
Hardware-conscious Hash-Joins on GPUs
Panagiotis Sioulas∗, Periklis Chrysogelos∗, Manos Karpathiotakis†, Raja Appuswamy‡, Anastasia Ailamaki∗§

∗EPFL, †Facebook, §RAW Labs, ‡EURECOM
∗firstname.lastname@epfl.ch, †manos@fb.com, ‡raja.appuswamy@eurecom.fr

Abstract—Traditionally, analytical database engines have used
task parallelism provided by modern multisocket multicore CPUs
for scaling query execution. Over the past few years, GPUs have
started gaining traction as accelerators for processing analytical
queries due to their massively data-parallel nature and high mem-
ory bandwidth. Recent work on designing join algorithms for
CPUs has shown that carefully tuned join implementations that
exploit underlying hardware can outperform naive, hardware-
oblivious counterparts and provide excellent performance on
modern multicore servers. However, there has been no such
systematic analysis of hardware-conscious join algorithms for
GPUs that systematically explores the dimensions of partitioning
(partitioned versus non-partitioned joins), data location (data
fitting and not fitting in GPU device memory), and access pattern
(skewed versus uniform).

In this paper, we present the design and implementation
of a family of novel, partitioning-based GPU-join algorithms
that are tuned to exploit various GPU hardware characteristics
for working around the two main limitations of GPUs–limited
memory capacity and slow PCIe interface. Using a thorough
evaluation, we show that: i) hardware-consciousness plays a
key role in GPU joins similar to CPU joins and our join
algorithms can process 1 Billion tuples/second even if no data
is GPU resident, ii) radix partitioning-based GPU joins that are
tuned to exploit GPU hardware can substantially outperform
non-partitioned hash joins, iii) hardware-conscious GPU joins
can effectively overcome GPU limitations and match, or even
outperform, state-of-the-art CPU joins.

Keywords-join, GPU, databases, analytics

I. INTRODUCTION

As the ongoing trend of exponential data growth, combined
with an increasing demand for real-time analytics, has created
tremendous pressure on existing data analytics systems to
scale query execution. As a result, the past few years have
witnessed a growing adoption of General Purpose Graphics
Processing Units (GPU) as accelerators of choice for data-
intensive applications. Despite the growing adoption of GPUs
in several domains ranging from numerical analysis to machine
learning, it is unclear as to whether GPUs are suitable for
accelerating analytical SQL database engines due to the fact
that supporting general-purpose join operations on GPUs is
surprisingly complicated due to two reasons.

First, analytical queries in warehousing applications are
complex in nature and consist of large-to-large joins. Join
algorithms used by CPU-based, in-memory analytical engines
are optimized based on the assumption that all data is memory
resident, and such an assumption usually holds as modern
servers can be equipped with Terabytes of memory. However,
join algorithms tailored for GPUs cannot make such assump-
tions, as GPUs are limited in the amount of on-board capacity,

with even high-end GPUs being limited to 32GB of device
memory. Second, given that data cannot be placed entirely
in GPU memory and a paging technique has to be applied
for maintaining the working set necessary at the moment,
either implicitly through Unified Virtual Addressing (UVA)
or explicitly by transferring chunks of data over the PCI-
e bus when required. Transfers are expensive because their
throughput is bound by the PCI-e bandwidth with a theoretical
maximum of 15.8 GB/sec.

Despite these challenges, GPUs provide several benefits
compared to CPUs. First, GPUs provide massive parallelism
using thousands of cores that can together perform compu-
tations at a throughput several orders of magnitude higher
than CPUs. For instance, each Nvidia Tesla V100 GPU packs
5,120 CUDA cores packed into multiple streaming multipro-
cessors (SM) and can deliver 14 TeraFlops of single-precision
floating point performance. Second, using tightly integrated
High-Bandwidth Memory technologies, GPUs provide device
memory with bandwidth approaching 1 TB/sec. Third, un-
like their predecessors, modern GPUs also offer a variety
of features, like programmable on-chip shared memory that
functions similar to a CPU cache with a peak bandwidth of
several TB/sec, thread and warp synchronization primitives,
techniques for overlapping computation with I/O, all of which
provide necessary tools for properly optimized software to
overcome the aforementioned bottlenecks.

Recent work on designing join algorithms for CPUs has
shown that carefully tuned partitioned join implementations
that exploit underlying hardware exhibit excellent scalability
and performance on modern multicore servers [1]–[5]. How-
ever, there has been no such systematic analysis of hardware-
conscious join algorithms for GPUs that systematically ex-
plores the dimensions of partitioning (partitioned versus non-
partitioned joins), data location (data fitting and not fitting
in GPU device memory), and access pattern (skewed versus
uniform). In this paper, we bridge this gap in knowledge by
designing and implementing hardware conscious hash join
algorithms for GPUs. In doing so, we make the following
three contributions:
• We present the design of a family of partitioning-based

GPU join algorithms that are fine tuned to exploit GPU
hardware characteristics. In doing so, we decisively show
that hardware-consciousness is important for GPU joins
similar to their CPU counterparts, and a naive approach of
simply switching a CPU-based join to the GPU will leave
substantial processing capacity untapped even if all data
is GPU resident. Our GPU join algorithms can process

4.5 Billion tuples/second when data is GPU resident on a
standard dual socket server equipped with a single GPU.

• We present, to our knowledge, the first partitioning-based
GPU join that scales well for large-to-large joins even
if no data is GPU resident. Our out-of-GPU algorithm
employs a novel coprocessing approach that performs
partitioning on the CPU and join execution on the GPUs
to achieve synergistic pipelined execution. In doing so,
we show that a one-size-fits-all approach is not suitable
for GPU joins, as customizing the join algorithm based on
data location is necessary to achieve the best performance
and utilization. Our out-of-GPU join can fully exploit
PCIe bandwidth and GPU processing capacity to achieve
a throughput of 1 Billion tuples/second even if no data
is GPU resident. A standard hash join, in contrast, fails
to even fully utilize the PCIe bandwidth.

• We present a thorough evaluation that compares our GPU
join algorithms with state-of-the-art CPU counterparts
and a popular commercial GPU database under several
workloads. In doing so, we show how fine-tuned GPU
joins can not only outperform CPU joins in all scenarios.
We also show how our coprocessing join makes it possi-
ble to replace a CPU-only configuration that uses dozens
of CPUs with just a handful of CPUs and a single GPU,
thereby reducing capital expenses.

II. BACKGROUND

In this section, we provide an overview of GPU hardware
and hardware-conscious, state-of-the-art CPU joins to set the
stage for this work1.

A. GPU Hardware

Each GPU consists of thousands of compute cores organized
into units referred as Streaming Multiprocessors. Each such
processor has compute cores, a register file, shared memory
and caches. The GPU groups a set of 32 threads into a warp,
which forms the basic unit of scheduling and execution. All
threads within a warp execute the same instruction in lock
step but on different data items. Conditional instructions or
branches that cause threads to diverge are handled by executing
sets of threads, corresponding to each possible execution side
of the branch, in sequence. The GPU hardware also has the
ability to group multiple memory requests from threads into a
single request, thereby reducing the number of memory trans-
actions. However, in order for such coalescing to be possible,
data access from threads should follow a sequential access
pattern, with each thread accessing a subsequent memory
location with respect to its predecessor within the warp.

At the programming level, CUDA exposes the massive data
parallel nature of GPUs to the application using the notion of
a group of threads referred to as a thread block. Each thread
block is executed by a multiprocessor. The variables local to
each thread are stored in the register file and are private to the

1In this paper, we focus on NVIDIA GPUs and use terminology and
concepts from the CUDA programming model. However, all concepts and
contributions presented in this work apply to AMD GPGPUs as well.

thread. However, the GPU hardware contains on-board Shared
Memory which is shared across all threads in a block. Shared
memory on GPUs is similar to the caches present on CPUs
in that they are KB-sized and provide fast access to data with
low latency and bandwidth of several TB/second. However,
unlike the non-programmable CPU caches, CUDA exposes
Shared Memory to applications to allow for fast data sharing
among threads in the same block. At the global level, GPU also
contains device memory that is several tens of GBs in size.
Due to tight integration and the use of high-bandwidth mem-
ory technologies, device memory of modern GPUs provides
bandwidth approaching 1TB/second. Still, device memory is
substantially slower compared to shared memory.

In this paper, we restrict our attention to discrete GPUs that
are connected to the system via the PCIe bus. GPU hardware
contains multiple DMA copy engines for bidirectional data
transfer between the CPU memory and the GPU memory.
CUDA provides applications the ability to overlap transfers
with computation through the use of asynchronous memory
copy operations that can utilize these DMA engines to fully
utilize the PCIe bandwidth. Modern GPUs and recent CUDA
environments also provide a rich suite of features for data
sharing and thread synchronization. In order to enable data
to be shared among threads within the same warp, CUDA
provides special warp shuffle instructions. Later in this paper,
we show how we use these instructions to accelerate probing in
join operations. GPUs have also supported atomic operations
for thread synchronization for a long time. In old GPUs
based on the Fermi architecture, these atomic operations were
supported using a locking mechanism, and thus incurred a
heavy performance penalty. However, modern GPUs based
on the Maxwell, Pascal, or Tesla architecture implement
efficient atomic operations using shared memory. We use these
operations for synchronization during the build phase of joins
for shared hashtable creation.

B. Hardware-conscious join algorithms

The canonical hash join algorithm, which forms the foun-
dation of modern join algorithms, operates in two phases. In
the first phase, referred to as the build phase, the smaller of
the two input relations, R, is scanned and a hash function is
used to populate a hash table with tuples. The second phase,
referred to as the probe phase, then scans the second input
relation, S, and probes the hash table for each tuple in S to
find matching R tuples. Shatdal et.al [2] examined the cache
performance of canonical hash join and observed that when the
hashtable is larger than the cache size, almost every hashtable
lookup results in a cache miss. As cache misses result in CPU
stalls, they lead to underutilization of processing capacity.

In order to solve this problem, they redesigned the hash
join algorithm to achieve cache consciousness and proposed
a partitioned hash join variant. The partitioned hash join
performs a partitioning step first so that the hash table can
be partitioned into cache-size chunks that can be stored in
cache throughout the processing of each partition. However, a
high partitioning fanout may result in TLB misses and incur a

h1 h1

h2 h2
R S

R1
hashtable

R1 S1

h2 h2

R2
hashtable

Partition Build Probe Partition

S2R2

Fig. 1: Anatomy of a partitioned radix join.

performance penalty, because of the high number of different
output locations for writing partitions. In order to solve this,
Boncz et al propose that multiple partitioning passes of smaller
fanouts should be used in order to avoid this performance
pitfall [1]. This led to the radix-partitioned hash join algorithm.
Figure 1 shows the steps involved in a radix-partitioned hash
join example. Both inputs are partitioned using a single pass
algorithm. Two TLB entries are sufficient for this example.
Hash tables are then built over each partition of input table R
and probed for join matches using corresponding S partitions.

III. GPU-CONSCIOUS PARTITIONED JOINS

It is well known in literature that partitioned radix hash
joins are versatile, scalable algorithms for parallelizing joins
on multicore CPUs. Thus, in this section, we start by building
a GPU-conscious partitioned radix join for the scenario where
all data is GPU resident. In doing so, we show that tuning a
join algorithm to be GPU-conscious is a non-trivial task that
requires exploring a wide design space consisting with several
optimization targets. In Section IV, we will extend the design
to cover scenarios where data does not fit in GPU memory.

A. Exploiting shared memory

As we described in Section II-A, modern GPGPUs contain
on-board device memory that provides much higher bandwidth
than CPU memory. Despite the high bandwidth memory of
the GPUs, the effective utilization of the shared memory is
important for achieving high overall throughput both because
of its speed and its efficiency for more complex access
patterns. In order to exploit shared memory for a partitioned
join, it is essential that at least one of the working sets in
a join fits in the shared memory. Then, the data structure
of the build phase is created and stored within the shared
memory, allowing for an efficient probe phase that relies on a
fast sequential scan of the outer relation and shared memory
lookups. The partitioning fanout needs to be high enough to
guarantee that the resulting partitions fit in the shared memory
allocated for the computation. Then, the join algorithm only
needs to consider the pairs of working sets corresponding to
the same hash value among the two relations. The intuition
behind the partitioned design choice tightly corresponds to the
cache consciousness argument in favor of the CPU-based radix
hash join and constitutes a parallel among the two algorithms.

The fanout of the partitioning algorithm is, however, also
restricted by the amount of shared memory available. The
metadata for each output partition needs to be stored in shared

memory so that it can be accessed and updated without involv-
ing the slower device memory. Also, shuffle space is required
so that the threads can rearrange the data before storing it to the
final destination, reducing the number of memory transactions
due to coalescing. Thus, the partitioning algorithm can have
a fanout of at most a few thousand partitions. This restriction
constitutes another parallel to the CPU-based radix hash join,
in which the fanout is restricted by TLB size [1].

In order to fully exploit shared memory, we use a multi-
pass partitioning algorithm that is sized to produce batches
of tuples that fit in shared memory. Each pass produces a
linked list of buckets per partition. To amortize the overhead
of pointer chasing and to improve scan coalescing, each bucket
is an array of elements with a capacity that is a multiple
of the GPU thread block size. Initially, a pool of buckets is
allocated and a subset of them is assigned to the partitions,
one per partition, and the threads start storing elements to
their respective bucket. When a bucket is full, the partition
related to it is assigned a new one from the pool which is
linked after the previous bucket. The resulting data structure
allows accessing the partition’s data in a coalesced access, only
following linking pointers to transition among buckets.

For the partitioning steps after the first one, we assign data
to CUDA blocks in a round-robin fashion. We experimented
with two granularities, a single bucket at a time or a partition
at a time (full chain of buckets). The latter approach has
the advantage that the CUDA block sub-partitioning a chain
of buckets is the only producer of the new partitions and
can therefore maintain all the data locally, in the fast shared
memory. By contrast, the former processes buckets of different
partitions at each step and therefore spends more time initial-
izing internal data structures and accessing data in the GPU
memory. However, in case the data is skewed, some of the
buckets chains are significantly longer, causing load imbalance
and deteriorating the performance of the partition-at-a-time
assignment as the longest running CUDA block defines the
total execution time. As a consequence, we opt for the bucket
at a time assignment, despite the fact that it fares worse for
uniform distributions. Long bucket chains produced by the
final step are decomposed and assigned to differents Streaming
Multiprocessors to balance load during the probing phase.

B. Exploiting warp synchronization

After the working sets have been sufficiently reduced in
size, the actual join that consists of a build and a probe phase
can be computed. In the build phase the smaller working set
is stored in the shared memory, potentially as a data structure
that enables efficient equality lookups such as a hash-table. In
the probe phase a coalesced scan reads the other working set
from device memory and compares the join field to the tuples
in shared memory. For this paper, we have implemented nested
loop join and hash join kernels for probing.

In the nested loop join implementation, the smaller working
set is initially copied to shared memory contiguously. Then,
the other working set is scanned in order to compare its ele-
ments to the ones in shared memory. Conventional implemen-

1 shared mem ← R partition loaded in shared memory
2 s ← thread private element from (the corresponding) S partition
3 f o r o f f s e t = 0 t o s i z e (R p a r t i t i o n) wi th s t e p 32
4 r ← shared memory [o f f s e t + t h r e a d i d i n w a r p]
5 mask ← ∼0
6 f o r i in {indexes of bits that may differ, based on partitioning}
7 b i t ← 1 << i
8 v o t e ← b a l l o t (r & b i t)
9 mask ← mask & ((s & b i t) ? v o t e : ∼v o t e)

10 process matches detected by set bits in mask

Listing 1: Detecting matches based on ballot
1 d e f i n s e r t (HT, e n t r y)
2 s l o t ← e n t r y . hash () % # s l o t s
3 o l d ← a tomicExchange (&(HT[s l o t]) , e n t r y . o f f s e t ())
4 e n t r y . n e x t ← o l d

Listing 2: Wait-free insertion to the hash-table

tations, as in the CPU, would perform all pairwise comparisons
individually at this point. However, this implementation is
optimized by taking warp-level synchronization primitives and
the knowledge that a partition’s elements have some common
bits into account. Threads read an element of the outer working
set and then each warp cooperatively scans the contents of
shared memory, as shown in Listing 1. We avoid having each
thread read all the values from shared memory by leveraging
intra-warp communication to scan 32 values at a time and use
ballot2 instructions to discover matches. Each thread of a warp
reads only one of the 32 values from shared memory at each
step, line 4. Then, threads iterate over the bits of the values
they read and broadcast them using ballot to the other threads,
line 6–9. Using bitwise operations, the threads check if the
broadcasted bits match the corresponding bit in the value they
read from the outer table, line 9. This only needs to be done for
the bits not used in partitioning. Therefore, through bitmask
manipulations, each thread in the warp compares the value
in their registers with 32 inner relation values and retrieves
a match bitmask, after only a few ballot operations, reducing
the number of memory reads.

C. Exploiting GPU atomics

In the hash join implementation, the smaller working set
is stored in shared memory. We store it using a hash-table
that uses linked lists for each hash-table slot and use offsets
to represents the links between list nodes. The limited size of
shared memory allows us to trim the offsets to 16 bits to reduce
the memory footprint. The hash table is created in parallel
by replacing the reference to the head of each list with a
reference to each new element with CUDA’s atomic exchange,
thus adding the element to the front of the list. After the
hash table has been created, the device memory working set
is scanned and for each value a lookup is performed using the
same hash function. A lookup follows the pointers of chains
in order to find the elements with a join field equality. In next
sections, this implementation is used by default, because it is
more efficient than nested loops as we will see in Section V.

Generating the join output is the final main component of
the join algorithm. When coalesced, Device memory accesses

2CUDA’s ballot instruction [6] reads a bit from each thread of the warp
and aggregates them into a bitmask that is broadcasted to the warp’s threads.

are most efficient. Having a different result buffer for each
thread is not efficient as it can leave memory unused. There-
fore, we buffer the results generated by a warp in shared
memory and flush them to the GPU memory sequentially when
the buffer is full. At each step of probing their respective
chains, the threads of a warp, executed in lockstep, use their
synchronization primitives to compute write offsets within
their allocated buffer until it is full. Then, the threads flush
the buffer’s contents to memory, computing the global offset
with an atomic increment operation and store any outstanding
output that did not fit on the buffer. With this approach,
random accesses are avoided. The result of a join operation
can be significant in size and materializing it in device memory
introduces an overhead, even with coalesced writes.

IV. OUT-OF-GPU EXECUTION STRATEGIES

The partitioned join algorithm we described targets GPU-
resident datasets. Nevertheless, the amount of data is much
larger than the limited device memory of GPUs in practice,
even for medium-sized databases. To make things worse, the
access patterns of data during the partitioning phase and the
scans of the bucket chains are not fit for CUDA’s Unified
Memory, a mechanism that allows moving pages of memory
between the CPU and the GPU on demand, owing to the
poor locality of the memory accesses and the fact that only
a small portion of a page is needed during an access. Under
other circumstances, the Unified Memory could manage the
transfers effortlessly achieving throughput levels near the PCI-
e bandwidth, which is the upper bound for this case. For the
task at hand, a more specialized approach need to be devised,
based on asynchronous memory transfers and streams, so as
to saturate the PCI-e bandwidth and mask the computation
overhead almost completely.

A. Exploiting asynchronous transfers for pipelining

First, we will consider the case that R, the smaller of the two
relations, can be stored in the GPU memory. We suppose that
the relation has been transferred to the GPU and has undergone
the partitioning phase described in Section 3. Then, S, the
other relation, can be split to a sequence of chunks that are
sufficiently small. Each of those chunks can be transferred to
the GPU memory and the join of the chunk with R can be
computed using the GPU-resident algorithm. The union of the
joins of all the individual chunks with R is equal to the join
of S and R, a property that is significant because it provides a
way to compute the total result in-GPU despite the fact that the
two relations cannot be fully collocated there at any moment.

The use of CUDA streams allows PCIe transfers and GPU
execution to occur at the same time. We use one stream for
transfers and another for the GPU execution itself, synchro-
nizing tasks on the same chunk with events. We also reserve
buffers for two chunks within the GPU, one being transferred
and another being processed at each moment. The role of the
buffers swaps at each step. Figure 2 shows the pipeline steps
as we swap the buffers and the operations that we perform
on them. As long as data is transferred over PCIe at a rate

significantly lower than the throughput of the GPU join, there
exists an opportunity for performing the full join at transfer
speed. In that case, the GPU computational units will be idle
until a chunk is available whereas the transfer unit will always
be busy because by the time a buffer is picked for use, the
previous chunk will have been processed. The execution on
the GPU overlaps completely with transfers and is effectively
hidden with the exception of the processing for the last chunk.
Thus, the total execution time is the transfer time for the
data plus the GPU execution time for the last chunk. In our
evaluation, we demonstrate that our in-GPU implementation
can support such an execution strategy, resulting in near-PCIe
bandwidth join throughput when one relation is in CPU.

Fig. 2: Pipelining of asynchronous transfers and executions.
One chunk is joined while another is being transferred

B. Exploiting CPU–GPU co-processing

The other case for the join’s input relations is that neither
of them can fit in the GPU global memory. In this scenario,
the working set for the join algorithm as described cannot be
completely GPU resident at any given time even if we stream
the larger relation through the PCIe bus. The smaller relation
can only be partially stored and as a consequence some of the
matching elements will not be in global memory. In addition,
relying on techniques such as the UVA is not practical because
the irregular access patterns of the join will cause parts of
the relation to be transferred over multiple times. This would
increase the traffic over the PCIe bus, which has already been
a bottleneck for joins with one GPU resident relation.

The problem can be circumvented with another level of
partitioning on the host memory. We have already illustrated
that a partitioned join can reduce the working set of the join so
that the hash table fits in the GPU’s shared memory. The same
principle applies for the global memory as well. Supposing
that the two relations are co-partitioned on the join attribute,
all the possible matches of the elements in a partition of a
relation are contained in the corresponding partition of the
other relation. As long as, the smallest partition fits in the
GPU global memory completely, an execution strategy that
streams the data through the PCIe can be used to join the
individual co-partitions. The overall join results are composed
by the results of the individual joins of the co-partitions.

In the general case, the join attribute is not known in
advance and the partitions need to be computed at the time
of the join. We use a radix partitioning algorithm for multi-
core CPUs to partition the relations into co-partitions that fit
in GPU global memory. Each of the two inputs is split into
chunks and each chunk is assigned to a local-to-data thread
which partitions it and produces a list of buckets per partition.
After an input relation is consumed, the lists from different
threads corresponding to the same partition are concatenated.

Then, the co-partitions are transferred over the PCIe bus to the
GPU global memory. Once there, the join is computed with
the partitioned hash join algorithm proposed in the previous
paragraphs. If the aggregate size of two co-partitions is larger
than the GPU memory, they are further partitioned.

As data always have to be transfered at least once though
the PCIe bus, regardless of the throughput of the partitioning
algorithm and the GPU join, the overall throughput is upper
bounded by the transfer rate. We match this rate by hiding
the computational cost of the CPU and the GPU processing
through pipelining. The processing on the CPU side, the mem-
ory transfer and the GPU join can be executed asynchronously.
We handle the dependencies between memory transfer and
the corresponding GPU operations through CUDA’s event syn-
chronization, while host-side processing dependencies with the
transfers are resolved implicitly by the order of their execution.
Dependencies between transfers and GPU operations as well
as among GPU operations demand that an operation is done
with a buffer before the next one can access it. As long as
processing tasks are such that their execution time is lower
than that of the corresponding transfer time, the total execution
time will be slightly larger than that of the transfer time.

At first, both relations are in host memory in their original
order. We partition the smallest relation and store the partitions
in pinned memory to allow for faster asynchronous transfers
and we initiate the transfer of a working set of partitions
to the GPU. Then, we begin the processing pipeline. We
subdivide the larger table in chunks that can be streamed
through the remaining GPU memory. Then, for each chunk
we follow a pipeline of partitioning, transferring the partitions
corresponding to the working set and joining the co-partitions
within the GPU. These phases overlap between different
chunks. A simplified version of the concept is illustrated in
Figure 3. In practice, however, we do not have strict pipeline
slots. We initiate each operation of the sequence as soon
as the previous step is completed. The combined results of
the joins between chunks and the working set comprise the
overall results of the join for the partitions that the working
set consists of. As we show later in Section V, partitioned
hash join saturate PCIe bandwidth and does not stall the
transfers due to the dependencies. The cost of partitioning
is also hidden if the algorithm used achieves a high enough
output throughput. Ideally, the fraction of the CPU partitioning
output that corresponds to the working set should be produced
at a rate higher than that of the PCIe bandwidth so that the
transfers do not face starvation and are always ongoing.

Fig. 3: Pipelining of co-processing steps (parti-
tion,transfer,join) in the second out-of-GPU strategy.

After the first working set has been processed, another
working set is transferred to the GPU device memory. At this
point, all the chunks have already been partitioned and are
in pinned memory. As a result, there is no partition phase
anymore and the pipeline consists of transfers and joins.

In order to achieve the throughput required for sustaining the
transfers to the GPU in a multi-socket system, the partitioning
algorithm needs to be NUMA-aware. However, this requires
setting the affinity of the data and the results so that the threads
perform local accesses during this step. As a result, part of the
partitioned data will be located in the far socket with respect
to the GPU and have to be transferred through the QPI. In
this case, the throughput is usually lower compared to that of
transfers from the local socket. Even worse is the fact that
when there is congestion in the QPI, even due to the cache
coherency protocol, existing traffic interferes with the transfers
and their throughput is reduced significantly. To avoid this
problem, we transfer the data manually from the far socket
to pinned memory in the near socket with CPU threads. We
extend the CPU phase of processing in the pipeline with this
NUMA-aware copy. Then, this copy constitutes the CPU phase
of the pipeline after the first working set.

The overlap of the transfers and CPU processing, and the
cache coherency traffic over the QPI, share the resources of
the same memory system. In case of intense multi-threading,
the memory bandwidth for the near socket may be saturated,
causing a collapse in both the transfer throughput and the CPU
processing throughput. As a consequence, the overlapping
processes need to be configured so that the memory system can
support the ongoing operations. Due to the need of maximizing
the transfer rate and the fact that the cache coherency protocol
cannot be controlled directly, we artificially reduce the mem-
ory bandwidth consumed by partitioning. First, we use non
temporal hints in order to avoid reading the memory locations
used for output. Second, we reduce the number of threads used
in the computation to directly alleviate the memory pressure.
Based on the expected per-thread memory bandwidth con-
sumption during partitioning , we select the maximum number
of threads that allows enough bandwidth for any overlapping
data transfers to the GPU to operate at full throughput, as they
are on the critical path. This optimization goal is an important
factor in configuring the proposed execution strategy. We leave
as future work dynamically changing the number of threads
during execution.

C. Exploiting multiple DMA engines

GPUs have two distinct DMA engines and support asyn-
chronous transfer both from CPU to GPU and from GPU
to CPU at the same time. This technique opens up different
possibilities for the management of the pool of data within
and outside of the GPU. For the context of this work, we use
this functionality to support retrieving the results materialized
in GPU memory during the evaluation of the out-of-GPU
execution strategies. The common denominator is that another
stream is added along with a number of event synchronizations

that guarantee both data (i.e. results are available) and resource
dependencies (i.e. output buffer is free).

For the first execution strategy, the result materialization
mirrors the double buffering on the input side. Two output
buffers are required to create a pipeline for output. While, the
first buffer is getting filled up by the GPU join kernels, the
other one is being transferred to the CPU with an asynchronous
transfer. Once the transfer finishes and the partial join is
completed, the buffers swap roles. Figure 4 depicts this action
relative to the current state of the normal execution pipeline. If
the results are at most equal in size with the input, then the cost
of transfers to CPU can be hidden through overlapping with
the exception of the last transfer. However, if the size of results
is larger than the input, then GPU execution stalls due to output
buffer dependencies and, as a consequence, input transfers stall
due to input buffer dependencies. Then the execution time is
determined by the output transfers.

Fig. 4: Pipelining transfers, execution and materialization

For the second execution strategy, the result materialization
can be done by adding another phase to the co-processing
pipeline for PCIe transfers of the output data. Again we use
two alternating output buffers for computing the output and
transferring it to the CPU in a pipelined manner. Because
of tight memory constraints, it might be the case that the
two output buffers are shared with other GPU operations.
This introduces extra dependencies for the execution. When
transfering the output completes before the buffer is needed
again, the pipelined execution hides the output transfers.

D. Handling Skew

The performance of the execution strategy depends on two
essential assumptions about the working sets of partitions that
are chosen to be processed at each step. First, the size of each
working set needs to fit in the GPU memory allocated for the
small relation. Second, for the first working set, the transfers
to the GPU overlap with the partitioning of the CPU chunks
and therefore its size should be large enough to hide the CPU
partitioning execution time.

Skew in data results in unevenly sized partitions when an
algorithm such as radix partitioning is used. In the case of a
skewed smaller relation, a naive choice of working sets can
render each of the two assumptions invalid. On the one hand,
if too many large partitions are placed in the same working
set, the input cannot fit in the buffers. On the other hand, if too
many small partitions are placed in the first working set, then
the CPU partitioning cannot be hidden completely, causing
the transfers to stall until data is available. Therefore, a more
elaborate approach to choosing working sets is required.

Our approach of packing partitions into suitable working
sets follows two steps. In the first step, a knapsack algorithm

is used to generate the first working set as the set of parti-
tions that maximize the total number of elements, under the
constraint that they fit in the allocated GPU memory, padding
included. The rest of the partitions are then greedily packed
into working sets with the restrictions that each working set fits
in the allocated GPU memory and that at most one partition
for which space reserved after sub-partitioning exceeds a
threshold can be placed in a working set. The idea for the latter
restriction is that we quantize the GPU memory in buffers
and partitions that exceed the threshold need more space for
both partition results and the intermediate results of the first
partitioning pass on GPUs.

V. EVALUATION

In this section, we describe the experiments for measuring
the performance of the methods described above.

A. Experimental Setup

We run our experiments on a Red Hat Enterprise Linux 7.2
machine equipped with two 12-core Intel Xeon E5-2650L v3,
256 GB of main memory and a Nvidia GTX 1080 GPU with
8 GB of device memory. At the time the experiments were
run, CUDA 9.0 was installed on the machine.

For the workload, we adopt the one that has been used in
several previous studies for evaluating CPU-based joins [3]–
[5]. The workload mimics a typical in-memory join processing
scenario with two narrow tables, each consisting of a 4-byte
key and a 4-byte value stored in a columnar fashion. We use
one table as the build and the other as the probe table. As the
cardinality of the tables varies per experiment, we describe it
inline with each experiment and describe it in Annotations &
configurations for Figures 7–13.

We run each experiment multiple times and calculate the
execution time as the average execution time of the iterations.
We use total throughput, in terms of tuples processed per
second by the join algorithm, as our metric of comparison.
We compute the total throughput by dividing the combined
size of both input relations by query runtime.

B. GPU join processing

Nested loops vs hash join. We first discuss the experiments
with both relations stored in GPU memory. In Figure 5, we
plot the total throughput of the join as well as the throughput
of joining co-partitions for the two join variants described in
Section III, a nested loop, implemented using warp shuffles,
and a hash join, implemented using GPU atomics. Each CUDA
thread block has been configured with shared memory for
2048 elements, 1024 threads and for the hash join with 256
hash table buckets. For this micro-benchmark, each input has
two 4-byte columns, a join key and a payload. The keys are
unique and uniform. Each thread locally aggregates the output
payload columns and at the end attomically updated the global
aggregates. We use 2 million tuples per table, vary the number
of partitions and plot the results against the partition sizes.

Initially, the nested loop variant has a higher throughput
than the hash join one for small partition sizes but the hash

join variant outperforms it for larger partition sizes. Until 1024
elements per partition, the throughput of joining co-partitions
increases, though for the case of hash join at a higher rate. This
is because we utilize the streaming multiprocessor’s resources,
which have been pre-allocated for 1024 elements, to a greater
extent. Then, the throughput of both techniques declines. For
hash joins that is because of collisions whereas for nested
loops because of its quadratic complexity. The decrease for
nested loops is much sharper and is reflected at the total
join throughput. Still, the partitioning phase dominates the
execution time and the overall difference is small.

Shared vs device memory. In the next experiment, we
evaluate the advantages of using shared memory vs device
memory for joining the co-partitions. We join two tables
with the same characteristics as before, but we vary their
size and keep the number of partitions constant. We use two
partitioning passes to create 215 partitions and join the co-
partitions using a hash-join in either the shared memory or
the device memory. We reserve enough shared memory for
4096 elements per partition, 512 threads, 2048 hash table
buckets and aggregate the output of the join. In Figure 6
we depict the throughput of joining the co-partitions as well
as the total throughput for the two variants. The version
that uses shared memory has a higher throughput in probing
and consequently the overall join. With shared memory, the
throughput of co-partition joining increases as we increase our
dataset size because there are more elements per partition and
again resource utilization improves. This pattern is traced by
the GPU memory versions but the throughput starts declining
as soon as chains start to form. The end result is that the shared
memory approach is more than 30% faster for the largest
relation size. This occurs despite the fact that partitioning
accounts for the majority of the execution time.

Annotation & configuration For Figures 7–13, the plots
use the annotation that configurations with a concrete line
represent an aggregation of the join results, while a mixed
pattern of dashes and dots represents result materialization,
unless specified otherwise. Similarly, a concrete line means a
1:1 join, a dashed line 1:2 and a dotted line a 1:4 join. In
addition, for each CUDA block we allocate enough shared
memory for 4096 elements and 2048 hash table buckets. For
partitioning kernels we use 1024 threads per CUDA block and
512 threads per block for joining co-partitions. We compare
our proposed GPU join strategies, marked GPU Partitioned in
the plots, with a non-partitioned GPU hash join, GPU Non-
partitioned and state-of-the art CPU algorithms, the optimized
partitioned hash join PRO and non-partitioned hash join NPO
presented in [3], [7]. We directly use the source code provided
by these studies for the CPU algorithms. As our server is
equipped with 24 CPU cores across two sockets, both NPO
and PRO fully parallelize execution on all 48 threads.

Impact of materialization. In Figure 7 we evaluate the
impact of materializing the join results. We run our proposed
algorithm for equally-sized in-GPU relations from 1 million
to 128 million tuples and measure the throughput when the
results are materialized in GPU memory versus when an

256 512 1,024 2,048
0

2

4

6

8

Partition size (#elements)

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

Hash join - total Hash join - join co-partitions

Nested loop - total Nested loop - join co-partitions

Fig. 5: Comparison of partitioned
joins: hash join vs nested loops

1 2 4 8 16 32 64 128
0

10

20

30

Build/probe relation size (million tuples)

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

Shared mem - total Shared mem - join co-partitions

Device mem - total Device mem - join co-partitions

Fig. 6: Comparison of building hash-
table in device vs shared memory

1 2 4 8 16 32 64 128
0

1

2

3

4

Build/probe relation size (million tuples)

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

Aggregation Materialization

Fig. 7: Partitioned hash join with and
without output materialization

aggregate is computed on the payloads. We observe that the
version that materializes the output traces the aggregation
version for the relation sizes. As both relations have the
same distinct values, the selectivity of the join is high and
many result tuples are materialized. Still, the overhead of the
extra synchronizations for the write buffers and the memory
accesses do not degrade performance significantly. Despite the
divergence caused by probing the hash-join tables and the
occurrence of matches in different cycles for the threads of a
warp, our buffering technique manages to combine the result
writes and reduce the overhead.

Partitioned vs non-partitioned join. Next, we compare our
partitioned hash join implementation with the non-partitioned
GPU hash join, in the case that data are already placed in
the GPU. For our GPU partitioned hash join, we keep the
number of partitions constant at 215 partitions and use the
configuration described above. For the non-partitioned GPU
join, we use two implementations, a traditional “chaining”
implementation that stores the hash table buckets as a chain of
elements connected with offset pointers and one with a perfect
hash function, as a best-case scenario for the non-partitioning
join. For the “chaining” one, when probing the hashtable, three
to four random memory accesses are required: one for the hash
table itself, one for the key, one for checking that there is no
successor in the chain and for the case of a match, an access to
the payload. The perfect hashing one is designed to incorporate
the knowledge of no-collisions and the contiguous range of
unique keys. The payloads of the tuples are stored in a dense
array using the keys as offsets. Only one random access is
required per probing operation, so the algorithm constitutes a
best-case scenario for the non-partitioned hash join on GPUs.

Continuous lines for these three algorithms in Figure 8
depict the throughput achieved by the three algorithms for
various dataset sizes that can fit in GPU memory. Initially,
the partitioned join performs worse that its non-partitioned
counterparts but its throughput benefits from larger dataset
sizes as the partitioning overhead get amortized and pays off.
As a result, it outperforms the alternatives when the input
relations have more than 8 million tuples. By contrast, the
throughput of non-partitioned joins starts high but deteriorates
rapidly with larger relation sizes.

We repeat the experiment for different build-to-probe table
ratios and plot in the same figure the results for a probe
relation twice and four times as large as the build relation,

with dashed and dotted lines respectively. For each build-side
table size, we keep the same set of distinct values in the probe-
side, independent of its size, thus the number of matches is
increased as we increase the input ratios. The trend is similar
to the equally-sized tables, but the improvement of our par-
titioned method throughput is steeper as, outperforming non-
partitioned implementations for even smaller relation sizes.

Payload Sizes Figures 9 & 10 show the impact of the
payload size on the performance of partitioned and non-
partitioned GPU joins. We use late materialization for re-
trieving multiple attributes using tuple identifiers as the join
payload. We aggregate rather than materialize the payload
values because the materialization cost is common. Figure 9
plots the throughput of the two methods for varying probe-
side payloads. Non-partitioned joins overtake partitioned ones
for larger probe-side payloads due to sequential reads of late
materialized attributes, whereas the partitioned join reorders
tuples and incurs random accesses. Figure 10 shows the
throughput when varying the build-side payload. In this case,
both sides reorder the tuples and do random accesses. Thus,
the partitioned join maintains its edge. However, as the number
of random accesses increases, the difference diminishes.

C. Out-of-GPU Join

Streaming probe join. Next, we examine the case that
one of the relations cannot fit in GPU memory. We keep
the size of the build table fixed at 64 million tuples and
vary the size of the probe table keeping its distinct values
constant. The probe table is broken down into chunks half
the size of the build table. All tables are originally in CPU
memory. Figure 11 plots the throughput of the execution
strategy for the case that results are materialized on CPU
memory as well as when they are aggregated within GPU.
The GPU throughput increases with larger probe relations,
because the outstanding computations become less significant
and comes close to the PCIe bandwidth, the bottleneck for
this type of join. Additionally, we notice again that result
materialization introduces an overhead but does not cause a
significant performance deterioration.

Co-processing join. The final execution strategy for GPU
joins in the experiments we performed involves co-processing,
which is used when neither of the two relations fits in the GPU
memory. The relation sizes vary from 256 million to 1024
million for this experiment. We do not go further than 1024

1 2 4 8 16 32 64 128
0

1

2

3

4 1:1 inputs
1:2 inputs
1:4 inputs

Build relation size (million tuples)

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

GPU Partitioned GPU Non-partitioned CPU PRO
GPU Non-partitioned w/ perfect hash CPU NPO

Fig. 8: Comparison of hash join for
different build-to-probe ratios

16 32 48 64 80 96 112 128
0

0.2

0.4

0.6

0.8

1

Payload size (bytes)

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

GPU Partitioned GPU Non-Partitioned

Fig. 9: Effect of varying probe-side
payload size

16 32 48 64 80 96 112 128
0

0.2

0.4

0.6

0.8

1

Payload size (bytes)

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

GPU Partitioned GPU Non-Partitioned

Fig. 10: Effect of varying build-side
payload size

million tuples because for the 1:4 relation size ratio, a smaller
relation with 2048 million tuples results in a total dataset size
of 80GB, leaving insufficient memory space for the CPU-side
processing. 16 threads are used for the CPU partitioning phase
of the co-processing, as well as software managed buffers with
non-temporal memory hints to reduce bandwidth consumption.
We perform a 16-way partitioning on the CPU and 5 partitions
are used as the working set inside the GPU for the first step.
This is because the CPU radix partitioning pass can reach a
throughput of approximately 40 GB/s for our configuration
and therefore 5 partitions are produced at a rate high enough
to saturate the PCIe and still fit in device memory for the
largest dataset in our experiments.

The green line in Figure 12 shows the throughput achieved
by our co-processing join for different relation sizes and build–
probe size ratios. There are two important observations to be
made. First, in most cases, the throughput remains insensitive
to the relation size. This shows that co-processing is robust
for large relations. Second, comparing Figures 7 & 11, we see
that our join algorithm provides a throughput of 1.4 Billion
tuples/second when only the build table is GPU resident, and
1.2 Billion tuples/second when neither of the tables is GPU
resident. Our join algorithms completely saturate the PCIe
bandwidth when only the build table sits in GPU memory. As
both out-of-GPU cases are bottlenecked on the PCIe, and so
we expect that under faster interconnects, like NVLink or PCIe
4.0, our join algorithms would provide higher throughput.

Comparison with state-of-the-art GPU join. In addition
we compare our algorithm with two state-of-the-art GPU-
enabled analytical engines, DBMS-X, a commercial engine
that uses code generation to produce efficient code for GPU-
query execution and CoGaDB [8], [9], a research GPU-enabled
DBMS system with an operator-at-a-time execution model.

In Figure 14, we show the execution time of our algorithm
against the two systems on joining TPC-H [10] tables. We
measure the execution time of two joins of the lineitem table,
one with the customers table and one with the orders table,
and we repeat the experiment for two different scale factors,
10 and 100. For scale factor 10, the first join has a working
set of ∼500MB and the second one ∼600MB, excluding
any compression that the other systems use. For scale factor
we run each query multiple times before running the actual
measurements in order to allow the system to load the data
into the GPU. Afterwards, all three systems operate on GPU-
resident datasets. We observe that our algorithm outperforms

both systems. For the scale factor 100, the working sets are
∼5GB and ∼6GB. In joining the customers table, we observe
the increase of throughput in our algorithm as well as DBMS-
X, which agrees with what in the previous experiments. On
the join with the orders table, DMBS-X returns an error, while
we revert into the streaming variant of our algorithm which
transfers the lineitem table over the PCIe on every query.
Unfortunately, CoGaDB was failing to resize an internal data
structure while loading scale factor 100.

Figure 15 shows the throughput achieved by our partitioned
join and the two systems for equally sized tables. DBMS-
X executes the join on GPU-resident data as long as the
cardinality falls below 32M tuples. Beyond this, DBMS-X
does not load data into GPU memory and simply executes an
out-of-GPU join over CPU-memory resident tables. Our join
algorithm implementation is able to push this limit to 128M
tuples. We suspect this different is due to internal integer size
differences in the data type used to represent keys. CoGaDB
also manages to reach 128M tuples but it is not designed to
operate on joins that do not fit one of the two sides in GPU
memory and thus is unable to run the two bigger datasets.

Figure 15 shows that both our algorithms and DBMS-
X perform better when data is GPU resident. However, our
algorithms outperform DBMS-X in all cases. When data is
GPU resident, our algorithms provide a 1.5-2× improvement
in throughput over DBMS-X. This difference extends to 10×
when data is not GPU resident (right extreme of the graph).

D. Comparison with CPU joins

In this subsection, we compare the GPU join strategies we
propose to state-of-the art CPU implementations.

GPU-sized data. First, we examine the case of datasets that
fit in GPU memory in Figure 8. For each method, the data is
local to the functional unit. We observe that the partitioned
and non-partitioned families of joins have the same behav-
ior regardless of hardware. The partitioned joins (PRO and
partitioned) improve until they reach a sweet spot while the
non-partitioned joins (NPO and non-partitioned) perform well
for smaller datasets but not larger ones. Similarly, as the size
of the probe table increases, the partitioned join throughput
improvement becomes steeper in both cases. It is interesting
to note that PRO outperforms the non-partitioning GPU hash
join for large enough datasets. This proves inefficiency of the
non-partitioned hash join algorithm on GPUs. Second, for all
relation sizes, the GPU implementations always outperform

64 128 256 512 1,024 2,048
0

0.5

1

1.5

Aggregation
Materialization

Probe relation size (million tuples)

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

GPU Partitioned CPU PRO

Fig. 11: Streamed probe-side vs CPU

256 512 1,024 2,048
0

0.5

1

1.5

1:1 inputs 1:2 inputs 1:4 inputs

Build relation size (million tuples)

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

GPU Partitioned CPU PRO CPU NPO

Fig. 12: Co-processing join vs CPU

2 6 10 14 18 22 26 30 34 38 42 46
0

0.2

0.4

0.6

0.8

1

1.2

Number of threads

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

GPU Partitioned CPU PRO

Fig. 13: Scalability with CPU threads

customers orders customers orders
0

1

2

3

4

5

SF10 SF100

TPC-H table joined with lineitem

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

GPU Partitioned DBMS-X CoGaDB

Fig. 14: Joins on TPC-H tables

1 2 4 8 16 32 64 128 256 512
0

1

2

3

4

Build/probe relation size (million tuples)

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

GPU Partitioned DBMS-X CoGaDB

Fig. 15: State-of-the-art GPU systems

256 512 1,024 2,048
0

2

4

6

8

10

Build/probe relation size (million tuples)

T
hr

ou
gh

pu
t

(G
B

ps
)

Staging Direct copy

Fig. 16: Staging vs direct copies

their CPU counterparts. For the partitioned joins, the through-
put for GPUs reaches as high as 4 billion tuples/sec, a 4x
speedup over the CPU version.

Out-of-GPU comparison. Figure 11 compares the probe
streaming strategy, when only the build table is in GPU
memory, against the CPU partitioned hash join. Figure 12
presents a similar comparison for our co-processing strategy
where both tables are out of GPU memory. We see that in
all cases the GPU implementation outperforms the CPU join
for our experimental setup and in fact the speedup increases
with the probe size, approximating the PCIe bandwidth.
However, the speedup is still limited compared to the case
where all data is GPU resident. Interestingly, we see that
the benefit of our co-processing join increases as the dataset
size increases because the co-processing throughput remains
unchanged while the CPU join throughput follows a downward
trend. This is because co-processing is bound by the transfers
and the partitioning step, which maintain the same throughput
for increasing relation sizes, while for the CPU join the
partition sizes increase and the effect of cache optimizations
diminish. The discrepancy is even larger when one of the
relations is increased in size. This is unlike the probe streaming
case which kept the size of the build relation unchanged.
This shows that co-processing provides near-PCIe bandwidth
performance and scales better than CPU implementations as
it maintains a constant throughput.

CPU Utilization. From the above results, it is conceivable
that a multi-core CPU with more than 24 cores could match
or outperform the GPU execution strategy. Thus, an advantage
of using our GPU-conscious join algorithms is that one could
achieve the same throughput as CPU-based joins with fewer
CPU cores. Figure 13 plots throughput for the CPU parti-
tioned hash join for different numbers of threads against the
throughput achieved by co-processing when the same number
of threads is used for the partitioning phase. We see that the
throughput of the CPU implementation is proportional to the

number of threads. On the contrary, the throughput of the co-
processing implementation increases rapidly, outperforming
the fastest CPU setup with only 6 threads. Co-processing
reaches a plateau after 16 threads and faces of small drop
after 26 threads. At this point, the memory bandwidth is
saturated which decreases the throughput of PCIe transfers
that overlap with partitioning. This result shows that using
our coprocessing join with a single GPU and 6 cores, we
can match the performance of a CPU-based join that uses
nearly 10× more CPU cores. This benefit is particular useful
for Hybrid Transaction and Analytical Processing Systems
(HTAP) like Caldera [11] that use CPUs for transaction
processing and GPUs for analytical processing.

NUMA effect In Figure 16, we demonstrate the importance
of staging to the near socket before the transfer to the GPU.
We plot the throughput for a join of two relations with unique
keys that match 1:1 for different dataset sizes and see that
performing the intermediate copy improves performance. This
occurs because partitioning interferes with transfers from the
far socket, deteriorating overall performance.

E. Handling Skew

In Figures 17–20, we examine the performance of our
algorithm under skewed data. In Figure 17, we plot the
throughput of our algorithms for input tables with 32 million
tuples each and different zipf distributions for GPU-resident
data. We show the cases with skew only on the probe side,
only on the build-side and on both. For the case of both
inputs being skewed, we present the worst case of both tables
having an identical skew, and the same popular values. For
this plot we do not flush the results back to the CPU when
they overflow the GPU memory due to data explosion in high
skew values, but overwrite them in order to isolate the in-
GPU performance. In Figure 18, we produce the same plot
for the case of 512 million tuples per input and out-of-GPU
data where we use out co-processing algorithm. We include
both the case of aggregating and materializing the join results.

0 0.25 0.5 0.75 1
0

1

2

3

4

Aggregation
Materialization

Zipf factor

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

Skewed probe Skewed build Identically skewed

Fig. 17: Skew on GPU-resident data

0 0.25 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

1.2

Aggregation
Materialization

Zipf factor

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

Skewed probe Skewed build Identically skewed

Fig. 18: Skew on CPU-resident data

1 2 3 4
0

1

2

3

4

Aggregation
Materialization

Avg. number of replicas

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

GPU resident CPU resident

Fig. 19: Uniform number of replicas

256 512 1,024 2,048
0

0.5

1

1.5

Aggregation
Materialization

Probe/build relation size (million tuples)

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
) Uniform zipf 0.25 zipf 0.5

Fig. 20: Input size vs skewed inputs

GPU data load UVA part. UVA join UVA load UM
0

1

2

3

4

Last step using technique Y

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

Fig. 21: Effect of UVA and UM

UM UVA Co-processing
0

0.2

0.4

0.6

0.8

1

1.2

Techniques for Data Transfers

T
hr

ou
gh

pu
t

(b
ill

io
n

tu
pl

es
/s

ec
)

Fig. 22: Throughput with UVA/UM

In Figure 19, we show the impact of uniform distribution with
duplicates, for in- and out-of GPU data.

From the first plot we observe that for GPU resident
datasets, skew on the probe side has a very low impact on
the throughput of the algorithm, if the other side is uniform.
Skew on the build-side affects the algorithm more but we still
get a throughput higher than the CPU-resident datasets for
most of the cases. When the inputs have identical skew, the
performance collapses after a factor of 0.75, as the combina-
tion of two effects: 1) the build side of the hash-table of each
co-partition stops fitting in shared memory and thus we resort
to hash-base block nested loops 2) there are too many matches
for the very popular values that our algorithm approaches an
all-against-all comparison, following long chains for a high
percentage of the input. For bigger than GPU memory datasets,
we observe from the second plot that our algorithm is much
more resilient. As the interconnect is much slower than the in-
GPU part of our algorithm, we do not see a performance drop
up until a zipf factor close to 1. The GPU-side partitioning
and join still perform faster than the PCIe bus. In the case
of identical skew, the computation during the probing phase
starts to cause overheads that can not be covered by the PCIe
bandwidth, after a zipf of 0.75. In these cases, the GPU
is affected by the same problem as in the in-GPU case. In
the case of result materialization, both in-GPU and out-of-
GPU cases observe a small penalty, with the exception of the
extreme case of out-of-GPU with identical skew, where the
output result explode causing significant volume of data to be
written over the PCIe interconnect to the CPU side.

In Figure 20, we show how skew affects the throughput
of our co-processing algorithm for different input sizes. We
plot the throughput when both inputs have exactly the same
distribution and same popular values for zipf factors of 0.25
and 0.5, the worst case, as well as for a uniform distribution.
When the results are aggregated, we observe that for zipf
factors up to 0.5 there is no performance penalty compared
to the uniform case. In addition, as we have already shown

in previous experiments, uniform data are also not affected
by materialization. Lastly, we observe that for bigger datasets
that the output explodes, the performance collapses due to the
high amounts of output data.

F. Alternative Data Transfer Mechanisms

Lastly, in Figure 21, we show the throughput for the cases
of uniform unique keys when using different data transferring
mechanisms, for a working set that fits in GPU memory. In
the first figure we show the throughput when the data are GPU
resident, as in our in-GPU experiments, the case of using UVA
only for loading data, loading and generating the partitions
over UVA and executing the whole algorithm over UVA.
The last bar shows the throughput using Unified Memory to
load the input. In Figure 22, we show the throughput of our
algorithm for out-of-GPU data loaded with each of the three
methods, UVA, Unified memory and our approach. The first
two methods decide on the placement and data transfers, while
for the last one we handle them ourselves.

VI. RELATED WORK

GPUs have been extensively used for several decades for ac-
celerating visualization applications from gaming to interactive
displays. However, traditional GPUs suffered from several ma-
jor limitations that made them unsuitable for general-purpose
data analytics. First, applications that used GPUs had to
manage host (CPU) and device (GPU) memory separately, thus
complicating programmability. Second, GPU device memory
capacity was too limited to store all data. Therefore, appli-
cations had to manually copy data from system to device
memory via the slow PCIe bus before executing a computation
on the GPU. As a result, despite initial work in late 2000s that
showed that GPUs can provide substantial improvement in
performance over CPUs [12], [13], they were not widely used
in the industry because analytical queries running on GPUs
spent most of their time transferring data.

Over the past few years, however, GPUs are evolving from
memory-limited accelerators for niche domains to general-

purpose processors with radical improvements along the di-
mensions of performance due to a continued increase in
processing capacity and memory bandwidth, interfacing due to
new interfaces like NVLink, and programmability due to the
introduction of new functionalities in the CUDA programming
model. Thus, there has been renewed interest in designing
GPU-based analytical database engines [9], [11], [14]–[17].
However, these systems do not support joins, or use a non-
optimized, traditional non-partitioned hash join. In addition,
these systems assume that at least one, if not both, relations
are GPU resident. In this paper, we present a family of
partitioned radix join algorithms that are fine tuned to exploit
GPU hardware. In doing so, we present the first study of GPU-
based, hardware-conscious join algorithms that can work even
if no data is GPU resident.

Kaldeway et al [18] perform a comparison between the GPU
implementations of a conventional hash join and a partitioned
one and evaluate the effect of UVA. For the traditional GPU
approach, in which the input data is copied to GPU memory
first, the performance is almost identical. On the contrary,
when access is performed over UVA, the conventional ap-
proach is superior because the partitioned version requires
multiple passes. For the probing phase, the PCI-e bandwidth
(6.3 GB/sec at the time) was the bottleneck, whereas for the
building phase the computations were the actual bottleneck
due to the use of random atomic memory accesses. In this
work, we demonstrate that optimized partitioned join algo-
rithms can substantially outperform non-partitioned variants.
We also show that our optimized partitioned radix join can
saturate the PCI-e bandwidth and offer throughput at least an
order of magnitude higher than results reported at [18].

Rui and Tu [19], opt for a two-phase partitioning hash
join. They discuss the effect of the features of new GPUs
compared to older ones, namely the increased number of cores
and registers, the optimized atomic operations, the dynamic
parallelism and the overlap of processing and transfers. They
also develop a pipelined workflow for processing relations
that cannot fit in GPU memory. However, they leave the
case of both relations exceeding GPU memory as future
work. In this paper, we show how CPU–GPU co-processing
allows executing out-of-GPU joins efficiently. In addition, our
approach avoids an extra pass on each partitioning step by
using GPU atomic operations instead of building histograms.

He et al [20] examine hash joins for coupled CPU-GPU
architectures with both units collocated in the same inte-
grated chip, avoiding PCI-e transfers. The authors identify
offloading, data dividing and pipelined execution as the main
co-processing mechanisms and analyze the hash join as a
sequence of fine-grained steps so as to apply the mechanisms.
They report significant performance improvements, although
the work is specific for coupled architectures. We show
that hardware-conscious GPUs joins can provide very high
throughput even for discrete GPUs.

VII. CONCLUSIONS

In this paper, we implemented a partitioned algorithm for
performing joins on GPUs. We demonstrated that for GPU-
resident datasets, the algorithm achieves very high perfor-
mance, with the build and probe step having a throughput
close to the CPU’s memory bandwidth. Next, we examined
the case of out-of-GPU relation joins, more specifically the
scenarios in which at least one relation does not fit in GPU,
and developed execution strategies. For the former, the larger
relation is streamed through GPU, with careful overlaps of
memory transfers and kernel execution, whereas for the latter,
the host participates in a co-processing scenario, partitioning
the relations before streaming them to the GPU. In both cases,
the bandwidth of PCI-e has been saturated.

ACKNOWLEDGMENTS

This project has received funding from the European Union
Seventh Framework Programme, 2013 - ERC-2013-CoG, grant
agreement number 617508 (ViDa) and the H2020 - UE Frame-
work Programme for Research&Innovation (2014-2020), 2017
- ERC-2017-PoC, grant agreement number 768910 (ViDaR).

REFERENCES

[1] P. A. Boncz, S. Manegold, and M. L. Kersten, “Database architecture
optimized for the new bottleneck: Memory access,” in VLDB ’99.

[2] A. Shatdal, C. Kant, and J. F. Naughton, “Cache conscious algorithms
for relational query processing,” in VLDB ’94.

[3] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu, “Multi-core, main-
memory joins: Sort vs. hash revisited,” Proc. VLDB Endow., vol. 7, no. 1.

[4] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish,
J. Chhugani, A. Di Blas, and P. Dubey, “Sort vs. hash revisited: Fast
join implementation on modern multi-core cpus,” Proc. VLDB Endow.

[5] S. Blanas, Y. Li, and J. M. Patel, “Design and evaluation of main
memory hash join algorithms for multi-core cpus,” in SIGMOD ’11.

[6] NVIDIA. Cuda c programming guide. http://docs.nvidia.com/cuda/cuda-
c-programming-guide.

[7] S. Schuh, X. Chen, and J. Dittrich, “An experimental comparison of
thirteen relational equi-joins in main memory,” in SIGMOD ’16.

[8] S. Breß, H. Funke, and J. Teubner, “Robust Query Processing in Co-
Processor-accelerated Databases,” in SIGMOD, 2016, pp. 1891–1906.

[9] S. Breß, “The Design and Implementation of CoGaDB: A Column-
oriented GPU-accelerated DBMS,” Datenbank-Spektrum, 2014.

[10] T. P. P. Council, “Tpc-h benchmark specification,” Published at
http://www. tcp. org/hspec. html, vol. 21, pp. 592–603, 2008.

[11] R. Appuswamy, M. Karpathiotakis, D. Porobic, and A. Ailamaki, “The
case for heterogeneous htap,” in CIDR, 2017.

[12] G. F. Diamos, H. Wu, J. Wang, A. Lele, and S. Yalamanchili, “Relational
algorithms for multi-bulk-synchronous processors,” in PPoPP, 2013.

[13] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju, Q. Luo, and P. V.
Sander, “Relational Query Coprocessing on Graphics Processors,” TODS
2009, vol. 34, no. 4.

[14] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl, “Hardware-
oblivious parallelism for in-memory column-stores,” PVLDB 2013.

[15] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and G. Saake, “GPU-
Accelerated Database Systems: Survey and Open Challenges,” Trans.
Large-Scale Data- and Knowledge-Centered Systems, 2014.

[16] Y. Yuan, R. Lee, and X. Zhang, “The Yin and Yang of Processing Data
Warehousing Queries on GPU Devices,” PVLDB 2013, vol. 6, no. 10.

[17] MapD. https://www.mapd.com/.
[18] T. Kaldewey, G. M. Lohman, R. Müller, and P. B. Volk, “GPU join

processing revisited,” in DaMoN, 2012.
[19] R. Rui and Y. Tu, “Fast Equi-Join Algorithms on GPUs: Design and

Implementation,” in SSDBM, 2017, pp. 17:1–17:12.
[20] J. He, M. Lu, and B. He, “Revisiting co-processing for hash joins on

the coupled cpu-gpu architecture,” Proc. VLDB Endow., vol. 6, no. 10.

