
Clock Around the Clock: Time-Based Device Fingerprinting
Iskander Sanchez-Rola

Deustotech, University of Deusto
iskander.sanchez@deusto.es

Igor Santos
Deustotech, University of Deusto

isantos@deusto.es

Davide Balzarotti
Eurecom

davide.balzarotti@eurecom.fr

ABSTRACT

Physical device fingerprinting exploits hardware features to uniquely
identify a machine. This technique has been used for authentication,
license binding, or attackers identification, among other tasks. More
recently, hardware features have also been introduced to identify
web users and perform web tracking. A particular type of hardware
fingerprint exploits differences in the computer internal clock sig-
nals. However, previous methods to test for these differences relied
on complex experiments performed by running native code in the
target machine.

In this paper, we show a new way to compute a hardware finger-
printing, based on timing the execution of sequences of instructions
readily available in API functions. Due to its simplicity, this method
can also be performed remotely by simply timing few seemingly
innocuous lines of JavaScript code. We tested our approach with
different functions, such as common string manipulation or wide-
spread cryptographic routines, and found that several of them can
be used as basic blocks for fingerprinting.

Using this technique, we implemented a tool called CryptoFP.
We tested its native implementation in a homogeneous scenario,
to distinguish among a perfectly identical (both in software and
hardware) set of computers. CryptoFP was able to correctly dis-
criminate all the identical computers in this scenario and recognize
the same computer also under different CPU load configurations,
outperforming every other hardware fingerprinting method. We
then show how CryptoFP can be implemented using a combination
of the HTML5 Cryptography API and standard timing API for web
device fingerprinting. In this case, we compared our method, both
in the same homogeneous scenario and by performing an experi-
ment with real-world users running heterogeneous devices, against
other state-of-the-art web device fingerprinting solutions. In both
cases, our approach clearly outperforms all existing methods.

KEYWORDS

device fingerprinting; web privacy

ACM Reference Format:

Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti. 2018. Clock
Around the Clock: Time-Based Device Fingerprinting. In 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’18), October
15–19, 2018, Toronto, ON, Canada. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3243734.3243796

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243796

1 INTRODUCTION

A large number of physical device fingerprinting techniques have
been proposed over the years to uniquely identify a device based
on its physical features [3, 5, 14, 27, 32, 33]. The application of these
techniques also varies, and includes device authentication, soft-
ware license binding, attackers identification [12, 23], and wireless
network identification [2, 13].

More recently, hardware-level features have also been adopted
to create more precise forms of web tracking. In what is normally
called web device fingerprinting, the owner of a website computes a
unique identifier for each visitor’s machine, without storing any
information on the client side — thus making these techniques
easier to hide and harder to block or mitigate. Its stateless nature
is what makes device fingerprinting particularly relevant for web
tracking. Since the user’s unique identification is computed every
time she visits a website, it is not possible for the user to remove the
fingerprint, making this more difficult to avoid than older stateful
web tracking approaches. We can distinguish between two types of
device fingerprinting techniques: we refer to those that are based
on browser artifacts as attribute-based device fingerprinting and to
those based on hardware-level features as hardware-level device
fingerprinting. Attribute-based techniques relies on different ac-
cessible browser attributes such as the list of installed fonts, the
UserAgent string, and the screen resolution. Since these attributes
change often and are easy for the user to modify, the resulting
fingerprint also rapidly evolves – thus preventing a stable, long-
lasting tracking [41]. In contrast, hardware-level techniques exploit
subtle differences in the underlying hardware that are detectable by
invoking certain APIs to compute the differences between devices.
For instance, it is possible to compute differences in the way text
is rendered by the HTML5 Canvas API or by using the WebGL
API [30]. Even though these techniques are very promising and less
prone to periodic changes than attribute-based solutions, all the
hardware-based techniques proposed to date depend not only on
the hardware itself, but also on the particular APIs implementation
in the target browsers.

In this paper, we propose to look at code execution time as a way
to precisely identify different devices. The time a computer spends
to execute an instruction depends on how many clock cycles the
instruction requires, and on the duration of each cycle. Internal
clocks use oscillators based on quartz crystals, and small variations
in those crystals can result in extremely small, but measurable,
differences in the clock frequency. Researchers have already pro-
posed to use these differences to uniquely fingerprint different
devices [23, 34], but previous measurements were difficult to take,
as they needed to analyze network traffic, and required an external
reference time to compare with. Salo [35] proposed a solution to
this problem by comparing two different clocks: the one used by
the CPU and the independent one used to maintain the internal
timer. However, the proposed methodology strongly depends on

https://doi.org/10.1145/3243734.3243796
https://doi.org/10.1145/3243734.3243796

specific hardware, relied on custom snippet of assembly code, and
required a long execution time to generate a stable fingerprint.

Our idea relies instead in the identification of readily available
functions that, when repeated a sufficient number of times, can
be used to amplify the small differences between different clocks.
Those functions should contain enough instructions to achieve a
sufficient precision, but not too many to be regularly interrupted
by the OS scheduler. We then measure the execution time by using
the datetime APIs, which rely on a separate clock than the one
used by the CPU to execute code. Our experiments show that this
approach can be used to precisely fingerprint a machine, even when
performed by using a snippet of JavaScript embedded in a web page.
After testing with a set of candidate functions, we settled our proof
of concept implementation on a simple cryptographic routine to
generate pseudo-random numbers, as it is widely available and it is
commonly used as basic block in many popular applications.

Our experiments demonstrate that subtle differences in the exe-
cution times of this cryptographic function are sufficient to capture
the differences among different machines, outperforming all hard-
ware device fingerprinting techniques proposed to date. To obtain a
baseline to compare the fingerprinting capabilities of our approach,
we first implemented a native version of our method in C. The
tool was stress-tested in a scenario with hundreds of computers
equipped with the exact same hardware and software. Then, in
order to verify that our solution can also be used for web device fin-
gerprinting, we implemented a web version of our algorithm using
the HTML5 Cryptography API — that ultimately invokes the same
operating systems functionalities we relied upon in the C version.
This web implementation was tested using the same homogeneous
scenario composed of computers with same software and hardware
configuration as well as a real-world scenario including different
users who visited our public experiment website, making a total of
565 different users.

In summary, our main contributions are:

• We show that a timing side-channel present in all modern
computers can be used to uniquely identify a machine among
a large number of possible (identical or not) candidates.
• We present a specific implementation of our time-based fin-
gerprinting technique based on simple cryptographic func-
tions. We tested our solution in a homogeneous scenario
for device fingerprinting evaluations that tackles the main
limitations of previous tests by including measures to deal
with homogeneous targets.
• We ported our technique to the Web using the HTML5 Cryp-
tography API library. This makes our solution available as a
web device fingerprinting technique. We show that our tech-
nique overcomes the state-of-the-art hardware-based device
fingerprinting techniques both in a homogeneous scenario
and in a real-world web fingerprinting experiment.

The remainder of the paper is organized as follows. §2 proposes
a new set of features for assessing fingerprinting methods, tackling
the current limitations regarding fingerprintingmethods evaluation.
§3 details the proposed hardware machine fingerprinting method,
explaining the reasons that make these new techniques to work ac-
curately. §4 evaluates the native method in a homogeneous scenario
environment, showing that it can discriminate between identical

hardware machines. §5 details the specific implementation in the
web, for a web device fingerprinting technique, evaluating this
method and comparing it with current state-of-the-art in hardware-
level web device fingerprinting techniques, both in a homogeneous
scenario environment and in an in-the-wild real world scenario
experiment. §6 discusses the major implications of this work. §7
provides the reader with the required background on device finger-
printing and timing attacks, critically analyzing existing methods.
Finally, §8 provides the concluding remarks.

2 FINGERPRINT ASSESSMENT

The goal of fingerprinting techniques is to uniquely identify a
target entity. This entity can be a browser, a physical machine, or
even a user across different personal devices. Despite the large
number of fingerprinting techniques proposed by both academia
and industry (see §7 for more details) — or already discovered in
the wild, the security community has not come yet to a consensus
on which characteristics need to be measured to properly evaluate
and compare between fingerprinting solutions.

For instance, for web-based fingerprinting approaches, the cross-
entropy and the size of the anonymity set are used as the “de facto”
evaluation standard procedure across multiple papers [6, 9, 26].
While certainly important, they fail to capture many important as-
pects of a fingerprinting procedure, such as its resilience to changes
in the user browser (e.g., due to a software update) or the overall
efficiency of the computation process.

In this paper, we propose a rich set of metrics to be used as a
new basis to measure the quality of different fingerprints. This set
includes six “desired” characteristics of a fingerprint:

• Discrimination Power: The discrimination power of a fin-
gerprint is defined as its ability to produce different finger-
prints for different targets. This can measure the ability to
uniquely identify a target among a set of possible candidates.
• Stability: The stability of a fingerprinting technique is its
ability to always produce the same fingerprint for the same
target over multiple measurements.
• Homogeneous Discrimination: This property measures
the discrimination power of a technique in the case in which
the targets belong to the same homogeneous family, and
they are therefore similar among each other.
• Efficiency: This feature simply measures the time required
to generate the fingerprints and check them against a data-
base of previous candidates.
• Resilience to Evasion: Since there exist methods to avoid
fingerprinting or at least to reduce its consequences, this fea-
ture takes into account whether a fingerprinting technique
is resilient to known or possible evasions.
• Resilience toChange:This final characteristic captures the
ability of a fingerprinting technique to remain stable over
time. Some techniques use features that naturally evolve,
thus resulting in a fingerprint that can be associated to a
target only for a limited time window. Indeed, a recent pa-
per [41] has studied the evolution of existing techniques and
has found that the vast majority of the general fingerprints
changes in less than 10 days.

Unfortunately, current evaluation procedures usually assess only
the discrimination power (by measuring both the cross-entropy
and the anonymity sets) and sometimes the efficiency of a solution.
However, we believe that all features are equally important to
comprehensively assess a new fingerprinting technique.

In particular, the stability has been surprisingly omitted from
many evaluations presented to date. If a fingerprint lacks stability,
it means that the procedure may generate erroneous fingerprints
or that the result includes a certain level of noise, misleading the
identification. Please note that stability should not be mistaken with
resilience to change. The latter deals with the natural fingerprint
evolution over time, rather than the fact that a techniquemay return
different values for the same device when executed multiple times.

In a similar vein, the most common way researchers used to
compile a test set for a new fingerprinting method and to compute
its discriminatory power is to host it on a web page and share
its URL with a large number of users. In this case, the number of
different configurations both in hardware and software is high, even
more if we consider that most of the machines will be commodity
user computers. This setting results in some attributes, such as
the UserAgent, to show a very high cross-entropy [26], against
intuitive observations. A more homogeneous environment (e.g., the
set of many similar or identical computers that formmany company
networks) would provide a much more challenging environment
to assess the fingerprinting precision.

Finally, with the notable exception of Cao et al. [6], no finger-
printing has taken into account the error introduced by possible
changes in the user browser or operating system. This is another
fundamental aspect of the problem, as even the most accurate solu-
tions is of limited use if the fingerprints changes every time a user
reboots the computer or installs a software update.

To better understand the importance of these metrics, we re-
viewed the characteristics of a number of current state-of-the-art
fingerprinting methods, namely (i) Attribute-based FP, (ii) Can-
vasFP, (iii) WebGL FP and (iv) AudioFP. It is important to remark
that this comparison is only based on what has already been tested
by the original authors (in the particular case of WebGL, we con-
ducted experiments using the available open-source tool) or based
on the design of the fingerprinting method.

Interestingly, none of the methods described so far is resilient to
changes in the target environment —with the exception of the afore-
mentioned work by Cao et al. [6]. For instance, a simple graphic
driver update can completely modify the fingerprint obtained by
CanvasFP or WebGL. Evasion can also be easily implemented for all
the methods, and actually most of them are already completely inef-
fective against the Tor Browser. According to the results presented
in their respective papers, all techniques are capable of discrimi-
nating different targets (note that we have grouped attribute-based
fingerprinting together as they are usually utilized altogether). We-
bGL was poor on the efficiency axis, as the version we tested re-
quired several seconds to build a single fingerprint. Unfortunately,
the homogeneous discrimination and stability are difficult to esti-
mate. Since we consider all of these features equally important, we
will compare our method and the state-of-the-art hardware-level
fingerprinting methods along all these dimensions in §7.

3 HOST FINGERPRINTING BASED ON CLOCK

IMPERFECTIONS

In this section we present a new machine fingerprinting technique
based on timing the execution of several invocations, performed
using different parameters, of a properly selected function. The
main assumption behind our solution is that it is possible to mea-
sure small variations on the execution time of a sufficiently long
sequence of instructions that are introduced by imprecisions and
imperfections (also known as “process variation” in the VLSI and
architecture communities) of the machine clock crystal .

3.1 Threat Model and Use Cases

We test our time-based fingerprinting method in two different yet
complementary scenarios. In the first one, we implement our tech-
nique in C and use it to tune our algorithm, while providing a
baseline for comparison for the remote scenario. In the second use
case, we port our technique to the web device fingerprinting sce-
nario, implementing it in HTML5 and, thus, testing its ability to
fingerprint machines over the web.

Host-based Fingerprinting. In this first scenario (detailed and
tested in §4), we test the accuracy of our time-based device finger-
printing technique running natively in the target operating system.
We perform this test even when it is known that you can finger-
print the clock natively to show the capabilities of our method and
provide a baseline for the web version. Here, we assume the entity
interested in computing the fingerprint is able to run arbitrary code
with user privileges in the physical machine. For instance, this is the
case of (i) malicious applications that want this information to per-
form selective attacks against certain victims, and (ii) proprietary
applications that want to bind a license to a single machine.

Web-based Fingerprinting. The second scenario is more chal-
lenging, as we imagine that the entity who wants to compute the
fingerprint is now an arbitrary website containing JavaScript code.
In this case, it is not possible to run arbitrary instructions on the
CPU, as modern browsers introduce numerous intermediate layers
between the JavaScript code and the final CPU instructions. The
goal of this scenario is to test if our approach can also be remotely
executed over the web, thus resulting in a very powerful new tech-
nique for device fingerprinting. Also in this case, we can envision
two different scenarios: (i) advertisers or tracking companies can
use it to obtain the browsing history of their users, and (ii) web-
sites that require strong authentication (e.g., banking and shopping)
can use this technique to include an additional verification to their
process.

3.2 Existing Approach

The detection of clock imperfections for fingerprinting purposes
has already been exploited on a single CPU by Salo [35], but this
solution required complex native experiments (which made the
technique difficult to use in the real world) and were not able to
successfully discriminate all machines involved in the test. To detect
the imperfections, Salo proposed to compare the CPU clock cycles
of ticks in the clock with the cycles needed for the digitalization of
an analog signal using the sound card (all validated by an external
GPS receiver). Afterwards, the author computed different statistical

tests to distinguish among different machines. Several factors play
a crucial role for this technique to work:

(1) The program needs to have access to the CPU clock cycles,
which is not a big problem for a low-level programming
language as C or C++, but is not a common option in high-
level languages as JavaScript. Furthermore, some specific
tuning needs to be done depending on the specific type of
CPU used in the experiments.

(2) The sound card used for the digitalization must not rely
on the CPU clock and should use an independent crystal-
controlled oscillator.

(3) To obtain enough data to successfully distinguish between
two or more machines, the experiment needed to run for
approximately one hour.

These limitations show that the technique strongly depends on
some specific hardware, tuning, and a long computation time —
making the entire approach poorly usable in practice. Even when
these requirements are satisfied, the method can only be used with
low-level programming languages that can obtain direct control
over the CPU clock cycles. Moreover, the results obtained show
that despite many machines (from the 38 analyzed) could be differ-
entiated, not all were correctly identified.

3.3 Our Approach: Time-Based Device

Fingerprinting

We now present our approach, which takes just some milliseconds
to execute, can be used both in low or high level programming
languages, and is not dependent on any specific hardware. Our
algorithm is divided into two different phases: the generation of the
fingerprint performed by timing a given function, and the compari-
son phase in which we test whether a pair of fingerprints (which
consists of a matrix of time results) belong to the same machine.

3.3.1 Fingerprint Generation. In this phase, the algorithm com-
putes the time required to execute different invocations of a target
function (see Figure 1 for the detailed pseudo-code of the algo-
rithm). The algorithm takes one parameter n that indicates the
number of calls to measure. Moreover, for the sake of simplicity, in
the example in Figure 1 we have assumed that this number is also
used as parameter for the function itself. For instance, if we use
a function that generates random numbers, we will consecutively
create different number of random values, allowing us to time the
functions in different situations depending on the input.

There are many factors that can cause performance variability in
non-deterministic ways. Pure hardware-level factors as Cache/TLB
misses and sharing the pipeline resources with other threads co-
scheduled on the same core (hyper-threading) or even OS’s DVFS
(Dynamic Voltage Frequency Scaling) decisions. Because of all these
possible non-deterministic factors, a singlemeasure is insufficient to
obtain a stable measurement. In order to obtain stable fingerprints,
our method uses an additional parameterm that determines the
number of times this process is repeated, to achieve a real represen-
tation of the machine independently of different specific situations.
As a result, the final fingerprint is a n ∗m matrix of execution times.
To sum up, there arem function calls, with specific values as input,
computed for each of the n rows of the timing matrix.

Input: n, number of timings to perform
Input:m, number of arrays of these timings to generate.
Output: f p, array of arrays of numbers representing the

fingerprint: each position are the result of timings
with a different parameter for a function.

1 Function FPGeneration (n,m)
2 i ← 1;
3 f p ← f loat[][] of size n ×m;
4 while i ≤ m do

5 j ← 1;
6 while j ≤ n do

7 startTime ← GetCurrentTime() ;
8 Function(j);
9 endTime ← GetCurrentTime();

10 loдTime ← endTime − startTime;
11 f p[j][i]← loдTime;
12 j ← j + 1;
13 end

14 i ← i + 1;
15 end

16 return f p;

Figure 1: Fingerprint Generation Algorithm.

As the technique is not based on computing the same function
with the same input all the time, but executing the same function
with different inputs, the matrix structure allows a quick compar-
ison with other fingerprints. For example, following the case of
generating random numbers presented before, we can easily check
the differences between the fifth execution of the function that
generated 20 random numbers in one computer with exactly their
counterpart on another computer.

3.3.2 Fingerprint Comparison. In this phase, the system com-
pares two previously-computed fingerprints and determineswhether
or not they belong to the same machine (for the detailed pseudo-
code of the algorithm refer to Figure 2). To this end, we compute
the most frequent timing values (the mode) for each call parameter
over all iterations. Afterwards, the mode of the first fingerprint is
compared with all the generated values for the same call in the
second fingerprint. If one match is found, a counter is incremented.
This process is then repeated, inverting the order and checking the
most common values in the second one with all the values from the
first one. If the number of matches divided by the number of com-
parisons surpasses a fixed threshold, then our algorithm concludes
that the two fingerprints belong to the same machine.

For example, suppose we want to compare the following two
fingerprints f p1 and f p2, each composed of three repetitions of
three different timing results of the invocation of a given function:

f p1 = [{0.1; 0.12; 0.14}, {0.1; 0.12; 0.13}, {0.1; 0.12; 0.13}]
f p2 = [{0.1; 0.12; 0.14}, {0.11; 0.12; 0.14}, {0.1; 0.12; 0.13}]

We start by generating the mode of the timing values of f p1:
{0.1; 0.12; 0.13} and comparing each of the three values with the
values in the three value sets of f p2, resulting in three positive

Input: f p1, 1st array of arrays of timing results sized n ×m.
Input: f p2, 2nd array of arrays of timing results sized n ×m.
Input: n, number of timings for different parameters.
Input:m, number of arrays of timings generated.
Output: indicates the number of coincidences

1 Function GetNumCoincidences (f p1, f p2,n,m)
2 num_coindences ← 0;

/* Compute the mode of each number in f p1 */

3 f p1_mode ← f loat[];
4 i ← 1;
5 while i ≤ n do

6 f p1_mode[i]← ComputeMode(f p1[i]);
7 i ← i + 1;
8 end

/* We compute the number of coincidences */

9 i ← 1;
10 while i ≤ n do

11 check ← false;
12 j ← 1;
13 while (j ≤ m) ∧ (¬check) do
14 if f p1_mode[i] = f p2[i][j] then
15 num_coindences ← num_coindences + 1;
16 check ← true;
17 end

18 else

19 j ← j + 1;
20 end

21 end

22 i ← i + 1;
23 end

24 return num_coincidences;

Input: f p1, 1st array of arrays of timing results sized n ×m.
Input: f p2, 2nd array of arrays of timing results sized n ×m.
Input: n, number of timings for different parameters.
Input:m, number of arrays of timings generated.
Input: t , threshold to consider the fingerprint the same
Output: indicates if f p1 corresponds to f p2

25 Function FPCheck (f p1, f p2,m,n, t)
/* We compute the coincidences amid the most

frequent values in f p1 in f p2 */

26 num ←GetNumCoincidences(f p1, f p2,n,m) ;
/* We compute the coincidences amid the most

frequent values in f p2 in f p1 */

27 num ← num+ GetNumCoincidences(f p2, f p1,n,m) ;
/* We check if the threshold is surpassed */

28 return (numn ·2)) ≥ t);

Figure 2: Checking Algorithm.

matches. The first value appears in the first and third iteration of
f p2, the second value appears in the all the iterations, and the third
value appears in the last iteration. Then, we will do the same with

Table 1: Results of the Function Viability Test.

Function Stable Fingerprint

string::compare ✓

std::regex ✓

std::hash ✓

crypt ✗

f p2 being their mode values: {0.1; 0.12; 0.14} and also getting all of
them matched in the f p1 set. The first and seconds values appear
in all the iterations of f p1, and the third value appears in the first
iteration. In conclusion, vectors do not need to be identical, but
match each of the values of the mode with, at least, one of the
value in the same position on another fingerprint. In this case, the
percentage of similarity would have been 100% which, as a perfect
match, would be above the threshold and our method would have
determined that both fingerprints belonged to the same computer.

By using this procedure, we are computing and comparing the
most common timing values — and, therefore, the most representa-
tive ones — among the measurements conducted on the two ma-
chines. This reduces the inevitable noise introduced in the timing
measurements and reduces the impact of unusual values.

3.3.3 Function Selection. Before settling on a final choice, we
decided to perform a preliminary set of tests to assess the differ-
ent candidate functions. In particular, we evaluated the functions
string::compare, std::regex, std::hash, and crypt. While our
technique would work also by using a custom, system-independent
function, we decided to base our tests on a set of common routines
that can be easily found in many different systems. This increases
the portability of our approach as it does not require to install or
inject any additional code. The evaluation was performed on a set
of ten different machines, half of which installed with Microsoft
Windows and the other half installed with GNU/Linux. We also
computed different tests with the aforementioned functions to em-
pirically validate the best size of the measurement matrix, taking
into account the generation time and the fingerprint discrimina-
tion capabilities. Based on these preliminary tests, we found that
n = 1000 andm = 50 (i.e., a total number of 50,000 invocations) are
sufficient to provide stable results.

Table 1 shows the obtained results. crypt was the only function
whose fingerprint was not stable because, due to its complexity, it
was often interrupted by the operating system scheduler — thus
preventing our algorithm to accurately time its execution. For the
remaining functions, it is important to note that simpler functions
required to compute the execution time of multiple consecutive
invocations to find a stable fingerprint. This issue is controllable
by simply adding more iterations.

In summary, we investigated and evaluated if our fingerprinting
algorithm can be built on top of multiple, diverse functions. Ac-
cording to our results, different candidates provided good results,
in particular when they were sufficiently complex but not too long
to be often interrupted by the scheduler.

3.3.4 Stability Tests. In order to determine the viability of the
proposed approach for machine fingerprinting, we conducted three

additional tests. The setup for these stability tests is the same as
the one used for the function selection. We checked if the obtained
fingerprint of each machine can still identify the machine in the
following cases:

• CPU Load: We tested the influence of different CPU load
conditions on the fingerprint generation process. In our ex-
periments, we controlled the CPU workload by using the
stress generator included in the Debian distribution [15]
and the corresponding tool part ofWindows Sysinternals [19].
We discovered that even in the scenario of 100% CPU load,
the resultant fingerprint was always correctly associated.
This is a consequence of the fact that each function invo-
cation gets executed in a single CPU with no interruption,
and therefore without any side-effect introduced by other
concurrent processes.
• CPU Temperature: We also tested whether significant en-
vironmental temperature changes would invalidate the fin-
gerprint, as previous works have observed that the frequency
of the quartz crystal increases with temperature [31]. Dur-
ing our normal experiments, the regular CPU temperatures
were generally around 38 degrees Celsius. Hence, we tried to
stress the CPU for 20 minutes at 100% load, successfully dou-
bling the internal temperature (as reported by the internal
sensor). However, even if under these conditions the clock
skew reported in previous studies [25] should have resulted
in a measurable difference in our timing experiments, we did
not observe any variations or errors in our fingerprint iden-
tification. A possible explanation for this discrepancy is that,
while the increase in temperature can impact clock-based
measurements, our approach relies on the difference of two
clocks physically located in the same machine. Therefore,
both are likely impacted by the temperature change, thus
reducing the effect of the higher temperature and compen-
sating the changes introduced in their frequency. As a result,
while the difference introduced by the temperature in one
single clock may be relevant, the difference in the delta be-
tween two closely-located clocks may be too small to affect
our fingerprint.
• Long-term Stability: We evaluated if the generated finger-
print remains stable over time during a normal use of the
machine. In this case, we repeated our tests respectively one
and two months after the fingerprint was first generated and
found no problem in the identification process.

We selected fingerprinting functions that can be executed with-
out interruption on a CPU. This guarantee that the collected timing
information is not affected by side-effects introduced by other con-
current processes, making the measure independent from the CPU
and/or I/O workload of the machine. When running the native
measurement, we checked it was executed without interruption
by using transactional memory. However, we could not guarantee
the same property when the fingerprint is executed remotely over
the web. Therefore, the scheduler might have interrupted some of
the executions, but this is mitigated by the multiple calls to the
function performed in the fingerprinting generation phase.

3.4 CryptoFP

Since this clock-based fingerprinting method works with virtually
any simple function, we selected one based on its general availabil-
ity and on the possibility to generalize our results and compare our
host-based and web-based approaches.

According to these criteria, the selected function should be avail-
able in different forms but in all possible system. In fact, since one
of our goals is to implement a web version of this device finger-
printing technique, it should be available also in JavaScript, called
by a wrapper in this scripting language.

Based on the results of our preliminary tests, we decided to
implement our prototype by timing the execution of the pseudo-
random generator APIs (e.g., CryptGenRandom/RtlGenRandom in
Microsoft Windows). These cryptographic functions are available
in every system and also are accessible through JavaScript, which
meet all our requirements.

4 HOST-BASED FINGERPRINTING OF

IDENTICAL TARGETS

Since the common evaluation procedure used to measure finger-
printing techniques does not take into account several important
features, we first propose our own methodology (detailed in §4.1)
that is able to capture the two main omissions of previous ap-
proaches: (i) the impact of targets heterogeneity and (ii) the actual
stability of a fingerprint within the same machine.

To evaluate CryptoFP, we implemented a native version of the
algorithm. This version calls directly the function that generates a
series of random numbers. We also repeated the tests described in
§3.3.4, confirming that there was not effect introduced by the CPU
load, internal temperature, or long-term stability of the fingerprint.
We also conducted several experiments with a subset of different
computers in order to properly tune the similarity threshold used
by our algorithm, resulting in a value of 0.5 (i.e., two fingerprints
are considered to belong to the same machine if there is at least 50%
of positive matches when comparing them, as shown in Figure 2).

4.1 Methodology

The current evaluation methodology for fingerprinting techniques
measures two features: the entropy of the fingerprinting and the
size of the anonymity sets [26]. These are often used to replace other
widely accepted and more conventional metrics, such as precision
and recall, that are rarely used in this specific area as they provide
a less precise image of the discrimination power of a fingerprinting
technique. Therefore, we also decided to use similar measurements
to be able to compare our results with those obtained in previous
studies. In fact, since the fingerprint generation process in all major
techniques results in a hash or in an identifier, it is possible to
compute the entropy — i.e., a representation of global uniqueness —
among a set of tested devices. Moreover, due to the nature of these
methods, if a particular machine A has the same fingerprint of B
and B matches a third machineC ,C will always match with both A
and B. This transitivity allows the computation of anonymity sets.

However, CryptoFP works differently and does not generate a
unique identifier. Instead, it produces fingerprint information that
needs to be compared with the one collected on other machines to
identify possible matches. In other words, it produces some sort of

fuzzy hash, which cannot be simply matched against other candi-
dates, but requires a comparison routine to compute the similarity
among two values. Also, in our case, the final result is not a direct
comparison of identifiers but a similarity score based on the de-
scribed matching procedure. This approach has been intentionally
designed to be more resilient to noise in the timing of the genera-
tion of random numbers and results in a greater accuracy. However,
due to this design, the transitivity property does not hold anymore
— thus making CryptoFP difficult to evaluate using entropy or
anonymity sets as the obtained results (e.g., the entropy of our
time matrix) would not be comparable with the entropy values of
previous approaches. In our evaluatuon, we will use an adaptation
of the anonymity sets.

4.1.1 Homogeneous Scenario. Previous experiments were per-
formed by asking users to visit a website hosting the fingerprinting
code. Therefore, users were likely using a browser running on
commodity computers with different hardware, software, and con-
figurations. While this is a realistic experiment (we will also use
the same to further evaluate the web version in §5.2), it fails to
capture the discrimination capability of the fingerprinting method,
as the check strongly depends on the heterogeneity of the tested
machines. For instance, if there are no computers with the same
specific set of characteristics in the dataset, a simple hardware test
can differentiate each client with 100% certainty. However, both
companies and universities often rely on large numbers of identical
machines, which can greatly complicate fingerprinting. To take this
into account, we propose a homogeneous scenario evaluation that
includes the next points:
• Homogeneity: In order to provide homogeneity and test
our fingerprinting technique with the same hardware com-
puters rather than with different computers, we performed
our experiments using two groups of machines with per-
fectly identical software (installed through a disk image) and
hardware components. The groups included 176 and 89 com-
puters, respectively. Thanks to this setup we can identify
whether our fingerprinting algorithm is really distinguishing
hardware imperfections and to what extent it is possible to
discriminate exactly identical hardware.
• Stability: We define the stability of the fingerprint as the
ability to identify the same computer repeatedly. This mea-
sure has not been tested before in many previous studies, as
authors assumed the property to be true by default. However,
there may be some circumstances, such as specific hardware
availability, general CPU workload, and number of concur-
rent process, that can affect and jeopardize the identification.
Therefore, we repeated the CryptoFP generation phase three
times for each computer. Each measurement was performed
ten minutes apart. We then compared all results to check if
the extracted fingerprints were always matching.
• Discrimination: Since our fingerprinting does not produce
a hash but it needs a comparison phase, we cannot use the
common measures like entropy or anonymity sets. Instead,
we adapted the anonymity set measurement to an identical
comparison set size that translates the idea behind anonymity
sets to the comparisons performed by our method. In this
way, the size is no longer the number of computers with

the same fingerprint, but the number of computers with
the same number of positive matches with other computers.
To make it more clear, we are presenting a simple example.
Imagine four different machines: A, B, C and D.
– A matches B
– B matches A and D
– C matches D
– D matches C
In this case A, C and D have a set size of one, and B a set size
of two (because it matches two other machines).

We run our CryptoFP native implementation in the two different
sets (commodity computers running Microsoft Windows 7) and
measured the properties introduced above. Using the threshold
empirically computed in §3.3.3 (n = 1000 andm = 50) the test took
just a few milliseconds, although obviously the exact computing
time depends on the specific machine.

4.2 Results

As described above, we present our results using the Identical
Comparison Sets metric, which is an adaption of the well-known
anonymity set method for fingerprint evaluation, obtained by sub-
stituting “identical fingerprints” by “identical fingerprint compar-
isons”. Therefore, in our particular cases we have a 0–175 possible
values for identical comparisons for the first set of computers and
0–88 in the other, where 0 means that the particular computer had
no match and the maximum value meaning the computer matched
every other machine in the group.

Furthermore, we tested the stability of our method repeating
the generation of the fingerprinting three times in each computer
and validated that, in all cases from both scenarios, CryptoFP was
always able to identify the computer. Regarding the discrimina-
tion capabilities, the native version of CryptoFP with a similarity
threshold of 50% was able to distinguish every computer in each
group. In other words, the uniqueness of our method in both tests is
100%, even when both hardware and software in the computers are
identical. This shows that CryptoFP is capable of detecting clock
crystal imperfections in order to accurately distinguish machines.

Please note that even thought we did not observe any in our
experiments, collisions may occur on larger sets of identical targets.
However, in most of the possible use cases, this is an acceptable
result. In fact, if a user has a license bound to some machine, it is
not very likely that she can test the software on tens of thousands
of other identical machines just to find another one in which the
software can be used. Our algorithm had no collisions in a lab
containing 176 identical machines and another with 89 identical
machines, which is a sufficient guarantee in most use cases.

5 WEB IMPLEMENTATION OF CRYPTOFP

The HTML5 Web Cryptography API is able to interact with crypto-
graphic keys and functions managed by users. A very important
aspect for our hardware-level device fingerprinting to work at na-
tive level even from the web is that “the API itself is agnostic of the
underlying implementation of key storage” [42]. Its main objective
is to provide just an interface or wrapper that allows system-level

� �
1 void RandBytes(void* output , size_t output_length) {
2 char* output_ptr = static_cast <char*>(output);
3 while (output_length > 0) {
4 const ULONG output_bytes_this_pass = static_cast <

ULONG >(std::min(
5 output_length , static_cast <size_t >(std::

numeric_limits <ULONG >::max())));
6 const bool success =
7 RtlGenRandom(output_ptr , output_bytes_this_pass)

!= FALSE;
8 CHECK(success);
9 output_length -= output_bytes_this_pass;
10 output_ptr += output_bytes_this_pass;
11 }
12 }� �
Figure 3: Extract from the Chrome Implementation of

generateRandomNumbers.� �
1 size_t RNG_SystemRNG(void *dest , size_t maxLen)
2 {
3 size_t bytes = 0;
4 if (RtlGenRandom(dest , maxLen)) {
5 bytes = maxLen;
6 }
7 return bytes;
8 }� �
Figure 4: Extract from the Firefox Implementation of

generateRandomNumbers.

cryptographic operations such as hashing, encryption, or decryp-
tion.

This API offers several interfaces to cryptographic functions
through the window.crypto or window.crypto.subtle proper-
ties. The implemented methods can be very simple such as getRan-
domValues to generate a set of random numbers, digest to gener-
ate hashes, or generateKey that generates keys for encryption.

5.1 Implementation

We selected the simplest method available in the API, namely
getRandomValues, for our device fingerprinting technique. Since
our method is a timing side-channel attack, a complex crypto-
graphic method — although the actual operations are performed at
native level — may obscure our timing and make our fingerprint
dependent not only in the underlying cryptographic functions, but
also in the Web Cryptography API itself.

We analyzed the implementations of this method in two major
open-source browsers, Firefox and Chrome, and inspected the na-
tive cryptographic function calls which were performed when the
function was invoked. For example, when running Microsoft Win-
dows, in both Chrome and Firefox , the generateRandomNumbers
call finally leads to the native function RtlGenRandom to generate
random numbers. For our experiments it is important, as shown in
Figure 3 and Figure 4, that the browser API is just a basic wrapper
for the native version, so the browser will not make other operations
or memory accesses that may pollute the time measurement.

Regarding the values for n andm, we will use the empirically
computed values of 1000 and 50 as indicated in §3.3.3. The comput-
ing time needed for the generation and checking of the fingerprint is

just a few milliseconds. In order to determine the specific threshold
for the web implementation of CryptoFP, we performed various
preliminary tests. As the timing precision offered by HTML5 is
smaller than the native timing functions, the threshold was finally
set to 100% for the comparison of time matrix.

5.2 Evaluation

In this case, we compare CryptoFP with the other three state-of-
the-art web hardware-level device fingerprinting techniques: (i)
the famous canvas fingerprinting [30], (ii) the improved version of
WebGL fingerprinting [6], and (iii) the recently discovered audio
fingerprinting [10]. This allows us to compare the discrimination
capability and stability of the four different techniques.

As the web implementation is devoted to track users on the
Internet, we analyzed the fingerprinting techniques both in the
homogeneous scenario presented in §4 and by using a classical
web evaluation where users were asked to visit a website that
performed all the techniques (making a total of 565 different users).
In this case, we informed the users about our experiments, and ask
permission to collect the information that was going to be gathered
by our tool. Users where using their own machines and had no
restriction on what computer they were using, so therefore our
dataset can contain both GNU/Linux and Microsoft Windows in
many different versions. In addition, in order to protect the users
privacy, all the data collected was anonymous. We disseminated
the URL of the website through social networks and friends, asking
them to participate in the study and further re-disseminate the link
among their contacts.

As described in §4, all results are shown using the Identical
Comparison Sets metric, that is an adaptation of the extensively
used anonymity set technique to evaluate fingerprinting methods.
Zero indicates that there is not other match in the dataset, and the
maximum number indicates that the fingerprint is the same in all
the computers.

5.2.1 Homogeneous Scenario. In our experiments, we tested the
stability of our technique by repeating the fingerprint generation
three times in each computer. We found that all methods correctly
generate the same fingerprint in all our tests, with the exception of
audio fingerprinting, that failed the stability test in 21% of the cases,
thus raising serious doubts about its possible use as fingerprinting
technique with a basic hash comparison, regardless of other fac-
tors. For this reason, audio fingerprinting was removed from the
following discrimination capability tests.

All methods took just few milliseconds to execute, with the
exception of WebGL that required several seconds. Regarding the
possible overhead, all methods are simple enough to result in no
observable slowdown, with again the exception of WebGL, which
relies on complex graphics checks and can therefore slow down
navigation while it is being executed.

We divided the comparison sets in five groups, one containing
computers that did not share any fingerprint, then three equally
divided groups containing respectively 1-58, 59-117, and 118-174
positive matches in the 176 computer group and 1-28, 29-57, and
58-87 positive matches in the 89 computers set, and finally, one
group with computers that shared their fingerprint with all the rest.
CryptoFP was able to cover around 18% of the computers with

the two first sets for each of the computer groups (0-58 and 0-28
matches) and the percentage increases until 85% if we include the
third set (0-117 and 0-57 matches). Even if these results are far from
the perfect identification capability provided by the native method,
current top state-of-the-art hardware-level fingerprint methods
(canvas fingerprinting and the improved version of WebGL finger-
printing) could not differentiate any of the computers in none of the
two homogeneous groups, resulting in the same fingerprint for all
computers. Therefore, our solution clearly outperforms all previous
state-of-the-art hardware technique in this particular settings.

Finally, the result of this experiment show that the web imple-
mentation of our technique is less precise than the native imple-
mentation, due to a more coarse-grain precision offered by the
HTML5’s performance.now timer. We will discuss different solu-
tions in order to improve the results of the web implementation
in §6. However, it is important to note that despite this limitation,
CryptoFP is still capable of distinguishing completely identical
hardware and software computers.

5.2.2 Heterogeneous Scenario. In this case, we also divided the
comparison sets in five groups, but instead of separating the sets
equally, we divided the sets every 5 matches, starting from 0 up to
15. The first group means that no additional matches were detected
apart from its own, the second group counts the number of com-
puter with 1-5 matches in the dataset of 300 computers, the next
groups between 6-10 and 11-15 matches, and the last group counts
the computers with more than 16 matches. In contrast to the homo-
geneous analysis, in this scenario, all the fingerprinting techniques
are able to differentiate computers, so this more fine-grained set
sizes will allow us to compare the methods more precisely.

Looking at the results collected thought our public website, re-
ported in Figure 5, we can see that CanvasFP obtains only around
10% of completely unique fingerprints and the improved WebGl
FP around 15%, whereas CryptoFP achieves around 45% in exactly
the same dataset. More in detail, CryptoFP covers 70% of all the
involved computers with just the two first identical comparison
sets (0-5). Specifically, more than half of the computer were either
completely unique or only matched another computer. However,
both CanvasFP and improved WebGl FP obtain only around 40%
with the two first identical comparison sets, which is less than just
the first set, unique fingerprints, of CryptoFP.

The obtained results show the capabilities of the web version
of CryptoFP, which is outperforming all existing hardware device
fingerprinting solution, being able to obtain a better discrimination
also in a heterogeneous scenario.

Fingerprinting combinations. CryptoFP, as any other device fin-
gerprinting techniques, does not necessary need to work as a stan-
dalone solution. Instead, it can be easily combined with other dif-
ferent techniques, as other approaches already proposed to date. As
a case study, we decided to combine all the hardware-level device
fingerprinting methods with ours in order to increment the size
of the discrimination rate by cross-referencing the results of the
different methods.

Figure 6 shows that the combination of the hardware-level device
fingerprinting techniques (the stable ones) achieved a uniqueness of
around 80% and nearly a 100% coverage by just including the second
comparison set (1-5). This simple combinations of CryptoFP with

(a) Identical Comparison Set Sizes for CryptoFP.

(b) Identical Comparison Set Sizes for the improved WebGl FP.

(c) Identical Comparison Set Sizes for CanvasFP.

Figure 5: Identical Comparison Set Sizes for CryptoFP, im-

proved WebGl FP and CanvasFP in-the-wild web evalua-

tion (300 different users involved). The colors represents the

number of identical comparisons whereas the X axis repre-

sents the percentage of computers in the ranges.

the improved WebGL FP and CanvasFP follow a similar fashion,
with a 70% and 60% of uniqueness and nearly 100% and 90% coverage
when the second comparison set is included.

6 DISCUSSION

Generality. The assumption behind our approach is that any
function can be timed and that this timing information can then
be used to fingerprint subtle clock differences in the underlying
machine. To confirm this hypothesis, we tested several functions in
order to find out how generic the function selection can really be.
After these preliminary tests involving functions of different nature,
we realized that our method needs the function to be uninterrupted
by the OS scheduler because, otherwise, the timing values would
obviously be polluted by other processes. We also found that the
timing of very small functions is also harder to measure, requiring
a higher number of iterations to obtain a stable value. Therefore,
we can conclude that our method require a function that includes a
sufficient number of instructions, but not long enough to be often
interrupted by the scheduler.

(a) Identical Comparison Set Sizes combining CryptoFP, the improved

WebGl FP and CanvasFP.

(b) Identical Comparison Set Sizes combining CryptoFP and the im-

proved WebGl FP.

(c) Identical Comparison Set Sizes combining CryptoFP and CanvasFP.

Figure 6: Identical Comparison Set Sizes for the different

combinations of CryptoFP with the rest stable hardware-

level device fingerprinting techniques (300 different users

involved). The colors represents the number of identical

comparisons whereas the X axis represents the percentage

of computers in the ranges.

The confirmed generic nature of our approachmakes it adaptable
to different environments and situations. For instance, if a certain
installation of a particular operating system uses a restricted version
of the standard C library, our method can easily be changed to use
another installed function. Similarly, if the target uses a completely
different version of the operating system, even dedicated to IoT
systems or critical infrastructures, if we can learn which functions
are available, we can easily adapt our method in order to work
under this new environment.

If we can execute native code, we can also create our own func-
tion and perform the timing using this function — making our code
completely independent from the system libraries, as long as we
have access to a timing operation that does not use the CPU clock
signal.

Fingerprint Evaluation. In §2, we introduced a set of features that
we hope can serve as guidelines for future fingerprinting evaluation.

In addition, instead of testing our method against randommachines,
our evaluation procedure (described in §4 and §5.2) was designed
to stress the algorithm in a scenario in which all machines have
identical software and hardware components.

Table 2 summarizes the characteristics of different device fin-
gerprinting techniques proposed to date, and compare them with
our approach. Our method was the only one to discriminate all
the computers (in the machine version) and the many of them (in
the web version). In fact, the other methods could not differentiate
any of the computers in any of the two sets. Stability was 100%
for all methods, except of the Audio FP technique that returned
different fingerprint values on the same computer. In addition, our
method was the only one resilient to both changes and evasion
techniques. In fact, since the method does not necessarily rely on a
specific function, the only reliable way to affect its measurement is
to insert noise in the time measurement — something that can have
serious side effects on many web pages. Similarly, our fingerprint
can survive even a complete re-installation of the operating system.

The only negative aspect of our solution, if used as a way to
track users on the Web, is the back-end efficiency. On the one hand,
computing a single fingerprint is extremely fast. On the other hand,
existing fingerprints cannot be just indexed in a database for a fast
retrieval. Instead, our solution require to compare a new finger-
print with all those collected for other machines. However, each
comparison is fast (200 milliseconds in our current Python proto-
type), completely independent, and easily parallelizable. Moreover,
an incremental comparison can be implemented to optimize the
process, stopping the algorithm and removing candidates when a
difference is found.

Application to Web Device Fingerprinting. The web-based imple-
mentation of our algorithm was not as precise at discriminating
identical hardware and software machines as the native implemen-
tation. The reason behind this fact is the granularity of the HTML5
timing API, which does not allow for a more precise measurement.
However, there are several improvements that can be implemented
in the web version to enhance the timing precision.

First of all, instead of using the standard HTML5 timing API,
there are improved timing techniques that can achieve more precise
timing values, such as the clock interpolation technique presented
by Schwarz et al. [37]. The timing precision we can obtain with
some of this timers is similar to the timer used in the machine
version. Therefore, it is logical to think that the fingerprint should
also be as precise. Even in this particular case, the evasion would
be difficult to implement since the functions used can be easily
modified.

In addition,WebAssembly [17], a project that aims at introducing
a new binary format for web applications, can also be used. In this
case, we may not only improve the precision of the web version of
CryptoFP but also implement a web version using any function.
This API will allow to compile C/C++ code, amid others, as well
as execute it at native speed using common hardware capabilities.
The technology is currently in an early stage but it can be used in
the future to fully implement the native fingerprinting method.

Countermeasures. Regarding possible evasions, we did not test
those in which users were performing specific actions to tamper
with the results – such as underclocking/overclocking the CPU, but

Table 2: A comparison of current state-of-the-art methods according to the proposed features. ✓ indicates that the method

has, to a certain extent, that characteristic. ✗ implies that either the method has been tested and does not meet the feature or

that, because of its design, it is unlikely to meet that requirement.

Methods

Feature Attribute-based FP Canvas FP WebGL FP Audio FP Our method

Discrimination Power ✓ ✓ ✓ ✓ ✓

Stability ✓ ✓ ✓ ✗ ✓

Homogeneous Discrimination ✗ ✗ ✗ ✗ ✓

Efficiency ✓ ✓ ✗ ✓ ✓

Resilience to Evasion ✗ ✗ ✗ ✗ ✓

Resilience to Changes ✗ ✗ ✗ ✗ ✓

we focus instead on techniques implemented by browsers to avoid
fingerprinting. In fact, some of the existing fingerprints are ineffec-
tive against existing browsers countermeasures. As our technique
does not necessarily rely on a specific function, such protection is
more difficult to implement.

Nevertheless, there are few countermeasures that can be adopted
in order to avoid our new fingerprinting method. Since the basis
of our method is the precision of the timing process itself, coun-
termeasures need to focus on this aspect. While this is possible in
the context of a browser, major browsers have already reduced the
precision of their timers to avoid several of these attacks performed
by JavaScript. Reducing it even further would definitely be an un-
popular solution, as more and more applications are pushing for
better timing capabilities in JavaScript and HTML5.

Another countermeasure could rely on the use of secure timers,
several of which have been proposed in the literature [22, 28, 39].
Their goal is precisely to control timers to make attacks more diffi-
cult. These methods are, nevertheless, costly to implement [16].

7 RELATEDWORK

Physical Device Fingerprinting. Physical device fingerprinting
relies on variations in physical features of devices for their identifi-
cation. Originally intended for authentication, other uses appeared
over the years, such as license binding or statistically determining
the source of an attack [12]. Another work focused on wireless de-
vice fingerprinting [2, 13] tries to identify a network source rather
than a machine. Other techniques have been proposed to physically
identify hardware. Examples include the variation in the process in
semiconductor foundries [3, 5, 32], Physical Unclonable Functions
(PUFs) [14, 27, 33], and exploiting motion sensors embedded on
smart devices [7, 8].

Another line of work [34] focused on fingerprinting computers
based on the system clock skew extracted by analyzing the differ-
ent types of timestamps present in the generated traffic. Kohno et
al. [23] exploited the TCP and ICPM timestamps to identify com-
puters. Later, Jana and Kasera [20] used the timestamp present
on WLAN beacon packets to identify unauthorized wireless ac-
cess points. More recently, Huang et al. [18] proposed to use the
Bluetooth included in some devices to identify the skews. These
techniques are really interesting, but the information they rely
upon are optional and not always enabled by default in various
operating systems and can be easily spoofed by the user. Moreover,

they can be easily disabled by users, thus completely preventing the
fingerprint computation. Our approach follows instead a schema
that allows to obtain a fingerprint without relying on any specific
options in the system and without needing to analyze any traffic
data, and still allowing a precise identification of computers, even
if they share the same hardware and software.

The works closest to our is the recent proposal to use Flash mem-
ory to produce both random numbers and generate unique device
fingerprints [43] and the proposal to use a clock crystal fingerprint-
ing technique that by using another time reference [35]. However,
these approaches differ from ours, because ours only relies on tim-
ing functions to fingerprint hardware, being less dependent on the
specific hardware configurations. In addition, we have been able to
create a generic and simple version of clock fingerprinting that can
be used both in simple native code and in the web environment.

Browser Timing Attacks. Timing attacks were first introduced by
Felten and Schneider [11] to acquire users’ information. Bortz et
al. [4] categorized timing attacks into two different categories. The
first attacks consisted in measuring the time differences through
direct timing. The second ones use information from different sites
to obtain client-side data.

The usage of CSS properties can also be a source for timing
attacks [24]. Van Goethem et al. [40] proposed the usage of the size
of cross-origin resources to detect previous access. Sanchez-Rola et
al. [36] discovered installed extensions in all major browsers based
on access control settings by means of a timing attack. Mowery et
al. [29] presented a method using JavaScript engine benchmarks.

Web Fingerprinting. Web fingerprinting is a method to retrieve
user or browser information, typically for tracking. Cookies [38]
were their first form. Later, it started to be more complex e.g., ev-
ercookies [21], cookie syncing, or ETags [1]. Finally, device finger-
printing computes a unique identifier for each machine without
client-side storage.

As aforementioned, there are two types of device fingerprint-
ing: attribute-based and hardware-level. The first one uses several
browser attributes [9] (e.g.,installed fonts or plugins, UserAgent, or
screen size and resolution). Unfortunately, these attributes change
rapidly, rendering the fingerprint obsolete in less than 10 days
according to [41]. The second one, however, uses browser imple-
mentations of different APIs to compute the differences between

devices that are based in hardware features (e.g., HTML5 Canvas
API or the WebGL API [30]).

8 CONCLUSIONS

Device fingerprinting is an active research topic withinweb security,
specially web device fingerprinting, in the last years. These methods
can be used for a wide variety of tasks such as user access control,
web tracking or analytics, or targeted attacks.

In this paper, we introduced a time-based device fingerprinting
technique. This fingerprinting technique is generic and can work
with different functions, making the method adaptable to differ-
ent environments. In addition, we introduced a set of properties
to properly assess the functionality of fingerprinting techniques,
filling the gap in current fingerprinting evaluation and proposing a
new homogeneous scenario evaluation procedure.

We built a specific native version of our method, CrytoFP, us-
ing the function for generating random numbers and evaluating it
in a homogeneous scenario with two large sets of machines with
the exact same hardware and software installed, showing that is
capable of distinguishing every machine. Based upon this imple-
mentation, we built an application to web device fingerprinting
using the HTML5 Cryptography API that internally uses the same
native functions that the machine-version, evaluating and com-
paring it with state-of-the-art hardware-level web fingerprinting
techniques. In a homogeneous scenario evaluation CryptoFP was
not as accurate as its native counterpart due to the timing limita-
tions of the JavaScript engine, but still capable of discriminating
several of the identical hardware and software machines, outper-
forming the state-of-the-art methods that were not able to uniquely
identity none of the machines. The heterogeneous in-the-wild eval-
uation shows that the percentage of unique computers identified
by CryptoFP was much higher than any other existing method.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their insightful comments
and our shepherd Yinzhi Cao for his assistance to improve this
paper. This work is partially supported by the Basque Government
under a pre-doctoral grant given to Iskander Sanchez-Rola.

REFERENCES

[1] M Ayenson, DJ Wambach, A Soltani, N Good, and CJ Hoofnagle. 2011. Flash
cookies and privacy II: Now with HTML5 and Etags respawning (2011). Social
Science Research Network Working Paper Series (2011).

[2] Suman Banerjee and Vladimir Brik. 2011. Wireless device fingerprinting. In
Encyclopedia of Cryptography and Security. Springer, 1388–1390.

[3] Duane S Boning and James E Chung. 1996. Statistical metrology: Understanding
spatial variation in semiconductor manufacturing. In Proceedings of the Micro-
electronic Manufacturing. International Society for Optics and Photonics.

[4] Andrew Bortz and Dan Boneh. 2007. Exposing private information by timing
web applications. In Proceedings of the 16th international conference on World
Wide Web (WWW). ACM, 621–628.

[5] Keith A Bowman, Steven G Duvall, and James D Meindl. 2002. Impact of die-
to-die and within-die parameter fluctuations on the maximum clock frequency
distribution for gigascale integration. IEEE Journal of solid-state circuits 37, 2
(2002), 183–190.

[6] Yinzhi Cao, Song Li, and Erik Wijmans. 2017. (Cross-)Browser Fingerprinting via
OS and Hardware Level Features. In Proceedings of the Network and Distributed
System Symposium (NDSS).

[7] Anupam Das, Nikita Borisov, and Matthew Caesar. 2016. Tracking Mobile Web
Users Through Motion Sensors: Attacks and Defenses.. In Proceedings of the
Network and Distributed System Symposium (NDSS).

[8] Sanorita Dey, Nirupam Roy, Wenyuan Xu, Romit Roy Choudhury, and Srihari
Nelakuditi. 2014. AccelPrint: Imperfections of Accelerometers Make Smartphones

Trackable.. In Proceedings of the Network and Distributed System Symposium
(NDSS).

[9] Peter Eckersley. 2010. How unique is your web browser?. In Proceedings of the
Privacy Enhancing Technologies (PETS).

[10] Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-site
measurement and analysis. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 1388–1401.

[11] Edward W Felten and Michael A Schneider. 2000. Timing attacks on web privacy.
In Proceedings of the 7th ACM conference on Computer and Communications
Security (CCS). ACM.

[12] Russ Fink. 2007. A statistical approach to remote physical device fingerprinting.
In Proceedings of the Military Communications Conference (MILCOM).

[13] Jason Franklin, DamonMcCoy, Parisa Tabriz, Vicentiu Neagoe, Jamie V Randwyk,
and Douglas Sicker. 2006. Passive Data Link Layer 802.11 Wireless Device Driver
Fingerprinting.. In Proceedings of the USENIX Security Symposium (SEC).

[14] Blaise Gassend, Dwaine Clarke, Marten Van Dijk, and Srinivas Devadas. 2002.
Silicon physical random functions. In Proceedings of the ACM Conference on
Computer and CBommunications Security (CCS).

[15] GNU/Linux. 2018. Stress, tool to impose load on and stress test systems. https:
//linux.die.net/man/1/stress.

[16] Ben Gras, Kaveh Razavi, Erik Bosman, Herbert Bos, and Cristiano Giuffrida. 2017.
ASLR on the Line: Practical Cache Attacks on the MMU. In Proceedings of the
Network and Distributed System Symposium (NDSS).

[17] WebAssemblyW3C Community Group. 2018. WebAssembly. http://webassembly.
org/.

[18] Jun Huang, Wahhab Albazrqaoe, and Guoliang Xing. 2014. Blueid: A practical
system for bluetooth device identification. In INFOCOM, 2014 Proceedings IEEE.
IEEE, 2849–2857.

[19] Clint Huffman. 2014. Windows Performance Analysis Field Guide. Elsevier.
[20] Suman Jana and Sneha K Kasera. 2010. On fast and accurate detection of unau-

thorized wireless access points using clock skews. IEEE Transactions on Mobile
Computing 9, 3 (2010), 449–462.

[21] Samy Kamkar. 2018. Evercookie – virtually irrevocable persistent cookies. http:
//samy.pl/evercookie/.

[22] David Kohlbrenner and Hovav Shacham. 2016. Trusted Browsers for Uncertain
Times. In Proceedings of the USENIX Security Symposium (Sec).

[23] Tadayoshi Kohno, Andre Broido, and Kimberly C Claffy. 2005. Remote physical
device fingerprinting. IEEE Transactions on Dependable and Secure Computing 2,
2 (2005), 93–108.

[24] Robert Kotcher, Yutong Pei, Pranjal Jumde, and Collin Jackson. 2013. Cross-origin
pixel stealing: timing attacks using CSS filters. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security. ACM, 1055–1062.

[25] Fabian Lanze, Andriy Panchenko, Benjamin Braatz, and Thomas Engel. 2014.
Letting the puss in boots sweat: Detecting fake access points using dependency
of clock skews on temperature. In Proceedings of the 9th ACM symposium on
Information, computer and communications security. ACM, 3–14.

[26] Pierre Laperdrix, Walter Rudametkin, and Benoit Baudry. 2016. Beauty and the
Beast: Diverting modern web browsers to build unique browser fingerprints. In
Proceedings of the IEEE Symposium on Security and Privacy (Oakland).

[27] Jae W Lee, Daihyun Lim, Blaise Gassend, G Edward Suh, Marten Van Dijk, and
Srinivas Devadas. [n. d.]. A technique to build a secret key in integrated circuits
for identification and authentication applications. In Proceedings of the Symposium
on VLSI Circuits. IEEE.

[28] Robert Martin, John Demme, and Simha Sethumadhavan. 2012. TimeWarp:
Rethinking timekeeping and performance monitoring mechanisms to mitigate
side-channel attacks. In Proceedings of the Annual International Symposium on
Computer Architecture (ISCA).

[29] Keaton Mowery, Dillon Bogenreif, Scott Yilek, and Hovav Shacham. 2011. Fin-
gerprinting information in JavaScript implementations. In Proceedings of the Web
2.0 Workshop on Security and Privacy (W2SP).

[30] Keaton Mowery and Hovav Shacham. 2012. Pixel perfect: Fingerprinting canvas
in HTML5. In Proceedings of theWeb 2.0Workshop on Security and Privacy (W2SP).

[31] Steven J Murdoch. 2006. Hot or not: Revealing hidden services by their clock
skew. In Proceedings of the 13th ACM conference on Computer and communications
security. ACM, 27–36.

[32] Sani R Nassif. 2000. Modeling and forecasting of manufacturing variations. In
Proceedings of the International Workshop on Statistical Metrology.

[33] Ravikanth Pappu, Ben Recht, Jason Taylor, and Neil Gershenfeld. 2002. Physical
one-way functions. Science 297, 5589 (2002), 2026–2030.

[34] Libor Polčák and Barbora Franková. 2014. On reliability of clock-skew-based
remote computer identification. In Security and Cryptography (SECRYPT), 2014
11th International Conference on. IEEE, 1–8.

[35] Timothy J Salo. 2007. Multi-Factor Fingerprints for Personal Computer Hardware.
In Proceedings of the Military Communications Conference (MILCOM). IEEE.

[36] Iskander Sanchez-Rola, Igor Santos, and Davide Balzarotti. 2017. Extension
Breakdown: Security Analysis of Browsers Extension Resources Control Policies.
In Proceedings of the USENIX Security Symposium (Sec).

https://linux.die.net/man/1/stress
https://linux.die.net/man/1/stress
http://webassembly.org/
http://webassembly.org/
http://samy.pl/evercookie/
http://samy.pl/evercookie/

[37] Michael Schwarz, ClÃľmentine Maurice, Daniel Gruss, and Stefan Mangard. 2017.
Fantastic Timers and Where to Find Them: High-Resolution Microarchitectural
Attacks in JavaScript . In Proceedings of the International Conference on Financial
Cryptography and Data Security (FC).

[38] Ashkan Soltani, Shannon Canty, Quentin Mayo, Lauren Thomas, and Chris Jay
Hoofnagle. 2010. Flash Cookies and Privacy. In Proceedings of the AAAI Spring
Symposium: Intelligent Information Privacy Management, Vol. 2010.

[39] Deian Stefan, Pablo Buiras, Edward Z Yang, Amit Levy, David Terei, Alejan-
dro Russo, and David Mazières. 2013. Eliminating cache-based timing attacks
with instruction-based scheduling. In Proceedings of the European Symposium on
Research in Computer Security (ESORICS). Springer.

[40] Tom Van Goethem, Wouter Joosen, and Nick Nikiforakis. 2015. The Clock is Still
Ticking: Timing Attacks in the Modern Web. In Proceedings of the ACM SIGSAC
Conference on Computer and Communications Security (CCS).

[41] Antoine vastel, Pierre Laperdrix, Walter Rudametkin, and Romain Rouvoy. 2018.
FP-STALKER: Tracking Browser Fingerprint Evolutions. In Proceedings of the IEEE
Symposium on Security and Privacy (Oakland). https://hal.inria.fr/hal-01652021

[42] W3C. 2018. Web Cryptography API. https://w3c.github.io/webcrypto/Overview.
html.

[43] Yinglei Wang, Wing-kei Yu, Shuo Wu, Greg Malysa, G Edward Suh, and Edwin C
Kan. 2012. Flash memory for ubiquitous hardware security functions: True
random number generation and device fingerprints. In Proceedings of the IEEE
Symposium on Security and Privacy (Oakland).

https://hal.inria.fr/hal-01652021
https://w3c.github.io/webcrypto/Overview.html
https://w3c.github.io/webcrypto/Overview.html

	Abstract
	1 Introduction
	2 Fingerprint Assessment
	3 Host Fingerprinting based on Clock Imperfections
	3.1 Threat Model and Use Cases
	3.2 Existing Approach
	3.3 Our Approach: Time-Based Device Fingerprinting
	3.4 CryptoFP

	4 Host-Based Fingerprinting of Identical Targets
	4.1 Methodology
	4.2 Results

	5 Web Implementation of CryptoFP
	5.1 Implementation
	5.2 Evaluation

	6 Discussion
	7 Related Work
	8 Conclusions
	References

