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Cost of Hardware Memory Isolation

Hardware

DPDK, netmap, XDP, etc.

VM3
VM1 VM2

Many improvements at the host layer
Difficult to get the same performance boost in tenant domains
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Offloading Security Services

Security services as a first target for offloads
1. Filters in front of applications

– IDS/IDP
– Anti-DDoS
– Rate-limiters
– ...

2. Encode insights on the application’s expected queries:
– Frequency of queries
– Format of queries
– ...

3. Sometimes work in coordination with application (e.g., SYN cookies)
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Design
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Design: Isolation

Many software solutions available:
– Safe languages (e.g., Rust, Java, Modula-2)
– Proof-Carrying Code [OSDI’96]
– Software-Fault Isolation [SOSP’93]

We use the BPF interpreter
– Relies on ahead-of-time verification of programs through static analysis
– Tailored for packet processing (limited ISA, limited computational power)
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Design: CPU Fairness

1. Guarantee each tenant its fair share of the CPU time

2. Work-conserving allocation: not wasting CPU time
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Design: CPU Fairness

Run-to-completion model common across packet processing frameworks
– Packets processed by a single thread, on a single core
– Reduces the number of expensive context switches

Preemptive CPU schedulers break this model

Current approach is to dedicate entire cores to programs [Andromeda
@NSDI’18] [NetBricks @OSDI’16]

– Inefficient use of resources
– Requires demultiplexing in hardware NIC
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Design: CPU Fairness

Indirectly limit the CPU consumption by
limiting the number of processed packets
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Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Packet for tenant 1 arrives; costs 12 to process
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Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Packet for tenant 1 arrives; we drop it
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Design: CPU Fairness

Tenant 1 Tenant 2 Tenant 3

Generate new tokens every ∆t

t1: +30 tokens to distribute
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Design: Accounting for CPU Usage

First timestamp read on packet arrival

Second timestamp read once packet is processed, depending on action:
– Transmitted => Hook on return of transmit function
– Sent to tenant domain => Hook after packet handoff
– Dropped => Hook on return of free function
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Evaluations: Implementation and Example Offloads

1. TCP proxy
– Answers with SYN cookies using Linux’s algorithm
– 1 hash table lookup + SipHash algorithm + addresses swapping
– Retransmits SYNs, drops invalid SYN+ACK, sends to tenant otherwise

2. DNS rate limiter
– Check queried domain + token bucket
– Parse DNS query + 2 memory accesses
– Drops packet or sends to tenant
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Evaluations: Performance Gain
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Figure: Packet processing performance with and without offload.
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Evaluations: Overhead from CPU Accounting Probes

Baseline app. Unbound Apache
0.0

200.0

400.0

600.0

T
hr
ou

gh
pu

t
(k
pp

s)

Probes disabled

Probes enabled

Figure: Packet processing performance with and without probes. Throughput in
requests per seconds for Apache only.
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Figure: Packet processing performance with and without probes. Throughput in
requests per seconds for Apache only.
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Evaluations: Preemptive Scheduler
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Figure: Packet processing performance under different fairness mechanisms.
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Conclusion

Offload security services using BPF for safety

New run-to-completion fairness mechanism

Need to trace CPU time for each packet
– But small per-packet cost compared to app. processing

Large performance improvement thanks to offload
– But depends on I/O library used
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