
and failure rate in practice, and the topological information
of the traffic network will be lost. Further, the joint action
space of the agent grows exponentially in the number of
signalized intersections. Therefore, it is efficient and natural
to formulate ATSC as a cooperative multi-agent RL (MARL)
problem, where each intersection is controlled by a local RL

1In off-policy learning, the behavior policy for sampling the experience is
different from the target policy to be optimized.

2

agent, upon local observation and limited communication.
MARL has a long history and has mostly focused on Q-
learning, by distributing the global Q-function to local agents.
One approach is to design a coordination rule based on
the tradeoff between optimality and scalability [16], [17].
A simpler and more common alternative is independent Q-
learning (IQL) [18], in which each local agent learns its own
policy independently, by modeling other agents as parts of the
environment dynamics. IQL is completely scalable, but it has
issue on convergence, since now the environment becomes
more partially observable and nonstationary, as other agents
update their policies. This issue was addressed recently for
enabling experience replay in deep MARL [19].

To the best of our knowledge, this is the first paper that
formulates independent A2C (IA2C) for ATSC, by extending
the idea of IQL on A2C. In order to develop a stable and
robust IA2C system, two methods are further proposed to
address the partially observable and nonstationary nature of
IA2C, under limited communication. First, we include the
observations and fingerprints of neighboring agents in the
state, so that each local agent has more information regarding
the regional traffic distribution and cooperative strategy. Sec-
ond, we introduce a spatial discount factor to scale down the
observation and reward signals of neighboring agents, so that
each local agent focuses more on improving traffic nearby.
From the convergence aspect, the first approach increases the
fitting power while the second approach reduces the fitting
difficulty. We call the stabilized IA2C the multi-agent A2C
(MA2C). MA2C is evaluated in both a synthetic large traffic
grid and a real-world large traffic network, with delicately
designed traffic dynamics for ensuring a certain difficulty level
of MDP. Numerical experiments confirm that, MA2C outper-
forms IA2C and state-of-the-art IQL algorithms in robustness
and optimality. The code of this study is open sourced2.

II. BACKGROUND

A. Reinforcement Learning

RL learns to maximize the long-term return of a MDP. In
a fully observable MDP, the agent observes the true state of
the environment st ∈ S at each time t, performs an action
ut ∈ U according to a policy π(u|s). Then transition dynamics
happens st+1 ∼ p(·|st, ut), and an immediate step reward
rt = r(st, ut, st+1) is received. In an infinite-horizon MDP,
sampled total return under policy π is Rπt =

∑∞
τ=t γ

τ−trτ ,
where γ ∈ [0, 1) is a discount factor. The expected total return
is represented as its Q-function Qπ(s, u) = E[Rπt |st = s, ut =
u]. The optimal Q-function Q∗ = maxπ Q

π yields an optimal
greedy policy π∗(u|s) : u ∈ argmaxu′ Q

∗(s, u′), and Q∗ is
obtained by solving the Bellman equation T Q∗ = Q∗ [20],
with a dynamic programming (DP) operator T :

T Q(s, u) = r(s, u) + γ
∑
s′∈S

p(s′|s, u) max
u′∈U

Q(s′, u′), (1)

where r(s, u) = E′s r(s, u, s′) is the expected step reward. In
practice, r and p are unknown to the agent so the above plan-

2See https://github.com/cts198859/deeprl_signal_control.

ning problem is not well defined. Instead, RL performs data-
driven DP based on the sampled experience (st, ut, s

′
t, rt).

1) Q-learning: Q-learning is the fundamental RL method
that fits the Q-function with a parametric model Qθ, such as
Q-value table [11], LR [9], or DNN [10]. Given experience
(st, ut, s

′
t, rt), Eq. (1) is used to estimate T̂ Qθ−(st, ut) = rt+

γmaxu′∈U Qθ−(s′t, u
′) using a frozen recent model θ−, then

temporal difference (T̂ Qθ− − Qθ)(st, ut) is used to updated
θ. A behavior policy, such as ε−greedy, is used in Q-learning
to explore rich experience to reduce the regression variance.
Experience replay is applied in deep Q-learning to reduce the
variance furthermore by sampling less correlated experience
in each minibatch.

2) Policy Gradient: Policy gradient (REINFORCE) directly
fits the policy with a parameterized model πθ [21]. Each
update of θ increases the likelihood for selecting the action
that has the high “optimality”, measured as the sampled total
return. Thus the loss is

L(θ) = − 1

|B|
∑
t∈B

log πθ(ut|st)R̂t, (2)

where each minibatch B = {(st, ut, s′t, rt)} contains the
experience trajectory, i.e., s′t = st+1, and each return is
estimated as R̂t =

∑tB−1
τ=t γτ−trτ , here tB is the last step

in minibatch. Policy gradient does not need a behavior policy
since πθ(u|s) naturally performs exploration and exploitation.
Further, it is robust to nonstationary transitions within each
trajectory since it directly uses return instead of estimating it
recursively by T̂ . However it suffers from high variance as R̂t
is much more noisy than fitted return Qπθ− .

3) Advantage Actor-Critic: A2C improves the policy gradi-
ent by introducing a value regressor Vw to estimate E[Rπt |st =
s] [13]. First, it reduces the bias of sampled return by adding
the value of the last state Rt = R̂t + γtB−tVw−(stB);
Second, it reduces the variance of sampled return by using
At := Rt − Vw−(st), which is interpreted as the sampled
advantage Aπ(s, u) := Qπ(s, u) − V π(s). Then Eq. (2)
becomes

L(θ) = − 1

|B|
∑
t∈B

log πθ(ut|st)At. (3)

The loss function for value updating is:

L(w) =
1

2|B|
∑
t∈B

(Rt − Vw(st))
2
. (4)

B. Multi-agent Reinforcement Learning

In ATSC, multiple signalized intersection agents participate
a cooperative game to optimize the global network traffic ob-
jectives. Consider a multi-agent network G(V, E), where each
agent i ∈ V performs a discrete action ui∈ Ui, communicates
to a neighbor via edge ij ∈ E , and shares the global reward
r(s, u). Then the joint action space is U = ×i∈VUi, which
makes centralized RL infeasible. MARL, mostly formulated
in the context of Q-learning, distributes the global action to
each local agent by assuming the global Q-function is decom-
posable Q(s, u) =

∑
i∈V Qi(s, u). To simplify the notation,

we assume each local agent can observe the global state, and
we will relax this assumption for ATSC in Section IV and V.

3

Coordinated Q-learning is one MARL approach that per-
forms iterative message passing or control syncing among
neighboring agents to achieve desired tradeoff between opti-
mality and scalability. In other words, Qi(s, u) ≈ Qi(s, ui) +∑
j∈ViMj(s, uj , uVj), where Vi is the neighborhood of agent

i, and Mj is the message from neighbor j, regarding the
impact of ui ∈ uVj on its local traffic condition. [22]
applied variable elimination after passing Q-function as the
message, while [17] proposed a max-plus message passing.
This approach (1) requires additional computation to obtain the
coordinated control during execution, and (2) requires heuris-
tics and assumptions to decompose Q-function and formulate
message-passing, which can be potentially learned by IQL
described shortly.

IQL is the most straightforward and popular approach, in
which each local Q-function only depends on the local action,
i.e., Qi(s, u) ≈ Qi(s, ui) [18]. IQL is completely scalable, but
without message passing, it suffers from partial observability
and non-sationary MDP, because it implicitly formulates all
other agents’ behavior as part of the environment dynamics
while their policies are continuously updated during training.
.To address this issue, each local agent needs the information
of other agents’ policies. [23] included the policy network
parameter of each other agent for fitting local Q-function,
i.e., Qi(s, u) ≈ Qθi(s, ui, θ−i), while [19] included low-
dimensional fingerprints, i.e., Qi(s, u) ≈ Qθi(s, ui, x−i). To
handle the nonstationary transition in experience replay, impor-
tance sampling is applied to estimate the temporal difference
of other agents’ policies between the sampled time t and
the updating time τ , as πτ,−i(u−i|s)/πt,−i(u−i|s), and to
adjust the batch loss. MARL with A2C has not been formally
addressed in literature, and will be covered in Section IV.

III. RELATED WORK

The implementation of RL has been extensively studied in
ATSC. Tabular Q-learning was the first RL algorithm applied,
at an isolated intersection [24]. Later, LR Q-learning was
adapted for scalable fitting over continuous states. [25] and
[26] designed heuristic state features, while [27] integrated
macroscopic fundamental diagram to obtain more informative
features. However, LR was too simple to capture the Q-
function under complex traffic dynamics. Thus kernel method
was applied to extract nonlinear features from low-dimensional
states [28]. Kernel method was also applied in LR actor-
critic recently, under realistically simulated traffic environ-
ments [14]. Alternatively, natural actor-critic was applied to
improve the fitting accuracy of LR in ATSC [29]. Deep RL
was implemented recently, but most of them had impractical
assumptions or oversimplified traffic environments. [30] and
[31] verified the superior fitting power of deep Q-learning
and deep deterministic policy gradient, respectively, under
simplified traffic environment. [32] applied deep Q-learning in
a more realistic traffic network, but with infeasible microscopic
discrete traffic state. [33] explored A2C with different types
of state information. Due to the scalability issue, most cen-
tralized RL studies conducted experiments in either isolated
intersections or small traffic networks.

Despite rich history of RL, only a few studies have ad-
dressed MARL in ATSC, and most of them have focused on Q-
learning. [34] applied model-based tabular IQL to each inter-
section while [35] extended LR IQL to dynamically clustered
regions to improve observability. [36] studied LR IQL and its
on-policy version independent SARSA learning, with observ-
ability improved by neighborhood information sharing. [37]
applied deep IQL, with the partial observability addressed with
transfer planning, but the states were infeasible and the sim-
ulated traffic environments were oversimplified in that study.
Alternatively, coordinated Q-learning was implemented with
various message-passing methods. [38] designed a heuristic
neighborhood communication for tabular Q-learning agents,
where each message contained the estimated neighbor policies.

[39] proposed a junction-tree based hierarchical message-
passing rule to coordinate tabular Q-learning agents. [40] ap-
plied the max-sum communication for LR Q-learning agents,
where each message indicated the impact of a neighbor agent
on each local Q-value.

To summarize, traditional RL has been widely applied in
ATSC, and some works have proposed realistic state measure-
ments and decent traffic dynamics based on insightful domain-
specific knowledge. However, benchmark traffic environments
are still missing for fair comparisons across proposed algo-
rithms. On the other hand, there is still no comprehensive
and realistic studies proposed for implementing deep RL in
practical ATSC. MARL has been addressed in a few works,
mostly under the context of Q-learning.

IV. MULTI-AGENT ADVANTAGE ACTOR-CRITIC

MARL is mostly addressed in the context of Q-learning.
In this section, we first formulate IA2C by extending the
observations of IQL to the actor-critic method. Furthermore,
we propose two approaches to stabilizing IA2C as MA2C.
The first approach is inspired from the works for stabilizing
IQL [19], [23], where the recent policies of other agents are
informed to each local agent. The second approach proposes
a novel spatial discount factor to scale down the signals from
agents far away. In other words, each local value function
is smoother and more correlated to local states, and each
agent focuses more on improving local traffic condition. As
a result, the convergence becomes more stable even under
limited communication and partial observation. This section
proposes a general MA2C framework under limited neigh-
borhood communication, while its implementation details for
ATSC will be described in Section V.

A. Independent A2C

In a multi-agent network G(V, E), i and j are neighbors
if there is an edge between them. The neighborhood of i is
denoted as Ni and the local region is Vi = Ni ∪ i. Also,
the distance between any two agents d(i, j) is measured as
the minimum number of edges connecting them. For example,
d(i, i) = 0 and d(i, j) = 1 for any j ∈ Ni. In IA2C, each agent
learns its own policy πθi and the corresponding value function
Vwi .

4

We start with a strong assumption where the global reward
and state are shared among agents. Then centralized A2C
updating can be easily extended to IA2C, by estimating local
return as

Rt,i = R̂t + γtB−tVw−i
(stB |πθ−−i). (5)

The value gradient ∇L(wi) is consistent since R̂t is sampled
from the same stationary policy πθ− . To obtain policy gradient
∇L(θi), Vwi : S × Ui → R is served as the estimation of
marginal impact of πθi on the future return. However, if each
agent follows Eq. (5), each value gradient will be identical
towards the global value function V π instead of the local one
V πi = Eπ−i V π . As far as θ−i is fixed, πθi will still converge
to the best according policy under this updating, and optimal
policy πθ∗i can be achieved if θ−i = θ∗−i. However, when θ−i
is actively updated, the policy gradient may be inconsistent
across minibatches, since the advantage is conditioned on
changing πθ−i , even it is stationary per trajectory.

Global information sharing is infeasible in real-time ATSC
due to the communication latency, so we assume the commu-
nication is limited to each local region. In other words, local
policy and value regressors take st,Vi := {st,j}j∈Vi instead of
st as the input state. Global reward is still allowed since it is
only used in offline training. Eq. (5) is valid here, by replacing
the value estimation of the last state with Vw−i

(stB ,Vi |πθ−−i).
Then the value loss Eq. (4) becomes

L(wi) =
1

2|B|
∑
t∈B

(Rt,i − Vwi(st,Vi))
2
. (6)

Clearly, Vwi suffers from partial observability, as st,Vi is a
subset of st while ERt,i depends on st. Similarly, the policy
loss Eq. (3) becomes

L(θi) = − 1

|B|
∑
t∈B

log πθi(ut,i|st,Vi)At,i, (7)

where At,i = Rt,i − Vw−i (st,Vi). The nonstaionary updating
issue remains, since Rt,i is conditioned on the current policy
πθ−−i

, while both θ−i and w−i are updated under the previous
policy πθ′−i . This inconsistency effect can be mitigated if
each local policy updating is smooth, i.e., the KL divergence
DKL(πθ−−i

||πθ−i) is small enough, but it will slow down the
convergence. Partial observability also exists as πθi(·|st,Vi)
cannot fully capture the impact of R̂t.

B. Multi-agent A2C

In order to stabilize IA2C convergence and enhance its
fitting power, we propose two approaches. First, we include
information of neighborhood policies to improve the observ-
ability of each local agent. Second, we introduce a spatial
discount factor to weaken the state and reward signals from
other agents. In IQL, additional information is included to
represent the other agents’ behavior policies. [23] directly
includes the Q-value network parameters θ−−i, while [19] in-
cludes low-dimensional fingerprints, such as ε of the ε-greedy
exploration and the number of updates so far. Fortunately,

the behavior policy is explicitly parameterized in A2C, so a
natural approach is including probability simplex of policy
πθ−−i

. Under limited communication, we include sampled latest
policies of neighbors πt−1,Ni = [πt−1,j]j∈Ni in the DNN
inputs, besides the current state st,Vi . The sampled local policy
is calculated as

πt,i = πθ−i
(·|st,Vi , πt−1,Ni). (8)

Rather than long-term neighborhood behavior, the real-time
recent neighborhood policy is informed to each local agent.
This is based on two ATSC facts: 1) the traffic state is changing
slowly in short windows, so the current step policy is very
similar to last step policy. 2) the traffic state dynamics is
Markovian, given the current state and policy.

Even if the local agent knows the local region state and the
neighborhood policy, it is still difficult to fit the global return
by local value regressor. To relax the global cooperation, we
assume the global reward is decomposable as rt =

∑
i∈V rt,i,

which is mostly valid in ATSC. Then we introduce a spatial
discount factor α to adjust the global reward for agent i as

r̃t,i =

Di∑
d=0

 ∑
j∈V|d(i,j)=d

αdrt,j

 , (9)

where Di is the maximum distance from agent i. Note α is
similar to the temporal discount factor γ in RL, rather it scales
down the signals in spatial order instead of temporal order.
Compared to sharing the same global reward across agents,
the discounted global reward is more flexible for the trade-off
between greedy control (α = 0) and cooperative control (α =
1), and is more relevant for estimating the “advantage” of local
policy πθi . Similarly, we use α to discount the neighborhood
states as

s̃t,Vi = [st,i] ∪ α[st,j]j∈Ni . (10)

Given the discounted global reward, we have R̂t,i =∑tB−1
τ=t γτ−tr̃τ,i, and the local return Eq. (5) becomes

R̃t,i = R̂t,i + γtB−tVw−i
(s̃tB ,Vi , πtB−1,Ni |πθ−−i). (11)

The value loss Eq. (6) becomes

L(wi) =
1

2|B|
∑
t∈B

(
R̃t,i − Vwi(s̃t,Vi , πt−1,Ni)

)2

. (12)

This updating is more stable since (1) additional fingerprints
πt−1,Ni are input to Vwi for fitting πθ−−i

impact, and (2)

spatially discounted return R̃t,i is more correlated to local
region observations (s̃t,Vi , πt−1,Ni). The policy loss Eq. (13)
becomes

L(θi) =− 1

|B|
∑
t∈B

(
log πθi(ut,i|s̃t,Vi , πt−1,Ni)Ãt,i

− β
∑
ui∈Ui

πθi log πθi(ui|s̃t,Vi , πt−1,Ni)

)
(13)

5

where Ãt,i = R̃t,i − Vw−i (s̃t,Vi , πt−1,Ni), and the additional
regularization term is the entropy loss of policy πθi for
encouraging the early-stage exploration. This new advantage
emphasizes more on the marginal impact of πθi on traffic state
within local region.

Algorithm 1 illustrates the MA2C algorithm under the
synchronous updating. T is the planning horizon per episode,
|B| is the minibatch size, ηw and ηθ are the learning rates
for critic and actor networks. First, each local agent collects
the experience by following the current policy, until enough
samples are collected for minibatch updating (lines 3 to 8). If
the episode is terminated in the middle of minibatch collection,
we simply restart a new episode (lines 9 to 11). However the
termination affects the return estimation. If T is reached in the
middle, the trajectory return (line 14) should be adjusted as

R̂t,i =

{∑T−1
τ=t γ

τ−tr̃τ,i before reset,∑tB−1
τ=t γτ−tr̃τ,i after reset.

(14)

If T is reached at the end, R̃t,i = R̂t,i (line 15), without
the value estimation on future return in Eq. (11). Next, the
minibatch gradients are applied to update each actor and critic
networks (lines 16, 17), with constant or adaptive learning
rates. Usually the first order gradient optimizers are used, such
as stochastic gradient descent, RMSprop, and Adam. Finally,
the training process is terminated if the maximum step is
reached or a certain stop condition is triggered.

Algorithm 1: Synchronous multi-agent A2C
Parameters: α, β, γ, T , |B|, ηw, ηθ.
Result: {wi}i∈V , {θi}i∈V .

1 initialize s0, π−1, t← 0, k ← 0, B = ∅;
2 repeat

/* explore experience */
3 for i ∈ V do
4 sample ut,i from πt,i (Eq. (8));
5 receive r̃t,i (Eq. (9)) and s̃t,i;
6 end
7 B ← B ∪ {(t, s̃t,i, πt,i, ut,i, r̃t,i, s̃t+1,i)}i∈V ;
8 t← t+ 1, k ← k + 1;

/* restart episode */
9 if t = T then

10 initialize s0, π−1, t← 0;
11 end

/* update A2C */
12 if k = |B| then
13 for i ∈ V do
14 estimate R̂τ,i, ∀τ ∈ B;
15 estimate R̃τ,i, ∀τ ∈ B;
16 update wi with ηw∇L(wi) (Eq. (12));
17 update θi with ηθ∇L(θi) (Eq. (13));
18 end
19 B ← ∅, k ← 0;
20 end
21 until Stop condition reached;

V. MA2C FOR TRAFFIC SIGNAL CONTROL

This section describes the implementation details of MA2C
for ATSC, under the microscopic traffic simulator SUMO [41].
Specifically, we address the action, state, reward definitions,
the A2C network structures and normalizations, the A2C
training tips, and the evaluation metrics.

A. MDP Settings

Consider a simulated traffic environment over a period of Ts
seconds, we define ∆t as the interaction period between RL
agents and the traffic environment, so that the environment
is simulated for ∆t seconds after each MDP step. If ∆t is
too long, RL agents will not be adaptive enough. If ∆t is
too short, the RL decision will not be delivered on time due
to computational cost and communication latency. Further,
there will be safety concerns if RL control is switched too
frequently. To further guarantee the safety, a yellow time
ty < ∆t is enforced after each traffic light switch. A recent
work suggested ∆t = 10s, and ty = 5s [14]. In this paper, we
set ∆t = 5s, ty = 2s to ensure more adaptiveness, resulting
in a planning horizon of T = Ts/∆t steps.

1) Action definition: There are several standard action
definitions, such as phase switch [38], phase duration [14],
and phase itself [26]. We follow the last definition and simply
define each local action as a possible phase, or red-green com-
binations of traffic lights at that intersection. This enables more
flexible and direct ATSC by RL agents. Specifically, we pre-
define Ui as a set of all feasible phases for each intersection,
and RL agent selects one of them to be implemented for a
duration of ∆t at each step.

2) State definition: After combining the ideas of [26] and
[14], we define the local state as

st,i = {waitt[l],wavet[l]}ji∈E,l∈Lji , (15)

where l is each incoming lane of intersection i. wait [s]
measures the cumulative delay of the first vehicle, while wave
[veh] measures the total number of approaching vehicles along
each incoming lane, within 50m to the intersection. Both wait
and wave can be obtained by near-intersection induction-loop
detectors (ILD), which ensures real-time ATSC. To simplify
the implementation, we use laneAreaDetector in SUMO
to collect the state information.

3) Reward definition: Various objectives are selected for
ATSC, but an appropriate reward of MARL should be spatially
decomposable and frequently measurable. Here we refine the
definition in [26] as

rt,i = −
∑

ji∈E,l∈Lji

(queuet+∆t[l] + a · waitt+∆t[l]), (16)

where a [veh/s] is a tradeoff coefficient, and queue [veh] is
the measured queue length along each incoming lane. Notably
the reward is post-decision so both queue and wait are
measured at time t+ ∆t. We prefer this definition over others
like cumulative delay [38] and wave [14], since this reward
is directly correlated to state and action, and emphasizes both
traffic congestion and trip delay.

6

B. DNN Settings

1) Network architecture: In practice, the traffic flows are
complex spatial-temporal data, so the MDP may become
nonstationary if the agent only knows the current state. A
straightforward approach is to input all historical states to
A2C, but it increases the state dimension significantly and
may reduce the attention of A2C on recent traffic condition.
Fortunately, long-short term memory (LSTM) is a promising
DNN layer that maintains hidden states to memorize short
history [42]. Thus we apply LSTM as the last hidden layer
to extract representations from different state types. Also,
we train actor and critical DNNs separately, instead of shar-
ing lower layers between them. Fig. 1 illustrates the DNN
structure, where wave, wait, and neighbor policies are first
processed by separate fully connected (FC) layers. Then all
hidden units are combined and input to a LSTM layer. The
output layer is softmax for actor and linear for critic. For DNN
training, we use the state-of-the-art orthogonal initializer [43]
and RMSprop as the gradient optimizer.

LSTM (64)

wave states

neighbor policies

FC (128)

FC (32)

softmax (actor)

linear (critic)
FC (64)

wait states

Fig. 1: Proposed DNN structures of MA2C in ATSC. Hidden
layer size is indicated inside parenthesis.

2) Normalization: Normalization is important for training
DNN. For each of wave and wait states, we run a greedy
policy to collect the statistics for a certain traffic environment,
and use it to obtain an appropriate normalization. To prevent
gradient explosion, all normalized states are clipped to [0, 2],
and each gradient is capped at 40. Similarly, we normalize the
reward and clip it to [-2, 2] to stabilize the minibatch updating.

VI. NUMERICAL EXPERIMENTS

MARL based ATSC is evaluated in two SUMO-simulated
traffic environments: a 5× 5 synthetic traffic grid, and a real-
world 30-intersection traffic network extracted from Monaco
city [44], under time-variant traffic flows. This section aims
to design challenging and realistic traffic environments for
interesting and fair comparisons across controllers.

A. General Setups

To demonstrate the efficiency and robustness of MA2C, we
compare it to several state-of-the-art benchmark controllers.
IA2C is the same as MA2C except the proposed stabilizing
methods, so it follows the updating rules Eq. (6) and Eq. (7).

IQL-LR is LR based IQL, which can be regarded as the
decentralized version of [26]. IQL-DNN is the same as IQL-
LR but uses DNN for fitting the Q-function. To ensure fair
comparison, IQL-DNN has the same network structure, except
the LSTM layer is replaced by a FC layer. This is because
Q-learning is off-policy and it becomes meaningless to use
LSTM on randomly sampled history. Finally, Greedy is a
decentralized greedy policy that selects the phase associated
with the maximum total green wave over all incoming lanes.
All controllers have the same action space, state space, and
interaction frequency.

We train all MARL algorithms over 1M steps, which is
around 1400 episodes given episode horizon T = 720 steps.
We then evaluate all controllers over 10 episodes. Different
random seeds are used for generating different training and
evaluation episodes, but the same seed is shared for the same
episode. For MDP, we set γ = 0.99 and α = 0.75; For IA2C
and MA2C, we set ηθ = 5e − 4, ηw = 2.5e − 4, |B| = 120,
and β = 0.01 in Algorithm 1; For IQL, we set the learning
rate ηθ = 1e− 4, the minibatch size |B| = 20, and the replay
buffer size 1000. Note the replay buffer size has too be small
due to the partial observability of IQL. Also, ε−greedy is used
as the behavior policy, with ε linearly decaying from 1.0 to
0.01 during the first half of training.

B. Synthetic Traffic Grid

1) Experiment settings: The 5×5 traffic grid, as illustrated
in Fig. 2, is formed by two-lane arterial streets with speed
limit 20m/s and one-lane avenues with speed limit 11m/s. The
action space of each intersection contains five possible phases:
E-W straight phase, E-W left-turn phase, and three straight
and left-turn phases for E, W, and N-S. Clearly, centralized
RL agent is infeasible since the joint action space has the
size of 525. To make the MDP problem challenging, four
time-variant traffic flow groups are simulated. At beginning,
three major flows F1 are generated with origin-destination (O-
D) pairs x10-x4, x11-x5, and x12-x6, meanwhile three minor
flows f1 are generated with O-D pairs x1-x7, x2-x8, and
x3-x9. After 15 minutes, the volumes of F1 and f1 start to
decrease, while their opposite flows (with swapped O-D pairs)
F2 and f2 start to be generated, as shown in Fig. 3. Here
the flows define the high-level traffic demand only, and the
route of each vehicle is randomly generated during run-time.
Regarding MDP settings, the reward coefficient a is 0.2veh/s,
and the normalization factors of wave, wait, and reward are
5veh, 100s, and 2000veh, respectively.

2) Training results: Fig. 4 plots the training curve of each
MARL algorithm, where the solid line shows the average
reward per training episode

R̄ =
1

T

T−1∑
t=0

(∑
i∈V

rt,i

)
, (17)

and the shade shows its standard deviation. Typically, training
curve increases and then converges, as RL learns from cu-
mulated experience and finally achieves a local optimum. In
Fig. 4, IQL-DNN is failed to learn, while IQL-LR achieves a
performance as good as MA2C does. This may because DNN

7

200m

x1 x2 x3

x4

x5

x6

x7x8x9

x10

x11

x12

f1

f2

F1F2

Fig. 2: A traffic grid of 25 intersections, with an example
intersection shown inside circle. Time variant major and minor
traffic flow groups are shown as solid and dotted arrows.

0 500 1000 1500 2000 2500 3000 3500
Simulation time (sec)

0

200

400

600

800

1000

Fl
ow

 ra
te

 (v
eh

/h
r)

f1
F1
f2
F2

Fig. 3: Traffic flows vs simulation time within the traffic grid.

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training step

2000

1500

1000

500

0

Av
er

ag
e

ep
iso

de
 re

wa
rd

MA2C
IA2C
IQL-LR
IQL-DNN

Fig. 4: MARL training curves for synthetic traffic grid.

overfits the Q-function using the partially observed states, mis-
leading the exploitation when ε decreases. On the other hand,
MA2C shows the best and the most robust learning ability, as
its training curve steadily increases and then becomes stable
with narrow shade.

0 500 1000 1500 2000 2500 3000 3500
Simulation time (sec)

0

1

2

3

4

5

6

7

Av
er

ag
e

qu
eu

e
le

ng
th

 (v
eh

)

MA2C
IA2C
IQL-LR
Greedy

Fig. 5: Average queue length in synthetic traffic grid.

0 500 1000 1500 2000 2500 3000 3500
Simulation time (sec)

0

50

100

150

200

250

300

Av
er

ag
e

in
te

rs
ec

tio
n

de
la

y
(s

/v
eh

) MA2C
IA2C
IQL-LR
Greedy

Fig. 6: Average intersection delay in synthetic traffic grid.

3) Evaluation results: IQL-DNN is not included in evalua-
tion as its policy is meaningless. The average R̄ over evalua-
tion are -414, -845, -972, and -1409, for MA2C, IA2C, Greedy,
and IQL-LR. Clearly MA2C outperforms other controllers for
the given objective. Also, IQL-LR is failed to beat IA2C in
this evaluation over more episodes, which may due to the high
variance in the learned policy. Fig. 5 plots the average queue
length of network at each simulation step, where the line shows
the average and the shade shows the standard deviation across
evaluation episodes. Both IQL-LR and IA2C fail to lean a
sustainable policy to recover the congested network near the
end. As contrast, a simple greedy policy does well for queue
length optimization by maximizing the flow at each step, but
its performance variation is high (see wide shade). MA2C
leans a more stable and sustainable policy that achieves lower
congestion level and faster recovery, by paying a higher queue
cost when the network is less loaded at early stage.

Fig. 6 plots the average intersection delay of network over
simulation time. As expected, both IQL-LR and IA2C have
monotonically increasing delays as they are failed to recover
from the congestion. However, IA2C is able to maintain a more
slowly increasing delay when the traffic grid is less saturated,
so its overall performance is still better than the greedy policy,
which does not explicitly optimize the waiting time. MA2C is
able to maintain the delay at low level even at the peak.

8

TABLE I: ATSC performance in Monaco traffic network. Best values are in bold.

Metrics Temporal Averages Temporal Peaks
Greedy MA2C IA2C IQL-LR IQL-DNN Greedy MA2C IA2C IQL-LR IQL-DNN

reward -41.8 -31.4 -54.6 -109.8 -151.8 -86.4 -78.7 -117.9 -202.1 -256.2
avg. queue length [veh] 0.51 0.29 0.52 1.19 1.57 1.08 0.75 1.16 2.21 2.69
avg. intersection delay [s/veh] 65.5 23.5 60.7 100.3 127.0 272 104 316 202 238
avg. vehicle speed [m/s] 6.06 6.81 5.36 4.04 2.07 14.96 14.26 14.26 14.26 13.98
trip completion flow [veh/s] 0.54 0.67 0.62 0.44 0.28 2.10 2.40 2.10 1.60 1.20
trip delay [s] 144 114 165 207 360 2077 1701 2418 2755 3283

C. Monaco Traffic Network

1) Experiment settings: Fig. 7 illustrates the studied area
of Monaco city for this experiment, with a variety of road
and intersection types. There are 30 signalized intersections
in total: 11 are two-phase, 4 are three-phase, 10 are four-
phase, 1 is five-phase, and the reset 4 are six-phase. Further,
in order to test the robustness and optimality of algorithms in
challenging ATSC scenarios, intensive, stochastic, and time-
variant traffic flows are designed to simulate the peak-hour
traffic. Specifically, four traffic flow groups are generated as a
multiple of “unit” flows of 325veh/hr, with randomly sampled
O-D pairs inside given areas (see Fig. 7). Among them, F1 and
F2 are simulated during the first 40min, as [1, 2, 4, 4, 4, 4, 2, 1]
unit flows with 5min intervals, while F3 and F4 are generated
during a shifted time window from 15min to 55min.

F1

F2

F3

F4

Fig. 7: Monaco traffic network, with signalized intersections
colored in blue. Four traffic flow groups are illustrated by
arrows, with origin and destination inside rectangular areas.

As the MDP becomes challenging in this experiment, we
remove wait terms in both reward and state, making the value
function easier to be fitted. As the price, MARL algorithms
will not learn to explicitly optimize the delay. The normaliza-
tion factor of wave is 5veh, and that of reward is 20veh per
intersection involved in reward calculation.

2) Training results: Fig. 8 plots the training curves of
MARL algorithms. IQL-DNN still does not learn anything,
while IQL-LR does not converge, despite good performance in
the middle of training. Again, both IA2C and MA2C converge

0.0M 0.2M 0.4M 0.6M 0.8M 1.0M
Training step

200

175

150

125

100

75

50

25

Av
er

ag
e

ep
iso

de
 re

wa
rd

MA2C
IA2C
IQL-LR
IQL-DNN

Fig. 8: MARL training curves for Monaco traffic network.

to reasonable policies, and MA2C shows a faster and more
stable convergence.

3) Evaluation results: Table I summarizes the key per-
formance metrics for comparing ATSC in evaluation. The
measurements are first spatially aggregated at each time over
evaluation episodes, then the temporal average and max are
calculated. Except for trip delay, the values are calculated
over all evaluated trips. MA2C outperforms other controllers
in almost all metrics. Unfortunately, other MARL algorithms
are failed to beat the greedy policy in this experiment. There-
fore extensive effort and caution is needed before the field
deployment of any data-driven ATSC algorithm, regarding its
robustness, optimality, efficiency, and safety.

IQL algorithms are not included in following analysis
as their training performance is as bad as that of random
exploration. Fig. 9 and Fig. 10 plot the average queue length
and average intersection delay over simulation time, under
different ATSC policies. As expected, both IA2C and Greedy
are able to reduce the queue lengths after peak values, and
IA2C achieves a better recovery rate. However, both of them
are failed to maintain sustainable intersection delays. This may
be because of the “central area” congestion after upstream
intersections greedily maximizing their local flows. On the
other hand, MA2C is able to achieve lower and more sus-
tainable intersection delays, by distributing the traffic more
homogeneously among intersections via coordination with
shared neighborhood fingerprints.

Fig. 11 scatters the output (trip completion) flow and
network vehicle accumulation for different ATSC algorithms.
Macroscopic fundamental diagram (MFD) is present for each
controller: when the network density is low, output increases
as accumulation grows; when the network becomes more sat-

9

0 500 1000 1500 2000 2500 3000 3500
Simulation time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
Av

er
ag

e
qu

eu
e

le
ng

th
 (v

eh
)

MA2C
IA2C
Greedy

Fig. 9: Average queue length in Monaco traffic network.

0 500 1000 1500 2000 2500 3000 3500
Simulation time (sec)

0

100

200

300

400

500

Av
er

ag
e

in
te

rs
ec

tio
n

de
la

y
(s

/v
eh

) MA2C
IA2C
Greedy

Fig. 10: Average intersection delay in Monaco traffic network.

0 100 200 300 400 500
Accumulation (veh)

0

10

20

30

40

50

60

70

Ou
tp

ut
 fl

ow
 (v

eh
/m

in
)

MA2C
IA2C
Greedy

Fig. 11: Output flow vs vehicle accumulation scatter in
Monaco traffic network. Each point is aggregated over 5min.

urated, further accumulation will decrease the output, leading
to a potential congestion. As we can see, compared to other
controllers, MA2C is able to maintain most points around the
“sweet-spot”, maximizing the utilization of network capacity.

VII. CONCLUSIONS

This paper proposed a novel A2C based MARL algorithm
for scalable and robust ATSC. Specifically, 1) fingerprints of
neighbors were adapted to improve observability; and 2) a

spatial discount factor was introduced to reduce the learning
difficulty. Experiments in a synthetic traffic grid and a Monaco
traffic network demonstrated the robustness, optimality, and
scalability of the proposed MA2C algorithm, which outper-
formed other state-of-the-art MARL algorithms.

Non-trivial future works are still remaining for the real-
world deployment of proposed MARL algorithm. These in-
clude 1) improving the reality of traffic simulator to provide
reliable training data regarding real-world traffic demand and
dynamics; 2) improving the algorithm robustness on noisy and
delayed state measurements from road sensors; 3) building
a pipeline that can train and deploy deep MARL models to
each intersection controller for a given traffic scenario; 4)
improving the end-to-end pipeline latency, with a focus on the
inference time and memory consumption of model query at
each intersection, as well as the communication delay among
neighboring intersections for state and fingerprint sharing.

REFERENCES

[1] P. B. Hunt, D. I. Robertson, R. D. Bretherton, and M. C. Royle,
“The SCOOT on-line traffic signal optimisation technique,” Traffic
Engineering & Control, vol. 23, no. 4, 1982.

[2] J. Y. K. Luk, “Two traffic-responsive area traffic control methods: SCAT
and SCOOT,” Traffic engineering & control, vol. 25, no. 1, pp. 14–22,
1984.

[3] N. H. Gartner, Demand-responsive Decentralized Urban Traffic Control.
US Department of Transportation, Research and Special Programs
Administration, 1982.

[4] J.-J. Henry, J.-L. Farges, and J. Tuffal, “The PRODYN real time traffic
algorithm,” in Proceedings of the IFAC/IFIPI/FORS Conference On
Control, 1984.

[5] B. P. Gokulan and D. Srinivasan, “Distributed geometric fuzzy multi-
agent urban traffic signal control,” Intelligent Transportation Systems,
IEEE Transactions on, vol. 11, no. 3, pp. 714–727, 2010.

[6] H. Ceylan and M. G. Bell, “Traffic signal timing optimisation based on
genetic algorithm approach, including drivers? routing,” Transportation
Research Part B: Methodological, vol. 38, no. 4, pp. 329–342, 2004.

[7] S. Darmoul, S. Elkosantini, A. Louati, and L. B. Said, “Multi-agent
immune networks to control interrupted flow at signalized intersec-
tions,” Transportation Research Part C: Emerging Technologies, vol. 82,
pp. 290–313, 2017.

[8] R. S. Sutton and A. G. Barto, “Reinforcement learning: an introduction,”
Neural Networks, IEEE Transactions on, vol. 9, no. 5, pp. 1054–1054,
1998.

[9] C. Szepesvári, “Algorithms for reinforcement learning,” Synthesis Lec-
tures on Artificial Intelligence and Machine Learning, vol. 4, no. 1,
pp. 1–103, 2010.

[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[11] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3-4, pp. 279–292, 1992.

[12] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” in Reinforcement Learning, pp. 5–
32, Springer, 1992.

[13] V. Konda and J. Tsitsiklis, “Actor-critic algorithms.,” in NIPS, vol. 13,
pp. 1008–1014, 1999.

[14] M. Aslani, M. S. Mesgari, and M. Wiering, “Adaptive traffic signal
control with actor-critic methods in a real-world traffic network with
different traffic disruption events,” Transportation Research Part C:
Emerging Technologies, vol. 85, pp. 732–752, 2017.

[15] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International Conference on Machine Learning,
pp. 1928–1937, 2016.

[16] C. Guestrin, M. Lagoudakis, and R. Parr, “Coordinated reinforcement
learning,” in ICML, vol. 2, pp. 227–234, 2002.

[17] J. R. Kok and N. Vlassis, “Collaborative multiagent reinforcement
learning by payoff propagation,” The Journal of Machine Learning
Research, vol. 7, pp. 1789–1828, 2006.

10

[18] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooper-
ative agents,” in Proceedings of the tenth international conference on
machine learning, pp. 330–337, 1993.

[19] J. Foerster, N. Nardelli, G. Farquhar, P. Torr, P. Kohli, S. Whiteson,
et al., “Stabilising experience replay for deep multi-agent reinforcement
learning,” arXiv preprint arXiv:1702.08887, 2017.

[20] R. Bellman, “A markovian decision process,” tech. rep., DTIC Docu-
ment, 1957.

[21] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gra-
dient methods for reinforcement learning with function approximation,”
in Advances in neural information processing systems, pp. 1057–1063,
2000.

[22] C. Guestrin, D. Koller, and R. Parr, “Multiagent planning with factored
mdps,” in NIPS, vol. 1, pp. 1523–1530, 2001.

[23] G. Tesauro, “Extending q-learning to general adaptive multi-agent sys-
tems,” in Advances in neural information processing systems, pp. 871–
878, 2004.

[24] M. Wiering, J. Van Veenen, J. Vreeken, and A. Koopman, “Intelligent
traffic light control,” Institute of Information and Computing Sciences.
Utrecht University, 2004.

[25] C. Cai, C. K. Wong, and B. G. Heydecker, “Adaptive traffic signal con-
trol using approximate dynamic programming,” Transportation Research
Part C: Emerging Technologies, vol. 17, no. 5, pp. 456–474, 2009.

[26] L. Prashanth and S. Bhatnagar, “Reinforcement learning with function
approximation for traffic signal control,” Intelligent Transportation Sys-
tems, IEEE Transactions on, vol. 12, no. 2, pp. 412–421, 2011.

[27] T. Chu and J. Wang, “Traffic signal control with macroscopic fundamen-
tal diagrams,” in American Control Conference (ACC), 2015, pp. 4380–
4385, IEEE, 2015.

[28] T. Chu, J. Wang, and J. Cao, “Kernel-based reinforcement learning for
traffic signal control with adaptive feature selection,” in Decision and
Control (CDC), 2014 IEEE 53rd Annual Conference on, pp. 1277–1282,
IEEE, 2014.

[29] S. Richter, D. Aberdeen, and J. Yu, “Natural actor-critic for road traffic
optimisation,” in Advances in neural information processing systems,
pp. 1169–1176, 2007.

[30] T. Chu, S. Qu, and J. Wang, “Large-scale multi-agent reinforcement
learning using image-based state representation,” in Decision and Con-
trol (CDC), 2016 IEEE 55th Conference on, pp. 7592–7597, IEEE, 2016.

[31] N. Casas, “Deep deterministic policy gradient for urban traffic light
control,” arXiv preprint arXiv:1703.09035, 2017.

[32] W. Genders and S. Razavi, “Using a deep reinforcement learning agent
for traffic signal control,” arXiv preprint arXiv:1611.01142, 2016.

[33] W. Genders and S. Razavi, “Evaluating reinforcement learning state
representations for adaptive traffic signal control,” Procedia computer
science, vol. 130, pp. 26–33, 2018.

[34] M. Wiering, “Multi-agent reinforcement learning for traffic light con-
trol,” in ICML, pp. 1151–1158, 2000.

[35] T. Chu, S. Qu, and J. Wang, “Large-scale traffic grid signal control
with regional reinforcement learning,” in American Control Conference
(ACC), 2016, July 2016.

[36] H. A. Aziz, F. Zhu, and S. V. Ukkusuri, “Learning-based traffic signal
control algorithms with neighborhood information sharing: An appli-
cation for sustainable mobility,” Journal of Intelligent Transportation
Systems, vol. 22, no. 1, pp. 40–52, 2018.

[37] E. Van der Pol and F. A. Oliehoek, “Coordinated deep reinforcement
learners for traffic light control,” in In proceedings of NIPS, vol. 16,
2016.

[38] S. El-Tantawy, B. Abdulhai, and H. Abdelgawad, “Multiagent rein-
forcement learning for integrated network of adaptive traffic signal
controllers (MARLIN-ATSC): methodology and large-scale application
on downtown Toronto,” IEEE Transactions on Intelligent Transportation
Systems, vol. 14, no. 3, pp. 1140–1150, 2013.

[39] F. Zhu, H. A. Aziz, X. Qian, and S. V. Ukkusuri, “A junction-tree
based learning algorithm to optimize network wide traffic control: A
coordinated multi-agent framework,” Transportation Research Part C:
Emerging Technologies, vol. 58, pp. 487–501, 2015.

[40] T. Chu and J. Wang, “Traffic signal control by distributed reinforcement
learning with min-sum communication,” in American Control Confer-
ence (ACC), 2017, pp. 5095–5100, IEEE, 2017.

[41] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, “Recent devel-
opment and applications of SUMO - Simulation of Urban MObility,”
International Journal On Advances in Systems and Measurements,
vol. 5, pp. 128–138, December 2012.

[42] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[43] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the
nonlinear dynamics of learning in deep linear neural networks,” arXiv
preprint arXiv:1312.6120, 2013.

[44] L. Codeca and J. Härri, “Monaco SUMO Traffic (MoST) Scenario: A 3D
Mobility Scenario for Cooperative ITS,” in SUMO 2018, SUMO User
Conference, Simulating Autonomous and Intermodal Transport Systems,
May 14-16, 2018, Berlin, Germany, (Berlin, GERMANY), 05 2018.

[45] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu,
and N. de Freitas, “Sample efficient actor-critic with experience replay,”
arXiv preprint arXiv:1611.01224, 2016.

Tianshu Chu received the B.S. degree in physics
from the Weseda University, Tokyo, Japan, in 2010,
and the M.S. and Ph.D degrees from the Department
of Civil and Environmental Engineering, Stanford
University, in 2012 and 2016. He is currently a data
scientist at Uhana Inc. and an adjunct professor at
the Stanford Center for Sustainable Development
& Global Competitiveness. His research interests
include reinforcement learning, deep learning, multi-
agent learning, and their applications to traffic signal
control, wireless network control, autonomous driv-

ing, and other engineering control systems.

Jie Wang received his B.S. degree from Shanghai
JiaoTong University, two M.S. degrees from Stan-
ford University and University of Miami, and the
Ph.D degree in civil and environmental engineering
from Stanford University, in 2003. He is currently
an adjunct professor with the Department of Civil
and Environmental Engineering, Stanford Univer-
sity, and the executive director of the Stanford Center
for Sustainable Development & Global Competitive-
ness. His research interests include information and
knowledge management for sustainable development

and innovation, enterprise IT infrastructure management, smart manufacturing,
smart infrastructures and smart city, and environmental informatics.

Lara Codecà received a Ph.D. Degree from the
University of Luxembourg in 2016 and her Com-
puter Sciences Master degree at the University of
Bologna (Italy) in 2011. In 2011, she was a visiting
fellow at Prof. Dr. Mario Gerla’s Vehicular Lab at
the University of California, Los Angeles (UCLA).
She is currently a post-doctoral fellow in the CATS
group in EURECOM (France). Her research inter-
ests include (Cooperative) Intelligent Transportation
Systems, Vehicular Traffic Modelling, and Big-data
Analysis. She is active in the SUMO community and

collaborates with the SUMO developers at DLR (German Aerospace Centre).

Zhaojian Li is an Assistant Professor in the De-
partment of Mechanical Engineering at Michigan
State University. He obtained M.S. (2013) and Ph.D.
(2015) in Aerospace Engineering (flight dynamics
and control) at the University of Michigan, Ann Ar-
bor. As an undergraduate, Dr. Li studied at Nanjing
University of Aeronautics and Astronautics, Depart-
ment of Civil Aviation, in China. Dr. Li worked as an
algorithm engineer at General Motors from January
2016 to July 2017. His research interests include
Learning-based Control, Nonlinear and Complex

Systems, and Robotics and Automated Vehicles. Dr. Li was a recipient of
the National Scholarship from China.

