
Offloading Security Services to the Cloud
Infrastructure
Paul Chaignon12, Diane Adjavon23, Kahina Lazri2,
Jérôme François1, and Olivier Festor145

1Inria 2Orange Labs 3EURECOM 4Telecom Nancy
5University of Lorraine

August 24, 2018

ACM SIGCOMM SecSoN’18, August 24, 2018



Cost of Hardware Memory Isolation

Hardware

Host

VM3
VM1 VM2

1/23 ACM SIGCOMM SecSon’18, August 24, 2018



Cost of Hardware Memory Isolation

Hardware

DPDK, netmap, XDP, etc.

VM3
VM1 VM2

Many improvements at the host layer
Difficult to get the same performance boost in tenant domains

2/23 ACM SIGCOMM SecSon’18, August 24, 2018



Offloading Security Services

Security services as a first target for offloads
1. Filters in front of applications

– IDS/IDP
– Anti-DDoS
– Rate-limiters
– ...

2. Encode insights on the application’s expected queries:
– Frequency of queries
– Format of queries
– ...

3. Sometimes work in coordination with application (e.g., SYN cookies)

3/23 ACM SIGCOMM SecSon’18, August 24, 2018



Offloading Security Services

Security services as a first target for offloads
1. Filters in front of applications

– IDS/IDP
– Anti-DDoS
– Rate-limiters
– ...

2. Encode insights on the application’s expected queries:
– Frequency of queries
– Format of queries
– ...

3. Sometimes work in coordination with application (e.g., SYN cookies)

3/23 ACM SIGCOMM SecSon’18, August 24, 2018



Offloading Security Services

Security services as a first target for offloads
1. Filters in front of applications

– IDS/IDP
– Anti-DDoS
– Rate-limiters
– ...

2. Encode insights on the application’s expected queries:
– Frequency of queries
– Format of queries
– ...

3. Sometimes work in coordination with application (e.g., SYN cookies)

3/23 ACM SIGCOMM SecSon’18, August 24, 2018



Offloading Security Services

Security services as a first target for offloads
1. Filters in front of applications

– IDS/IDP
– Anti-DDoS
– Rate-limiters
– ...

2. Encode insights on the application’s expected queries:
– Frequency of queries
– Format of queries
– ...

3. Sometimes work in coordination with application (e.g., SYN cookies)

3/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design

Host

Tenant 1’s
domain

Tenant 2’s
domain

vSwitch

Agent

SmartNIC

Compiler agent

Cloud API

prog1.c
progn.c...
prog2.c tmplt.c

++

host_α

1 1 0 0 1
0 1 0 1 1
0 0 1 1 0
0 1 0 1 1
0 0 1 1 0

4/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: Isolation

Many software solutions available:
– Safe languages (e.g., Rust, Java, Modula-2)
– Proof-Carrying Code [OSDI’96]
– Software-Fault Isolation [SOSP’93]

We use the BPF interpreter
– Relies on ahead-of-time verification of programs through static analysis
– Tailored for packet processing (limited ISA, limited computational power)

5/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: Isolation

Many software solutions available:
– Safe languages (e.g., Rust, Java, Modula-2)
– Proof-Carrying Code [OSDI’96]
– Software-Fault Isolation [SOSP’93]

We use the BPF interpreter
– Relies on ahead-of-time verification of programs through static analysis
– Tailored for packet processing (limited ISA, limited computational power)

5/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

1. Guarantee each tenant its fair share of the CPU time

2. Work-conserving allocation: not wasting CPU time

6/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Run-to-completion model common across packet processing frameworks
– Packets processed by a single thread, on a single core
– Reduces the number of expensive context switches

Preemptive CPU schedulers break this model

Current approach is to dedicate entire cores to programs [Andromeda
@NSDI’18] [NetBricks @OSDI’16]

– Inefficient use of resources
– Requires demultiplexing in hardware NIC

7/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Run-to-completion model common across packet processing frameworks
– Packets processed by a single thread, on a single core
– Reduces the number of expensive context switches

Preemptive CPU schedulers break this model

Current approach is to dedicate entire cores to programs [Andromeda
@NSDI’18] [NetBricks @OSDI’16]

– Inefficient use of resources
– Requires demultiplexing in hardware NIC

7/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Indirectly limit the CPU consumption by
limiting the number of processed packets

8/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Packet for tenant 1 arrives; costs 12 to process

9/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Packet for tenant 1 arrives; costs 12 to process

9/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Packet for tenant 1 arrives; costs 12 to process

10/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Packet for tenant 1 arrives; we drop it

11/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Packet for tenant 1 arrives; we drop it

11/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Generate new tokens every ∆t

t1: +30 tokens to distribute

12/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Generate new tokens every ∆t
t1: +30 tokens to distribute

12/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Generate new tokens every ∆t
t1: +30 tokens to distribute

t2: +30 tokens to distribute

13/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Generate new tokens every ∆t
t1: +30 tokens to distribute
t2: +30 tokens to distribute

13/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Generate new tokens every ∆t
t1: +30 tokens to distribute
t2: +30 tokens to distribute

t ′2: +8 tokens to distribute

14/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Generate new tokens every ∆t
t1: +30 tokens to distribute
t2: +30 tokens to distribute
t ′2: +8 tokens to distribute

14/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Generate new tokens every ∆t
t1: +30 tokens to distribute
t2: +30 tokens to distribute
t ′2: +8 tokens to distribute

t ′′2 : +1 tokens to distribute

15/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Generate new tokens every ∆t
t1: +30 tokens to distribute
t2: +30 tokens to distribute
t ′2: +8 tokens to distribute
t ′′2 : +1 tokens to distribute

15/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Generate new tokens every ∆t
t1: +30 tokens to distribute
t2: +30 tokens to distribute
t ′2: +8 tokens to distribute
t ′′2 : +1 tokens to distribute

16/23 ACM SIGCOMM SecSon’18, August 24, 2018



Design: Accounting for CPU Usage

First timestamp read on packet arrival

Second timestamp read once packet is processed, depending on action:
– Transmitted => Hook on return of transmit function
– Sent to tenant domain => Hook after packet handoff
– Dropped => Hook on return of free function

17/23 ACM SIGCOMM SecSon’18, August 24, 2018



Evaluations: Implementation and Example Offloads

1. TCP proxy
– Answers with SYN cookies using Linux’s algorithm
– 1 hash table lookup + SipHash algorithm + addresses swapping
– Retransmits SYNs, drops invalid SYN+ACK, sends to tenant otherwise

2. DNS rate limiter
– Check queried domain + token bucket
– Parse DNS query + 2 memory accesses
– Drops packet or sends to tenant

18/23 ACM SIGCOMM SecSon’18, August 24, 2018



Evaluations: Performance Gain

TCP Proxy DNS Rate-limiter
0.0

2,000.0

4,000.0

T
hr
ou

gh
pu

t
(k
pp

s)

With Offload

Without Offload

Figure: Packet processing performance with and without offload.

19/23 ACM SIGCOMM SecSon’18, August 24, 2018



Evaluations: Overhead from CPU Accounting Probes

Baseline app. Unbound Apache
0.0

200.0

400.0

600.0

T
hr
ou

gh
pu

t
(k
pp

s)

Probes disabled

Probes enabled

Figure: Packet processing performance with and without probes. Throughput in
requests per seconds for Apache only.

20/23 ACM SIGCOMM SecSon’18, August 24, 2018



Evaluations: Overhead from CPU Accounting Probes

Baseline app. Unbound Apache
0.0

200.0

400.0

600.0

T
hr
ou

gh
pu

t
(k
pp

s)
Probes disabled

Probes enabled

0.0

2.0

4.0

6.0

T
hr
ou

gh
pu

t
(r
eq
/s
)

Figure: Packet processing performance with and without probes. Throughput in
requests per seconds for Apache only.

21/23 ACM SIGCOMM SecSon’18, August 24, 2018



Evaluations: Preemptive Scheduler

2 4 6 8 10
0

2

4

6

8

Number of programs

T
hr
ou

gh
pu

t
(M

pp
s)

Run-to-completion fairness
Linux scheduler + cgroups

Figure: Packet processing performance under different fairness mechanisms.

22/23 ACM SIGCOMM SecSon’18, August 24, 2018



Conclusion

Offload security services using BPF for safety

New run-to-completion fairness mechanism

Need to trace CPU time for each packet
– But small per-packet cost compared to app. processing

Large performance improvement thanks to offload
– But depends on I/O library used

23/23 ACM SIGCOMM SecSon’18, August 24, 2018


