
Phishing Attacks on Modern Android
Simone Aonzo, Alessio Merlo, Giulio Tavella

DIBRIS - University of Genoa, Italy
{simone.aonzo,alessio}@dibris.unige.it

me@giuliotavella.info

Yanick Fratantonio
EURECOM, France

yanick.fratantonio@eurecom.fr

ABSTRACT
Modern versions of Android have introduced a number of features
in the name of convenience. This paper shows how two of these fea-
tures, mobile password managers and Instant Apps, can be abused
to make phishing attacks that are significantly more practical than
existing ones. We have studied the leading password managers
for mobile and we uncovered a number of design issues that leave
them open to attacks. For example, we show it is possible to trick
password managers into auto-suggesting credentials associated
with arbitrary attacker-chosen websites. We then show how an
attacker can abuse the recently introduced Instant Apps technology
to allow a remote attacker to gain full UI control and, by abusing
password managers, to implement an end-to-end phishing attack re-
quiring only few user’s clicks. We also found that mobile password
managers are vulnerable to “hidden fields” attacks, which makes
these attacks even more practical and problematic. We conclude
this paper by proposing a new secure-by-design API that avoids
common errors and we show that the secure implementation of
autofill functionality will require a community-wide effort, which
this work hopes to inspire.

KEYWORDS
Mobile Security, Phishing, Password Managers, Instant Apps
ACM Reference Format:
Simone Aonzo, Alessio Merlo, Giulio Tavella and Yanick Fratantonio. 2018.
Phishing Attacks on Modern Android. In Proceedings of 2018 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’18). ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3243734.3243778

1 INTRODUCTION
The role mobile devices have in our lives has been exponentially
increasing in the last decade. Recent reports have shown that more
than half worldwide website traffic has been generated via mo-
bile devices [41]. Users take advantage of these devices not only
to browse websites, but also to access social networks and other
online services, such as online banking. Thus, to improve user expe-
rience, developers of web services often implement native Android
apps, making mobile devices portals to their associated web back-
ends. For example, a vast portion of Facebook accesses in the US
is performed via mobile device [14]. According to these reports,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCS ’18, October 15–19, 2018, Toronto, ON, Canada
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5693-0/18/10. . . $15.00
https://doi.org/10.1145/3243734.3243778

this trend is forecasted to only increase in the future, and users
are going to perform more and more often one of the most basic
security-sensitive action: authenticate to mobile apps backends by
inserting their credentials. On the one hand, this shift towards the
mobile world pushed Google and platform developers to design new
technologies and mechanisms to decrease the friction of these user
interactions. On the other hand, unfortunately, the more frequently
users will be asked to insert credentials on their mobile devices, the
more attackers will find mobile phishing attacks rewarding.

In this paper, we take a look at new features introduced in mo-
dern versions of Android, and we show that while they do simplify
both users’ and developers’ lives, their weak design and imple-
mentation allow attackers to abuse them, making mobile phishing
attacks significantly more practical than what previously thought.

Mobile password managers. The first aspect we look at is the
growing popularity of mobile password managers. Password man-
agers have been initially developed for the web, and the security
community has long praised their many benefits. For example, they
provide a practical way for users to use different pseudo-random
passwords for each web service they interact with, thus discourag-
ing the use of simple, easy-to-guess, and shared passwords across
accounts. In fact, the user has a chance to store her credentials and
to associate them to specific websites: when the user later navigates
to the same website, the password manager identifies the website
through its domain name, and it then suggests (and in some cases
automatically fills) the right credentials on behalf of the user.

As a way to support the increasing amount of mobile users, pass-
word managers are now also available for mobile devices. Mobile
password managers are developed as apps, and they include ad-
vanced sync features, which allow suggesting (and filling) website-
related credentials to their associated apps.

From a technical standpoint, these passwordmanager apps either
need to have support from the Android Framework, or they require
modifications to their potential “clients” (e.g., the Facebook app).
In fact, Android apps sandboxing mechanism prevents them to
interact with external apps programmatically. To date, there are
three mechanisms that act as necessary basic blocks to allow for
their implementation. The first is the Accessibility Service [21]
(a11y, in short): while, in theory, a11y is a mechanism to allow apps
to be “accessible” to users with disabilities, it also allows apps to
interact with others programmatically, and it thus provides the
technical capability needed by password managers to implement
their functionality. Since recent works have shown how a11y can
be abused [5, 6, 18, 31, 34, 35, 43], Google has recently implemented
the Autofill Framework [22], a new component of the Android
Framework specifically developed to allow password managers
to suggest and autofill credentials to mobile apps (without the
need to rely on a11y). The third mechanism is called OpenYOLO,

https://doi.org/10.1145/3243734.3243778
https://doi.org/10.1145/3243734.3243778

(a) (b)

Figure 1: Android passwordmanagers (1a) Dashlane and (1b)
Keeper, suggesting Facebook credentials to a fake malicious
app.

a recently-proposed protocol for storing and updating credentials
for mobile apps [20]. This mechanism is developed by Google and
Dashlane, and it follows a different paradigm: it does not affect the
Android Framework, but it requires modifications of each “client”
(e.g., Facebook) and “server” app (e.g., the password manager).

In this paper, we show that all these three mechanisms are af-
fected by design and implementation issues. At the root of the
problems is the need to bridge the mobile world with the web world:
given an app with a login form, how can a password manager
know whether this app is the legitimate Facebook app (and it is
thus entitled to access Facebook credentials) or whether this is a
malicious app attempting to appear as the legitimate one? How is
it possible to know which app is linked to which domain name?
The key design issue is that all these three mechanisms use the app
package name as the main abstraction to identify an app. Password
managers thus need to somehow map package names to associated
websites.

While a technical solution to securely implement such mapping
exists, this work shows that the poor design choices of the underly-
ingmechanisms push to the implementation of vulnerable solutions.
In particular, we have investigated the four leading third-party mo-
bile passwordmanagers app (Keeper [26], Dashlane [2], LastPass [3],
1Password [1]), as well as Google Smart Lock (GSL) [24]: we have
found that only GSL is securely implemented. Moreover, we have
found that Keeper, Dashlane, and LastPass all implement various
(vulnerable) heuristics, each of which misplaces trust in an app
package name or other metadata. The net result is that it is possible
for a malicious app to systematically lure these password managers
to leak credentials associated with arbitrary attacker-chosen websites.
To make it worse, we note that these attacks also work for websites
for which an associated mobile app does not exist. These attacks
effectively make mobile phishing more practical: differently than all
previous works, the user is not even asked to type her credentials;

the user is just asked to allow password managers to autofill the
credentials on her behalf.

It is interesting to note how, on the web, password managers
do not ease phishing attacks, but quite the opposite. In fact, web
password managers check the current website domain name to
determine whether to auto-fill (or auto-suggest) credentials: if the
domain name does not match the expectations, no credentials are
suggested. Thus, an attacker that uses particular Unicode characters
to create a facebook.com-looking domain name may fool a human,
but not a password manager: the malicious domain name will be
different from the legitimate one, and the password manager sug-
gestion will not trigger. We thus argue that the mere fact that a
mobile password manager is suggesting credentials associated with
the target website inherently adds legitimacy to the attack, making
it even more effective.

Instant Apps. The second modern feature we explore in this pa-
per is called Instant Apps. This technology, implemented by Google,
allows users to “try” Android apps at the touch of a click, without
the need to fully install the app. Under the hood, the system works
by asking developers to upload small portions of their Android
app, called Instant Apps, and to associate a URL pattern to it. The
developer needs first to prove that she controls the domain name
of the URL pattern. This is carried out through a multi-step pro-
cedure called App Link Verification [29] which relies on Digital
Asset Links [19] protocol (it makes possible to associate an app
with a website and vice versa, via verifiable statements). After this
deployment step, the user will be able to click on a link (pointing to
the specified URL), and, after a one-time confirmation, the Instant
App is automatically downloaded and executed on the user’s device.

In this paper, we show that this technology, while indeed a very
useful Android feature, can make phishing attacks more practical.
The key observation is that Instant Apps provide an attacker the
ability to gain full control over the device UI, without the need of
installing an app. In a browser-only phishing scenario, the user
would have a chance to notice the green lock and inspect the domain
name. However, in an Instant Apps-based attack, the attacker has
full capabilities to deceive the user. For example, an attacker could
create a full-screen Facebook login view (as the real Facebook app
would do). As reported in existing works [4, 8, 9, 38], users cannot
distinguish between these. As another example, an attacker could
simulate the view of a full browser; as the attacker controls every
pixel of the screen, nothing prevents her to show the user a browser-
like view with a spoofed facebook.com domain name and a green
lock: once again, this attack is indistinguishable from a legitimate
scenario. As highlighted by several recent works, the key insight is
that the UI on mobile devices cannot be trusted, and Instant Apps
provide a technical way for an attacker to move from a scenario
where she does not fully control it (like a web page somehow
constrained by the web browser security mechanisms) to a scenario
where she fully does.

End-to-end attack. The combination of flawed mobile password
managers and Instant Apps allow attackers to develop and mount
mobile phishing attacks that are muchmore practical than what pre-
viously known [8, 9, 18, 38]. In fact, we have found that, although
Instant Apps are not “fully installed” apps, 1) password managers
currently do not notice the difference, and that 2) their package

name is the same as the associated full app. This means that the
package name of the Instant App is attacker-controlled, and that
it is thus possible to trick password managers to auto-fill credentials
for an attacker-chosen website even without requiring the installa-
tion of an additional app. This allows an attacker to bootstrap an
end-to-end phishing attack by luring the victim into visiting a ma-
licious webpage: such webpage may contain, for example, a fake
Facebook-related functionality. Upon clicking on it, the Instant App
mechanism is triggered, the attacker can spoof a full-screen Face-
book login form, at which point the password manager would offer
to automatically fill the credentials on behalf of the victim.

To make things worse, we found that current password managers
fill hidden fields as well. An attacker could thus create a form with
a visible username field but a hidden password field: while the
unsuspecting user thinks she is autofilling only the username, her
password manager will silently leak her password to the attacker.

To the best of our knowledge, the attacks presented in this paper
are the most advanced and practical phishing attack techniques
to date. In fact, all existing approaches assume a malicious app in-
stalled on the user’s device, ask the user to manually insert her cre-
dentials (which although not technically problematic, may reduce
the attack success rate), or fall back to web-based phishing attacks
(that are noticeable at least from the browser bar) [8, 9, 18, 38].

A look to the future. The future of these problems does not look
encouraging. The current API has a design that is error-prone and
does not force developers to take all necessary steps to avoid severe
vulnerabilities. In this paper we discuss the design of a new API,
called getVerifiedDomainNames(), that uses domain names as the
main abstraction level (instead of package names, which should not
be trusted), and it hides behind a single, central implementation the
necessary logic and security steps to establish that a requesting app
does have authority over the credentials it is requesting. Internally,
this new API relies on an existing technical solution based on
Digital Asset Links [19] verification. This solution requires websites
owners to publish an “assets” file on their website so that an app-
website “link” can be established.1 This is the same mechanism that
Autofill Framework and OpenYOLO suggest developers to use: the
difference is that our API forces them to use it, instead of leaving
them open to implement vulnerable solutions—as they did.

Unfortunately, although we believe that this solution is tech-
nically sound, the current ecosystem is far from being ready. In
fact, the App Link Verification requires collaboration from websites
owners, as they would need to upload the appropriate assets file to
their website. To determine the readiness of the ecosystem to this
mechanism, we first built a dataset of 8,821 domain names extracted
from the password managers we have analyzed (given the source
of this dataset, these domain names are guaranteed to have at least
one login form, otherwise they would not be relevant to password
managers). We then checked how many websites already link them-
selves to an app: to our surprise, only 178 of them currently have
an assetlinks.json compatible with the proposed solution, which
is around 2%. This means that, to date, password managers deve-
lopers do not have the necessary information to securely implement
their functionality, even if they wanted to. One may then wonder

1Such “assets” file needs to be placed at a specific location: https://domain.name/.well-
known/assetlinks.json

how Google Smart Lock, which we found to be secure, implements
such mapping. We found that, although a technical solution exists,
this process is not automatic: according to the official documenta-
tion [25], the last step of the process requires developers to manu-
ally fill a Google Form [28] to provide the needed information. We
conclude that the adoption of a secure mapping cannot be easily ad-
dressed by the single actors alone, but it requires a community-wide
effort, which this work hopes to inspire.

In summary, this paper provides the following contributions:
• We performed the first security analysis of mobile password
managers and the three core technologies they rely on: a11y,
Autofill Framework, and OpenYOLO; we have uncovered de-
sign and implementation issues that allow attackers to trick
password managers to leak to malicious apps credentials
associated to arbitrary attacker-chosen websites;

• We show how Instant Apps can be abused to gain full UI
control and how they can be used to lower the bar for stealthy
and practical phishing attacks;

• We present an end-to-end phishing attack that abuses pass-
word managers and Instant Apps, and we show that current
implementations automatically fill hidden password fields.
We believe this to be the most advanced and practical phish-
ing attack to date;

• We propose a new secure-by-design API that moves the
abstraction from package names to domain names;

• We provide empirical evidence that the current ecosystem is
not ready yet to support secure autofill on mobile devices,
and that a community-wide effort is required to address
these issues.

2 BACKGROUND
Android mobile apps are compiled and distributed as self-contained
files, called APKs. Apps are usually distributed via app stores. One
main distribution option is the official Google store, called Play
Store. Alternatively, a developer can upload her app to so-called
third-party markets. Although very popular in some countries (e.g.,
China, India), these markets are traditionally perceived as less se-
cure. For this reason, to install apps hosted outside the Play Store,
users need to manually enable a security option called side-loading
(off by default).

Every app needs to define some metadata, the most important
being the package name, a developer-specified string that acts as
the main app identifier. While it is commonly believed that package
names are analogous to web domain names for mobile apps, they
are actually very different for what concerns security guarantees.
In fact, the only constraint is that the package name needs to be
unique 1) across the apps published on the Play Store and 2) across
the apps installed on a given device. No other security guarantees
are provided.

Once installed, apps execution is sandboxed via a number of
security mechanisms. Thus, apps have access to private storage,
and they cannot interfere with the execution of other apps. Access
to security- and privacy-related functionality and information are
controlled by the Android permission system (i.e., each app needs
to declare the list of permission it needs to work properly), and
inter-app communication is implemented via the Intent system.

3 ANDROID PASSWORD MANAGERS
A password manager (PM from now on) is a tool that stores and
manages user’s credentials like usernames and passwords. PMs aim
to suggest to the user the right credentials to insert in login forms,
thereby leveraging the same user from the burden of memorizing
their sensitive data.

PMs have been originally conceived for the web domain and
mostly implemented as browser extensions. They work as follows:
the first time a user visits a website and inputs credentials in online
forms, the PM stores such credentials on its backend and it main-
tains the association between the credentials and the domain name.
When the user visits the same domain later on, the PM recognizes
and verifies the domain, and it suggests the credentials to insert in
the corresponding login form.

The increasing popularity of mobile apps acting as wrappers
of their corresponding websites (e.g., email providers, online do-
cuments, social networks, home banking) has motivated the de-
velopment of password managers for mobile devices. These are
implemented as mobile apps, and they have the capability of help-
ing managing and automatically filling user’s credentials in other
apps. Modern PM apps and browser extensions also provide ad-
vanced sync functionalities between app and website credentials.
For example, consider a user opening for the first time the Face-
book app, which requires the users credentials: at this point, the
PM identifies the app, determines which domain name this app is
associated to (i.e., facebook.com), and checks whether it has creden-
tials associated to it; if this is the case, it auto-suggests them to the
user, who can thus authenticate herself with few clicks, without
the need of manually inserting her credentials. Figure 1 shows two
examples of password managers auto-suggesting credentials.

From the technical standpoint, filling credentials requires proper
mechanisms allowing PMs to access the UI of other apps, thereby by-
passing the isolation provided by the sandbox. To this end, modern
Android versions offer three mechanisms to support the implemen-
tation of PMs apps: Accessibility Service, Autofill Framework, and
OpenYOLO.

Accessibility Service. The Accessibility Service, a11y in short, is
a framework that allows third-party apps to be accessible to users
with disabilities [21]. An app can make use of this framework by
requesting the BIND_ACCESSIBILITY_SERVICE permission and by
implementing a component that, while in the background, receives
callbacks by the systemwhen “Accessibility Events” are fired. These
events are related to some specific transitions on the user interface,
e.g., the focus is changed or a button has been clicked. This service
has also access to relevant contextual information, the most impor-
tant being which app the user is currently interacting with. This
last information is made available by means of the package name
of the app.

Even if a11y has been developed to assist users with disabil-
ities, app developers have (benignly) abused this framework to
implement a variety of different features, one of which is the imple-
mentation of password managers. In particular, PMs rely on a11y to
determine which app the user is interacting with and whether there
are text fields that could be filled with stored credentials; if that is
the case, the PM then relies once again on a11y to programmatically

interact with the target app and automatically fill the credentials
fields on behalf of the user.

Unfortunately, while a11y is certainly useful, in the past few
years there have been a number of research works from the industry
and academic communities that show how a11y can be abused to
perform a number of malicious functionality, from stealing user’s
personal information to the complete compromise of the device [5,
6, 18, 31, 34, 35, 43]. Due to these threats, Google has developed
additional Android features so that apps do not need to have access
to such powerful mechanism to implement their functionality. Since
password managers are some of the most common and prominent
use cases, Google has recently introduced the Autofill Framework.

Autofill Framework. The Autofill Framework [22] has been in-
troduced in Android Oreo. This framework offers to password
managers apps a technical solution to implement their core func-
tionality without requiring access to a11y. In particular, the Autofill
Framework allows an app to 1) determine which app the user is
interacting with, and 2) fill credential fields programmatically.

The Autofill framework requires the developer to create an app
that implements an Autofill Service, which allows filling out forms
by injecting data directly into the views, such as the EditText wid-
gets that store the credentials. To use that, the app needs to require
the BIND_AUTOFILL_SERVICE permission. Android Oreo has also
introduced some new XML attributes to assist password managers:
importantForAutofill, which specifies whether the view is aut-
ofillable, autofillHints, which is a list of strings that suggests
to the service what data to fill the view with, and autofillType,
which tells the Autofill Service the type of data it expects to receive.
Through these attributes, an app implementing an Autofill service
is able to detect, classify, and fill form fields according to their types
(e.g., username, email address, password). Note that an app that
wants to be “compatible” with the Autofill Framework must use
these XML attributes. Note also that only one Autofill service can
be active at the same time (the user can select which one to use
through a dedicated setting menu).

At run-time, when the user opens a supported app with a login
form, the password manager is able to determine which app the
user is interacting with (once again, through its package name) and
it can offer the possibility to the user to automatically insert the
corresponding credentials on her behalf.

OpenYOLO. OpenYOLO (YOLO stands for “You Only Login Once”)
is a recently developed protocol, supported by Google partnering
with Dashlane, and it is available as an open-source library [20].
OpenYOLO does not require neither a11y nor Autofill Framework,
but it requires to modify each app that wants to support OpenYOLO-
based PMs. This mechanism is constituted by two components:
the client and the credential provider (the server). The client is a
component that needs to be embedded in each app that wants
to support this protocol (e.g., Facebook). The credential provider,
instead, is used within the password manager itself, and it is in
charge of providing information to the password manager about the
requester app identity. At run-time, the client seamlessly interacts
with the credential provider (via the Intent mechanism), which,
with the cooperation of the password manager, then returns to the
client a set of credentials, if available. The interaction between the
two components is depicted in Figure 2.

App with login form

Username

Password

LOGIN

 OpenYOLO Client

Password manager

credentials

getCredentials()

Credentials Provider
(OpenYOLO Server)

qu
er

yC
re

de
nt

ia
ls

()

credentials

(1)

(2) (3)

(4)

Figure 2: Deployment and workflow of OpenYOLO. We note
that the interaction between the client and server is actually
implemented via the Intent mechanism.

Note that OpenYOLO only helps PMs to interact with the target
app. However, the implementation logic in charge of retrieving the
correct credentials is left to the PM developers. In particular, the
OpenYOLO credential provider exposes to the password manager
the package name and the signature of the app requesting creden-
tials. Once again, the PM is in charge of mapping the given package
name to the appropriate domain names and credentials.

The central role of package names. Independently from which
mechanism a password manager is relying on, the key information
to identify which app the user is interacting with is the app package
name. Unfortunately, in all these cases, the developers of the PM
are left with the responsibility of securely mapping package names
and domain names. As we will discuss in the rest of this paper,
this design choice has a severe negative impact on the security
of password managers and of the entire ecosystem. In fact, while
mobile password managers have access to package names (and thus
apps), the user’s credentials they manage are related to websites.
And this begs the question: “how do mobile password managers
actually link apps to their respective websites?”

4 WEB AND MOBILE APPS WORLDS
The three mechanisms discussed in the previous section allow PMs
to feed website-related credentials to the corresponding mobile app
counterparts. To work properly, a PM needs 1) to identify the app
that requires credentials and 2) to bridge the mobile and the web
worlds. Since all the available mechanisms use apps package names
as the main abstraction, in order to determine the right credentials
to suggest, PMs need to somehow define a mapping between these
package names and their corresponding website. We argue that
package names are the wrong abstraction for PMs to work with. This
section discusses the many pitfalls associated with this process, and
how it is likely to misplace trust in these package names.

4.1 The Mapping Problem
PMs have access to package names as the key information to iden-
tify apps and to determine whether to automatically suggest cre-
dentials and for which website. Given a package name, PMs need to
bridge the gap between the mobile apps and the web worlds. There
is thus the need of mapping package names to their associated web
domain names.

One of the problems is that package names resemble URLs (e.g.,
the package name of the official Facebook app is com.facebook.katana),
thereby suggesting to inexperienced Android developers the same
level of trustworthiness of the associated domain name, facebook.com.
As we will see later in this paper, even developers of leading PMs
severely misplace trust in package names, thus affecting the secu-
rity of PMs and the entire ecosystem by making mobile phishing
attacks more practical. We now discuss the main characteristics of
domain names, package names, and the relation between them.

Domain names are trusted. In the modern web, domain names
can be considered as trusted. With the wide adoption of robust DNS
services and HTTPS, users and developers can determine whether
they are securely visiting a given URL: the browser would verify
the identity of the domain name by means of the PKI and the digital
certificates ecosystem. Thus, web PMs do rightfully place trust
in domain names. For example, a PM will automatically suggest
Facebook’s credentials whenever the user browses to facebook.com.
Notably, PMs do not suggest Facebook credentials when the user
visits a different domain name.

No authentication of package names. Differently than domain
names, there is no authentication of package names. Anybody can
create an app with a given package name, and it is possible for
an attacker to create an app with the same package name of, for
example, the legitimate Facebook app. However, one constraint
must always be satisfied: there cannot be two apps with the same
package name published on the Google Play Store or installed on
the same device. In other words, package names act as unique
keys. Note that third-party markets are not as controlled, and it
may be possible to publish malicious apps with package names
of legitimate apps. However, depending on the specific victim, it
may be challenging to lure her to install such malicious apps from
third-party stores.

No authority on “sub-packages.” In the world of domain names,
owners of the example.com are in control of sub-domains as well.
In the world of package names, instead, this is not the case: the
owner of com.example package name does not have any control over
package names that may appear as “sub-packages.” For example,
nothing prevents anybody to create an app with package name
com.example.evil: there is no relation between them. Thus, the sub-
domain trustworthiness of the web world does not hold in the
mobile counterpart. Unfortunately, as we will discuss later in the
paper, this false sense of safety is a key cause of security issues
among PMs.

The mapping problem. In the vast majority of cases, credentials
are associated to websites, not to mobile apps: in fact, credentials
are generally used to authenticate to a web service backend, not
to a mobile app. Thus, given an app package name, PMs need to
answer the question “which website is this package name associated

to?”. This is not a trivial question to answer. To make things worse,
PMs developers are left to implement their own “solution”. Unfortu-
nately, there are many pitfalls in implementing this mechanism, and
we found that even leading PMs opted to rely on heuristics to solve
this problem. It turns out that most of these heuristics are vulnera-
ble, and malicious apps can trick PMs to leak credentials associated
to arbitrary websites.

4.2 Attacker Practicality Aspects
From an attacker perspective, there are several aspects that would
make a phishing attack more or less practical. In this section, we
enumerate some questions related to the attacker capabilities. We
will put them in relation to each vulnerable mapping in the next
subsection.

Q1) Is the mapping vulnerable? The first question is, of course,
about whether the mapping is vulnerable or not. We consider a map-
ping as vulnerable if an attacker can create an app that, although
not being the legitimate one, can trick PMs into auto-suggesting
credentials associated to a given website.

Q2) Can the legitimate and malicious apps co-exist? One of
the most basic attack vectors is for a malicious app to have the same
package name as the legitimate one. Since no two apps installed on
the same device can have the same package name, this implies that,
in this scenario, the legitimate and themalicious app cannot co-exist.
This, in turn, implies that an attacker exploiting this package name-
colliding technique would need to first lure the user to uninstall
the legitimate app before the attack can be performed. Of course,
this poses practicality issues. Thus, this question is about: can an
attacker bypass this constraint? In other words, to give an example,
can an attacker create a malicious app that can co-exist with the
legitimate Facebook app and that, when opened, would trick PMs
to auto-suggest the legitimate Facebook credentials?

Q3) Can the malicious app be hosted on the Play Store? In
the general case, it is more difficult to lure the user to install an app
that is not hosted on the Play Store. Thus, one relevant question is:
is it possible for an attacker to upload her malicious app to the Play
Store? The main constraint for an attacker is that no two apps with
the same package name can be hosted on the Play Store at the same
time. In other words, this question asks whether an attack requires
creating an app with the same package name of an already-existing
app on the Play Store. If yes, the only venue for the attacker is to
lure the user to install the malicious app from a third-party market
(via the side-loading process): although this attack is possible, it is
less practical.

Q4) Can the attacker generate tailored suggestions? PMs have
the capability to auto-suggest one or more set of credentials. Then,
the user can choose one of them and, at the touch of a click, these
credentials are automatically filled in the target app. Now, from an
attacker perspective, the ideal situation would be to able to write
a malicious app such that, for example, the PM would only sug-
gest the credentials of facebook.com (or any other domain name
chosen by the attacker). A less-ideal scenario is a PM where all the
credentials are always suggested: although the user has the possi-
bility to lure her credentials to the malicious app, this attack would
be slightly less practical. Thus, the question is: can the attacker

Table 1: This table systematizes vulnerable mapping imple-
mentations and puts them in relation with attacker practi-
cality aspects.

Q1 Q2 Q3 Q4
Secure mapping
Static one-to-one mapping ✓ ✓

Static many-to-one mapping ✓ ✓ ✓

Crowdsourced mapping ✓ ✓ ✓ ✓

Heuristic-based mapping ✓ ✓ ✓ ✓

No mapping (all credentials suggested) ✓ ✓ ✓

have fine-grained control over which and how many credentials
are suggested?

4.3 Vulnerable Mappings
This section systematizes the different possible implementations
of the package names → web domain names mapping. For each
of them, we describe how such implementation is vulnerable, to
which attacks, and how practical it is with respect to the ques-
tions discussed above. The insights presented in this section are
systematized in Table 1.

Securemapping. The safest way to implement a mapping consists
in securely verifying whether the developers of the current app
have authority over a given domain name: if that is the case, then
it is safe to auto-suggest the credentials of such domain name to
the current app. One known solution to achieve this mapping is
called Digital Asset Links [19] (DAL from now on). From a concep-
tual point of view, DAL allows for the definition of authentication
domain equivalence classes, and it makes it possible to associate
an app with a website and vice versa, via verifiable statements.
This mechanism works by asking websites owners to publish on
their website an “assets” file that contains a list of apps that can be
legitimately associated with it. In this case, each app is identified by
its package name and by the hash of its legitimate signing key. A
third-party can then verify that an app is indeed legitimately linked
to a website by checking whether the “assets” include a matching
package name and the hash of the signing key.

Static one-to-one mapping. Consider a PM with a static one-
to-one mapping, which maps one package name to exactly one
domain name, and vice versa. As an example, consider the legitimate
Facebook app, whose package name is com.facebook.katana, which
is usually mapped to the facebook.com domain name. This simple
mapping technique is vulnerable: in fact, Facebook credentials are
suggested to any app whose package name is com.facebook.katana,
even if the app is not the legitimate one. It would be possible to
prevent this vulnerability by checking the certificate that signed
the target app, and make sure it is one of the known, trusted one.
Unfortunately, maintaining such list of known trusted certificates
is a very challenging task. We consider this a vulnerability, but
the attack is not very practical: in fact, the malicious app cannot
co-exist with the legitimate one.

Static many-to-one mapping. Consider a PM with a mapping
that maps n different package names p1,p2, . . . ,pn to the same
domain name D. This can happen for different apps belonging to

the same companies: while they are all different apps (and thus they
have different package names), they are all associated with the same
domain name. This typology of mapping is problematic because it
is frequent that the user would install only one (or a subset) of these
apps. Thus, a malicious app with one of the remaining package
names is able to steal the credentials. This attacker is more practical
than the previous one because it does not require the attacker to
lure the user to uninstall the legitimate app. However, the package
names specified in the mapping likely refer to real legitimate apps
on the Play Store. This means that the attacker cannot upload her
malicious app on the Play Store (because package names need to
be unique across the store), and the app needs to be side-loaded.

Crowdsourcedmapping.Given the scale of the problem—millions
of apps and website to map one with each other—one possibility
to create a comprehensive mapping is by means of crowdsourcing.
Thus, one approach is the following: consider a user who inserts
credentials for a domain D to an app with package name P , and
assume that the given PM did not know about this mapping: in such
case, a popup can ask the user whether she allows such association
to be shared with other users, so that everybody can benefit. If the
user allows for it, this new association is sent to the backend, which,
depending on the specific implementation, could immediately make
this mapping available to all its users, or wait until a number of
users higher than a threshold report the exact same association.
If an attacker is able to “inject” a new association, then she can
mount an attack that is more practical than the two alternatives
above. In fact, she could inject a new mapping pattacker → D
(where pattacker is an arbitrary attacker-chosen package name):
in this way, the PM would suggest credentials related to D to the
malicious app with pattacker as package name. Since the package
name is attacker-chosen, the attacker can choose a package name
that does not yet exist, and she can upload the malicious app to the
Play Store. Of course, this malicious app can also co-exist with the
legitimate one, given the different package name.

Heuristic-based mapping. One last way to implement mapping
is through heuristics. For example, one way is to infer which is
the appropriate domain name by implementing heuristics on the
package name of the app. One other strategy is to rely on some
other metadata to take such decisions. From a security perspective,
this is the most dangerous scenario. In fact, if such heuristics are
implemented in a way that an attacker can game them, the attacker
could create a malicious app that “maps” to an arbitrary attacker-
chosen target. Also, in this case the attacker may be able to avoid
constraints related to the package name of the malicious app, thus
avoiding practicality issues.

No mapping. Another alternative for PMs is to not implement
any mapping. In this case, the PM would always suggest all stored
credentials associated with all websites. This option is simpler than
all other alternatives, but it is not secure, especially when compared
to what current web-based PMs do. As an example, consider the
LastPass browser extension: in the current version, the extension
does not allow a user to insert her Facebook credentials on a website
that does not share the facebook.com domain name. This is done as
a security protection against phishing: even if the domain name
graphically looks like facebook.com (by, for example, using Unicode

character, as it would be the case in advanced phishing attacks), the
passwordwill prevent the user to fall for this phishing attack: mobile
PMs that do not implement mappings cannot protect from this
threat. However, if no mapping is implemented and all credentials
are suggested, such protection is not available.

5 CASE STUDIES
We performed the security assessment of the top four third-party
leading PM apps (i.e., Keeper, Dashlane, LastPass, and 1Password),
each of which has millions of users around the world. We have also
considered the Google Smart Lock, a service integrated with Google
Play Services, which currently implements, among many other
features, a password manager. In particular, we wanted to study
how these PMs address the challenges described in the previous
sections, and we were interested in answering questions such as:
how does the suggestion system work? How do these apps map
apps and package names to their associated websites? Is it possible
for a malicious app to trick PMs to provide credentials for arbitrary
websites? How difficult is for an attacker to mount such attacks?
Moreover, as three out of four PMs include the OpenYOLO library,
we assessed the reliability of its implementation.

This section describes the methodology we adopted and the
details for each of the PM we have analyzed. Our findings, sum-
marized in Table 2, are worrisome: three of the third-party PMs
implement a mapping based on various heuristics that an attacker
can easily game. In other words, an attacker can create an app so
that the target PM auto-suggests credentials associated with an
arbitrary attacker-chosen domain name. Note that, in such cases,
an attacker can leak credentials even from websites that do not
have an associated mobile app—as long as the attacker can game
the auto-suggestion system, the attacker wins.

Last, it is worth noticing that all third-party PMs support both
a11y and Autofill Framework (for Android 8+); more precisely, we
note that each PMs keep asking for the a11y permission even on
Android 8.0 for backward compatibility reasons, as many apps have
not modified their layouts yet to include Autofill XML attributes.
We have also noticed that from the perspective of a user who sees an
app being auto-filled, sometimes the steps to get the credential are
slightly different, or there are some graphical differences, between
PM relying on a11y or the Autofill Framework. We will discuss
them case-by-case; however, we underline that all attacks that we
discuss here works independently from the supporting technique.

5.1 Methodology
We developed a three-step methodology to investigate the security
of each password manager. These analysis steps are performed
using reverse engineering assisted by simple static analysis (e.g.,
bytecode decompilation) and dynamic analysis (e.g., bytecode in-
strumentation, network analysis, etc.).

Step 1: Package name as app identifier. The first step is to de-
termine whether a given PM uses the package name of the target
app as the only information to auto-suggest credentials for a given
website. This step is done in the following way: (1) Install the legiti-
mate Facebook app and add the credentials to the PM; (2) Uninstall
the Facebook app; (3) Install a malicious app that has the same
package name as the Facebook app and contains a login form. This

Table 2: Summary of findings for Keeper (K), Dashlane (D),
LastPass (LP), 1Password (1P), and Google Smart Lock (GSL).

K D LP 1P GSL
Secure mapping ✓

One-to-one mapping ✓ ✓ ✓ ✓

Many-to-one mapping ✓

Crowdsourced mapping ✓

Heuristic-based mapping ✓ ✓ ✓

No mapping ✓

Q1) Vulnerable? ✓ ✓ ✓ ✓

Q2) Can co-exist on device? ✓ ✓ ✓ ✓

Q3) Can co-exist on Play Store? ✓ ✓ ✓ ✓

Q4) Targeted suggestion? ✓ ✓ ✓

app is written so that the only aspect in common with the legiti-
mate app is the package name, while everything else is intentionally
changed; (4) Check whether the PM auto-suggests the real Facebook
credentials.

Although this step is straightforward from the conceptual and
technical standpoints, it is enough to reveal key information: since
in our test we change all the aspects except the package name, if the
PM provides the correct credentials, it means that the package name
is the only information used by the PM to identify the requesting
app.

Step 2: Mapping extraction. If the first step reveals that the pack-
age name is the only aspect that matters, we then proceed to our
second step: we aim at determining which specific technique the
PM uses to map package names to domain names. This step is per-
formed by a number of black-box tests and by then supporting the
findings via manual reverse engineering of the PM.

Step 3: Exploitation. The last step consists in developing tech-
niques to game the system and exploit the peculiarities of a given
mapping implementation, if vulnerable. In this scenario, a proof-
of-vulnerability consists in an app written so that the PM under
analysis is tricked to provide the credentials of an arbitrary attacker-
chosen website. In the general case, this app will need to have a
carefully crafted package name and, at the very least, a login form.
In other cases, it may be required to tweak other additional meta-
data.

5.2 Keeper
The Keeper app is the most downloaded PM with more than ten
million users on Play Store. Keeper supports both a11y and Autofill
Framework (on Android 8+), but it does not support OpenYOLO
yet. When the user selects a form, it shows an icon with a yellow
lock close to the form. When the user clicks on this icon, if the app
is recognized, the related credentials are suggested (see Figure 1b).
Otherwise, it asks to create a new entry.

Keeper also downloads from its backend a configuration file with
a list of known websites (and their names). This file, interestingly,
does not contain any reference to known package names. In fact,
this list is only used to auto-suggest website names when the user
manually inserts a new set of credentials.

Mapping implementation.When the user opens an app that can
be auto-filled, Keeper obtains its package name, through a11y or
Autofill Framework. Keeper then needs to determine which website
is associated with the current package name. To this aim, Keeper
builds a heuristic-based mapping as follows: it uses the app package
name to infer the URL of the app webpage on the Play Store (e.g.,
when the user opens the Facebook app, whose package name is com.
facebook.katana, Keeper tries to access the webpage at https://play.
google.com/store/apps/details?gl=us&id=com.facebook.katana). Then,
if the webpage exists, Keeper parses out the domain name of the
URL specified in the “app developer website field.” This is the do-
main name that Keeper considers as the rightful owner, and it then
stores the package name→ domain name association in its internal
mapping database. Finally, Keeper auto-suggests the credentials
associated with this just-retrieved domain name.

Exploitation. Unfortunately, this mechanism is trivial to exploit
for an attacker. In fact, the app developer URL is not validated by
the Play Store and it thus cannot be trusted. We were able to create
an app (with an arbitrary package name) and to publish it on the
Play Store specifying facebook.com as the developer’s website. In
this way, when a user opens our app, the Facebook credentials (and
only these credentials) are suggested.

5.3 Dashlane
Dashlane has been installed by more than one million users, and it
supports a11y, Autofill Framework, and OpenYOLO. When Dash-
lane uses a11y, it shows its icon close to the form to fill; when the
user clicks on it, the app is recognized and Dashlane suggests the
related credentials (see Figure 1a); otherwise it asks to create a new
entry. Instead, with the Autofill Framework, it directly shows a
window with the suggested credentials or the launcher for creating
a new entry, saving one interaction with the user.

Mapping implementation. Dashlane implements the mapping
by means of two layers. The first one is a hardcoded mapping pack-
age→ domain names containing 81 entries. The second layer is a
heuristic-based mapping that attempts to infer which domain name
should be associated to a given package name (this layer is used
only if the package name is not contained in the static mapping).
Our analysis revealed that such heuristic works in this way: Dash-
lane first splits the package name in components separated by the
dots (e.g., the aaa.bbb.ccc is split in the three components aaa, bbb,
and ccc). Then, for each component, it checks whether at least three
of its characters are contained in the “website” field of one (or more)
of Dashlane entries. For example, the package name xxx.face.yyy
triggers an auto-suggestion for facebook.com credentials (as well as
anything associated with facts.com, for example).

Exploitation. The static mapping is rather small and many entries
are tied to well-known apps and websites. However, we noticed
that such mapping is many-to-one. Therefore, there are multiple
package names pointing to the same domain name. For example,
we found that both com.etrade.mobilepro.activity and com.etrade.
tabletapp point towww.etrade.com, the official website of the Etrade
online banking platform: the two apps appear to be the smartphone
and tablet versions of the same product, respectively.

com.facebook.katana
com.facebook.katana
https://play.google.com/store/apps/details?gl=us&id=com.facebook.katana
https://play.google.com/store/apps/details?gl=us&id=com.facebook.katana
com.etrade.mobilepro.activity
com.etrade.tabletapp
com.etrade.tabletapp
www.etrade.com

Consider a user who has installed the smartphone version of
the app. An attacker could then exploit the many-to-one mapping
by luring the victim to install a malicious app having the package
name of the tablet version (that the user did not already install): in
this case, the attacker does not need to lure the victim to uninstall
the first app (as it would be the case without the many-to-one
mapping). We reported this attack for the sake of completeness, but
we acknowledge it is affected by practicality issues.

However, the second layer of the mapping is severely vulnerable.
In fact, it is sufficient to upload to the Play Store a malicious app
whose package name contains three (or more) letters that overlap
with the domain name the attacker wants to target; in this case, the
malicious app will be auto-filled with the credentials of the victim
domain. Furthermore, it is worth noticing that the malicious app
can obtain credentials from multiple domains. For instance, we sub-
mitted to the Play Store an appwith package name com.lin.uber.face:
when opening this app, Dashlane promptly suggests Linkedin, Uber,
and Facebook credentials.

Regarding OpenYOLO, Dashlane is exploitable exactly as a11y/
Autofill Framework, since the selection of credentials relies on the
package name, which is parsed as previously described. Therefore,
we wrote another malicious app embedding the OpenYOLO client
library and we were able to obtain the credentials.

Interestingly, we have noticed that when Dashlane uses Autofill
Framework instead of a11y, it performs some additional checks and
it is able to determine that our simple proof-of-concept attempting
to impersonate Facebook cannot be verified. In this case, a warning
is shown to the user. To the best of our understanding, Dashlane
employs a hardcoded list of well-known package name and signa-
ture pairs, and it checks our app against it. This is a promising step
forward in the right direction. However, we found that these checks
are easily bypassable. In fact, it is sufficient for a malicious app to
not be compatible with the Autofill framework (this can be done
by not using the new autofill-related XML attributes), and this will
be enough to force Dashlane to rely on a11y and the vulnerable
implementation.

5.4 LastPass
LastPass has been installed by more than one million users and
it supports a11y, Autofill Framework, and OpenYOLO. With a11y,
LastPass uses a permanent notification to alert the user if the cur-
rently active app has some form to fill; thus, she has to tap the
notification to show a popup window with her credential; with the
Autofill Framework, the user does not need to tap the notification
and she will directly see the pop upwindow, as in Dashlane. This un-
derlines that the support to OpenYOLO is still immature. However,
the current implementation allows the user to select credentials
and send them to any unidentified requesting app.

Mapping implementation. LastPass relies on two mappings. The
first one is, once again, heuristic-based, and it works as follows.
Given a package name, e.g., aaa.bbb.ccc, LastPass splits it in compo-
nents separated by the dots (e.g., aaa, bbb, and ccc), and it builds a
domain name pattern by using the first two in reversed order (e.g.,
bbb.aaa). LastPass will then suggest to the user all the credentials
associated with domain names that end such pattern.

In case an entry does not exist, LastPass allows the user to
search among her locally stored credentials and select (in case)
one of them, thereby defining a new entry for the mapping. As
such entries may be useful for other users worldwide, LastPass
allows the user to share them with the community. This sharing
step is at the basis of the second mapping, a crowdsourced mapping.
LastPass downloads this global database at the first installation.
At the time of writing, we found 19,273 crowdsourced mapping
entries with repeated package names and domains, mostly many-
to-one. For instance, we found a mapping between package names
com.tinder and com.tinderautoliker2 associated to the web domain
facebook.com: Tinder is a dating app that needs Facebook creden-
tials to authenticate the user, while TinderAutoLiker is an app
available on alternative markets that automates some actions on
Tinder services. It is also worth noting that the crowdsourced map-
ping contains errors, like invalid domains, domains with typos, and
IP addresses belonging to local networks.

Exploitation. To exploit the first mapping strategy, the attacker
can create an app with a package name beginning with the reverse
of the target domain name. For example, we created an app with
package name com.facebook.evil and we were able to upload it to
the Play Store without problems: when the user opens this app,
LastPass automatically suggests credentials related to facebook.com.

From the conceptual point of view, an attacker could exploit
the second mapping as well. In fact, if the attacker is able to inject
an arbitrary association, she can directly indicate to LastPass that,
for example, her own package name should be associated to, say,
facebook.com. For the sake of completeness, we tried to share with
LastPass an association from one of our package name app to one of
our test websites. However, this association did not become public
to all users. We assume that LastPass make these “new” associations
available to all its users only when a number higher than a threshold
suggested them. An attacker could try to create a high number of
fake accounts and to automatically share these fake associations.
However, we have opted not to do it for ethical reasons. Moreover,
an attacker can already game LastPass suggestion mechanism by
exploiting the first mapping.

5.5 1Password
1Password has been installed by more than one million users and
it supports a11y, Autofill Framework and OpenYOLO. Differently
from previously analyzed PMs, 1Password organizes its entries in
categories (e.g., credit card, database, driver license, login, wire-
less router, etc.). We focused on the login category. Once the user
selects a form, 1Password behaves differently with respect to the
supporting methodology: on Autofill Framework, it shows a small
windows bearing the imprint “Autofill with 1Password”. Clicking
on it, the user must insert the 1Password master password and
search through all its previously saved credentials. With a11y, it
directly loads the windows for searching among credentials. Al-
beit 1Password adopts the OpenYOLO library, the implementation
contains just a stub that always returns empty credentials.

Mapping. 1Password does not provide any mapping, but it trivially
suggests each stored credential through a searchable list, delegating
the choice to the user. In other words, it is possible to autofill any
requesting app with any stored credential.

Exploitation. The exploitation of 1Password was straightforward
and did not require any further customization of the app. However,
this attack is less practical than the other ones as the attacker does
not have fine-grained control over the list of credentials that are
auto-suggested.

5.6 Google Smart Lock
Google Smart Lock (GSL) is part of Google Play Services for An-
droid. It was created to automatically keep the device locked when
the user is not around and unlock it when specific user-defined con-
straints are met. For instance, the user can choose to have her device
unlocked according to the presence of specific wireless connections,
trusted locations, or when it recognizes the user’s face or voice, or
while the user is carrying the device. GSL has been equipped with
the PM originally integrated into the Chrome browser. For this rea-
son, GSL also offers a password-saving feature, taking advantage of
Autofill Framework (which works just with compatible apps), and
a synchronization mechanism with the Chrome desktop browser.

Mapping. We believe that GSL mapping is securely implemented.
However, the burden of mapping creation is delegated to the devel-
oper who has to provide all the necessary information to Google.
In particular, the official documentation describes a multi-step pro-
cess [25]. From the technical standpoint, this process is based on
Digital Asset Links [19], through which an app can be verifiably
linked to a website (see Section 4.3, “Secure mapping”). However,
this procedure is not fully automated, and developers are requested
to fill a Google Form manually and to provide a set of information.
We argue that such a process hardly scales, as it is centralized and
it requires the manual intervention of the developer. To improve
the current approach, Google should push the Digital Asset Links
adoption and verify that it is correctly implemented. Moreover, we
believe that Google would greatly benefit the community if it could
make its current mapping database publicly available.

6 INSTANT APPS FOR FULL UI CONTROL
The attacks presented so far require a malicious app to be installed
on the victim’s device. This section discusses how this prerequisite
can be waived by abusing the recently introduced Instant Apps. This
technology, implemented by Google, allows users to “try” Android
apps at the touch of a click, without the need for a full installation.

This mechanism works in several steps. First, the developer
builds an Instant App, a small-but-functional version of her app,
and she uploads it to the Play Store. The developer is also asked
to associate a URL pattern to it (pointing to a domain name she
controls). The idea is that when the user browses to a URL satis-
fying this pattern, the Android framework starts the process of
downloading and running the Instant App associated with it. Of
course, for security reasons, the app developer needs to first prove to
Google that she controls the target domain name. This is carried out
through a multi-step procedure called App Link Verification [29],
which relies on Digital Asset Links [19] protocol (this makes possi-
ble to associate an app with a website and vice versa, via verifiable
statements).

From the developers and users’ usability perspective, Instant
Apps is a great feature as it significantly lowers the friction for a
user to test (and possibly fully install) an app. However, from the

security point of view, Instant Apps provide a venue for attackers to
greatly facilitate phishing attacks.

The key observation is that Instant Apps allow an attacker to
move from web phishing to mobile phishing. Nowadays, web phish-
ing is significantly more challenging than mobile phishing. On
the web, the user can clearly see which website she is interacting
with: she has the chance to check the domain name, whether the
connection is done via HTTPS, and whether there is a valid SSL
certificate. In the mobile world, however, there are no such indica-
tors. In fact, as previous works have pointed out [8, 9, 38], there is
currently no “green lock” or any space for any trusted indicator:
these previous works have shown that a malicious app spoofing
the Facebook UI can be made indistinguishable from the legitimate
Facebook app—even for a security-savvy user. The key requirement
for these pixel-perfect attacks is the ability to control all the pixels
on the screen. A website cannot achieve that, but an attacker can
use Instant Apps to do just that: gain code execution on the device
outside the browser’s JavaScript sandbox and gain the ability to
fully control the UI (without requesting any permission).

Once the attacker has gained full UI control, there are many
possibilities. One first example is that the Instant App could resem-
ble the real Facebook app, which can be made indistinguishable
from the legitimate one. A second example would be to resemble the
browser app itself : as the attacker controls every pixel of the screen,
nothing prevents her from showing the user a browser-like view
with a spoofed facebook.com domain name and a green lock. Once
again, this attack can be made indistinguishable from a legitimate
scenario.

7 PRACTICAL PHISHING ATTACKS
The password managers flaws and Instant Apps “features” we have
highlighted thus far are independent of each other. However, we
found that for what concerns phishing attacks, these two tech-
nologies are, in fact, complementary. In fact, we have shown that
password managers can be tricked into revealing users’ credentials,
but these attacks require a malicious app (with an attacker-chosen
package name) to be installed on the victim’s phone: Instant Apps
can be used to do just that.

We have found that Instant Apps, although they are not fully
installed apps, do appear as they were to the Android framework
and the components relying on it. The key insight is that even if
the Instant App is not fully installed, the app somehow lives on the
Android device, and its package name, application name, and icon
are attacker-controlled (they are, in fact, the same as its associated
full app on the Play Store). To make it worse, password managers
currently do not notice the difference between full and Instant Apps,
and they can thus be tricked to leak credentials even to them.

To make things worse, we have found that current password
managers autofill hidden fields as well. This yet another “feature”
that opens the possibility for a stealthy and practical end-to-end
phishing attack, which we describe next.

7.1 End-to-end proof-of-concept
Consider a scenario where the user visits a website showing a
spoofed Facebook “like” button, as in Figure 3a. Such button links
to an attacker-controlled URL that is associated with her Instant

(a) Phishing website (b) Instant App popup

(c) Instant App loading (d) LastPass is tricked

Figure 3: Instant Apps phishing attack PoC

App. Once the user clicks on the like button, the Instant Apps
mechanism is triggered: the popup asking the user confirmation
to start the Instant App is shown, as in Figure 3b. This popup
shows the application name and the icon, which, however, are fully
attacker-controlled. The reader can see from Figure 3b how it is
easy to mislead the user: for this PoC we used “Open With” as
the name of the app and a fully white square as the app’s icon
(“showed” on the left of the application name). Upon the user’s
click on the “Open app” button, the Instant App is automatically
downloaded, while the user is shown for few moments (about one
second) the view in Figure 3c. At this point, the malicious Instant
App is running on the user’s device, as shown in Figure 3d. At this

point, since our app was created with a package name following
the com.facebook.* pattern (see Section 5.4), LastPass is tricked to
automatically suggest the real Facebook credentials to the user:
With a click on the autofill popup, the full credentials are leaked to
the attacker.

We note that our app is a clearly “fake” Facebook app, just for
clarity sake and for ethical and copyright concerns: as this is a “live”
PoC (to test the Instant Apps we needed to publish it to the Play
Store), we preferred to avoid having a real spoofed Facebook UI.

Practicality considerations.We have shown how the user can be
lured to leak her credentials in just a few clicks. We also note that
the click on “Open app” (3b) and the “Loading” view (3c) are only
shown the first time. That is, an attacker could make this attack
even more practical by luring the user to approve and download
the Instant App beforehand and for phishing-unrelated, seemingly
innocuous reasons, to then make the transition from “Click to the
like button” to “Spoofed Facebook UI” really seamless. We believe
this attack strategy significantly lowers the bar, with respect to
all known phishing attacks on the web and mobile devices: to the
best of our knowledge, this is the first attack that does not assume
a malicious app already installed on the phone and that does not
even require the user to insert her credentials. These attacks are
strictly more practical than all currently known mobile phishing
works [8, 9, 18, 38].

7.2 Hidden Password Fields
We have carried out further experiments with the aim of assessing
whether current mobile password managers are vulnerable to auto-
matically filling hidden fields. We refer to fields as hidden if the field
is, for one reason or another, not visible to a user. This is relevant
because an attacker could create a form with a username field and
a hidden password field: if the victim uses her password manager
to autofill this form, her password will be silently leaked to the
attacker. This is similar to what previous research has attempted
with web-based password managers [39]: To the best of our knowl-
edge, we are the first to show that these attacks work with mobile
password managers as well. For this work, we considered four dif-
ferent techniques to make a password-related EditText seemingly
invisible: 1) transparency, 2) small size, 3) same-color background
and foreground, and 4) the invisible flag.

Transparency. To create a transparent EditText in Android, it
is possible to set its alpha value accordingly (via the setAlpha()
API). We note that if the alpha value is set to zero, both the a11y
and Autofill Service cannot autofill the EditText because it is not
visible anymore. However, setting an alpha value of 0.01 is enough
to keep the field invisible and make the autofill mechanisms work.

Small size. One other venue to make a field invisible to the human
eye is to make it very small. We found that password managers
autofill password fields even if their size is 1dp× 1dp, independently
from whether they are using a11y or Autofill Service.

Same-color background and foreground. If the text color is the
same of the background color, the field (and its content) will not
be visible. This technique works well with a11y. However, unex-
pectedly, it is not enough to trick Autofill Service. In fact, upon
autofilling, the Autofill Service would overlay the autofilled fields

with a yellow overlay, thus making the hidden field visible to the
user. However, it would be possible for an attacker to create in-app
overlays (which do not require additional permissions) to cover this
yellow overlay, thus making this artifact not visible to the user.

Invisible flag. It is possible to make a field hidden by setting its
visibility to View.INVISIBLE. We found that a11y-based password
managers do not autofill these “invisible” fields, but those ones
using Autofill Service do so.

Discussion.We believe these additional techniques make end-to-
end phishing attacks even more practical and problematic. While
the unsuspecting user will use password managers and instant apps
to quickly provide her email address or username, her credentials
could be silently leaked to the attacker, with only few clicks. We
also note that while some of the above techniques are not working
with both a11y and Autofill Service, there is nothing preventing an
attacker to combine these techniques at her will and adapt given
the attack scenario. Finally, we note that these password-stealing
attacks are possible only because current password managers imple-
ment a vulnerable mapping algorithm: without such vulnerability,
no credentials can ever be leaked to non-legitimate apps.

8 A SECURE-BY-DESIGN API
We believe that the attacks presented in this paper are due to design
problems of the current mechanisms to support autofill, from a11y,
to the more recent Autofill Framework and OpenYOLO. The key
design issue is that all these mechanisms use package names as
the main abstraction to work with, thus leaving developers of pass-
word managers with the daunting task of mapping apps to their
associated domain names. Given the number of security issues and
misplaced trust assumptions we have identified in leading password
managers, we believe third-party developers should not be asked
to implement this critical step.

The getVerifiedDomainNames()API.We propose a newAPI that
implements a secure-by-design mechanism by using domain names
as the only abstraction that password managers need to interact
with. Since credentials are created for websites, we argue this is a
better abstraction level. In stark difference concerning existing pro-
posals, this API, called getVerifiedDomainNames(), would directly
provide to password managers a list of domain names that a given
app is legitimately associated to. The API internal implementation
would then be responsible for performing all the needed security
checks. We envision this API to be used following the paradigm
of OpenYOLO (as in Figure 2). The main difference is that pass-
word managers would directly query for domain names, and not
for package names.

Integration and implementation. The request for auto-filling a
form follows several steps. First, the client sends an Intent to the
password manager to request credentials. Then, the password man-
ager can invoke getVerifiedDomainNames(), passing the received
Intent as argument. At this point, our API performs a number of
steps, whose sequence diagram is depicted in Figure 4. First, it re-
trieves the sender’s package name from the Intent. The package
name is used to extract the client’s app signing key. Then, getVeri-
fiedDomainNames() extracts from the client’s manifest file the list
of domain names the app claims to have access to (this list should

Client Credential Provider Package Manager Website

startActivityForResult(intent, ...)

(1) getPackageName(Intent) : String

packageName

(2) getSignature(String) : Signature

clientSignature

(3) getAssetStatements(String) : URL

targetWebsite

(4) downloadAssetLink(URL) : File

assetLinksJson

(5) checkAndGetDomain(String, Signature, File)

verifiedDomainName

getVerifiedDomainNames(Intent) : URLgetVerifiedDomainNames(Intent) : URL

queryDB(URL) : Credential

verifiedCredentials

onActivityResults(..., intentWithCredentials)

Figure 4: getVerifiedDomainNames() API sequence diagram

be specified according to the standard App Link Verification [29]
and Digital Asset Links [19] protocols). The API internally down-
loads, for each of these domain names, the associated DAL file
(assetlinks.json) and it verifies that the requesting app (package
name + hash of the app signing key) is listed in it. The API includes
in its return value to the password manager the list of all domain
names that satisfy such security checks. Given these domain names,
the PM can then safely query its internal database for associated
credentials and send them back to the requesting client.

Avoiding side-channel vulnerabilities. We have noticed that
the current OpenYOLO client implementation opens apps to side
channel attacks. In particular, the current implementation sends a
Broadcast Intent to request credentials from the credential provider,
thereby making all other apps aware of such request. A malicious
app can use this side-channel to infer that the user is about to login
in a specific account: this information can be used for the attacker
to know when to spawn its spoofed phishing UI [8, 9, 38]. Even if
side channels are not required to mount phishing attacks [4], they
do make them easier. For this reason, we argue that the communi-
cation between the client and the credential provider must remain
confidential—not only the content, but even the mere fact that this
communication is taking place. To this end, we believe that each

client should have access to a (configurable) list of trusted password
managers apps (e.g., Dashlane, LastPass, . . .), so that explicit intents
can be used instead of broadcast intents. This list could be stored as
pairs of package names and hash of signing keys. This is analogous
to what browsers do with trusted certificates.

Practicality of adoption. Independently from the API we pro-
pose, we were interested in determining how ready the ecosystem
is in terms of information required to build a secure app-to-web
mapping. Given that the current standard is DAL, we set to ana-
lyze the adoption rate by querying a dataset of domain names for
their related assetlinks.json DAL file. As a dataset, we considered
all domain names from all mapping we extracted from the pass-
word managers we have inspected. This list is constituted by 8,821
domain names. Note that since they are extracted from password
managers, we know that these domain names host at least one page
with a login form, thus making them relevant to our analysis.

To our surprise, only 8% (710/8,821) of them host an associated
DAL file, and only 2% (178/8,821) specify an Android app in ac-
cordance with Google documentation [23]. This low adoption rate
is worrisome: password managers would have compatibility prob-
lems in securely implementing their solution even if they were fully
aware of the problems discussed in this paper. Google Smart Lock
has addressed these problems by not relying on a fully automatic
technique (developers need to manually fill a Google form) and by
supporting app-to-web sync only when a secure mapping exists.
We argue that the rest of password managers should follow a simi-
lar approach and warn the user about potential problems when a
secure app-to-web association cannot be established.

9 RELATEDWORK
Phishing is a well-known problem and it has received the atten-
tion of the security community for several years. In the realm of
mobile devices, there have been a number of works focusing on
task hijacking [9, 16, 38], and UI confusion [4, 8]. We built on the
insights provided by these works and we have shown how features
implemented for convenience can make mobile phishing attacks
significantly more practical than what previously thought: we do
not assume a malicious app is already running on the victim’s de-
vice and, for the first time, the user is not even required to type her
credentials. Few works also proposed defense mechanisms for mo-
bile phishing [8, 17], which are unfortunately not finding adoption
due to the invasive framework modifications they require. Another
interesting research direction is the automatic identification of app
widgets that contain user’s sensitive info [7, 30, 36].

The problem of phishing has also been extensively studied in the
browser context [10, 13, 32]. In this context, protection mechanisms
are usually implemented in forms of blacklist [27].

Another class of UI-related attacks is tapjacking (also called click-
jacking). Some works have shown how an attacker can abuse the
overlay system to lure users into unknowingly perform security-
sensitive operations [18, 37, 44]. Other works show how accessibil-
ity service can be abused to bypass user interaction and perform
UI-related attacks [5, 6, 18, 31, 34, 35, 43]. These are very powerful
attacks, but they differ from phishing: they are about luring a user
to perform a sensitive operation, while phishing focuses on luring
them to leak their credentials.

A few recent works have focused on the security analysis of
browser password managers [33, 42]. In those works, the authors
conduct a security analysis of popular web-based password man-
agers, and some of them were found exploitable, allowing an at-
tacker to leak user credentials. The root-causes of the vulnerabilities
were ranging from logic and authorization mistakes to traditional
web vulnerabilities like CSRF and XSS. Our work, instead, focuses
on mobile password managers. We also note that we have not fo-
cused on identifying classic implementation bugs, but we aimed at
uncovering systemic design issues.

Silver et al. show several attacks aimed at retrieving passwords
from in-browser PMs, by exploiting their autofill policies [40]; the
most powerful attack they uncovered does not require any human
intervention and it allows to automatically auto-complete password
fields. Several prior works show how combining innocuous visi-
ble fields and sensitive invisible fields trigger PMs to autofill, and,
consequently, provide sensitive information to the attacker [11, 12].
This is similar to our experiment with hidden password EditText
widgets.

For what concern the security of Android password managers,
the work by Fahl et al. is one of the few in the area [15]: in this
paper, the authors studied 21 popular password managers and show
how password managers would somehow push users to “copy” their
passwords to their clipboard: this has security implications since the
device clipboard can be accessed by any app installed on the user’s
device. Interestingly, we note that password managers using a11y
or Autofill Service are not affected by these problems: passwords
shared via these “modern” features do not go through the clipboard.
However, our paper, unfortunately, shows that even these modern
mechanisms are affected by security problems as well.

10 CONCLUSIONS
In this paper, we carried out a security assessment of two recent
Android features, originally introduced in the name of convenience.
The number of design issues and the variety of vulnerable heuris-
tics that we have identified in leading password managers suggest
that the insights offered in this paper are not well-understood by
the community. The possibility of abusing Instant apps and hidden
fields make these attacks even more problematic and practical. We
believe that our proposed API would prevent this class of prob-
lems from being introduced and, at the very least, would force
password managers developers to critically think about the various
challenges. That being said, although a technical solution certainly
exists, we believe that password managers developers cannot solve
this problem alone, but there is the need of a push from the entire
community, which this paper hopes to inspire.

DISCLOSURE AND ACKNOWLEDGMENTS
We have responsibly disclosed our findings to the security teams of
the password managers we found vulnerable. We would like to ac-
knowledge their quick and professional handling of the matter. The
affected vendors are in the process of deploying countermeasures.
We would also like to acknowledge Betty Sebright: despite the pass-
ing of time, she and her team are still a significant motivating factor
for our research.

REFERENCES
[1] 2018. 1Password. https://1password.com/. (2018).
[2] 2018. Dashlane. https://www.dashlane.com/. (2018).
[3] 2018. LastPass. https://www.lastpass.com/. (2018).
[4] Efthimios Alepis and Constantinos Patsakis. 2017. Trapped by the UI: The

Android Case. In RAID.
[5] Yair Amit. 2016. 95.4 Percent of All Android Devices Are Suscepti-

ble to Accessibility Clickjacking Exploits. https://www.skycure.com/blog/
95-4-android-devices-susceptible-accessibility-clickjacking-exploits/. (2016).

[6] Yair Amit. 2016. “Accessibility Clickjacking” — The Next Evolution in Android
Malware that Impacts More Than 500 Million Devices. https://www.skycure.
com/blog/accessibility-clickjacking/. (2016).

[7] Benjamin Andow, Akhil Acharya, Dengfeng Li, William Enck, Kapil Singh, and
Tao Xie. 2017. UiRef: analysis of sensitive user inputs in Android applications. In
WISEC.

[8] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio, Christo-
pher Kruegel, and Giovanni Vigna. 2015. What the App is That? Deception and
Countermeasures in the Android User Interface. In Proc. of the IEEE Symposium
on Security and Privacy.

[9] Qi Alfred Chen, Zhiyun Qian, and Z Morley Mao. 2014. Peeking Into Your App
Without Actually Seeing It: UI State Inference and Novel Android Attacks. In
Proc. of the USENIX Security Symposium.

[10] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and J. C. Mitchell. 2004. Client-
side defense against web-based identity theft. In Proceedings of the 11th Annual
Network and Distributed System Security Symposium (NDSS).

[11] Mark Coppock. 2017. Your browser might be filling in hidden fields
and giving away your secrets. https://www.digitaltrends.com/computing/
browser-bug-can-fill-in-personal-information-in-hidden-fields/. (2017).

[12] Joost de Valk. 2013. Why you should not use autocomplete. https://yoast.com/
autocomplete-security/. (2013).

[13] Rachna Dhamija and J. D. Tygar. 2005. The Battle Against Phishing: Dynamic
Security Skins. In Proceedings of the Symposium On Usable Privacy and Security
(SOUPS). ACM, New York, NY, USA, 77–88. https://doi.org/10.1145/1073001.
1073009

[14] Artyom Dogtiev. 2018. Facebook Revenue and Usage Statistics. http://www.
businessofapps.com/data/facebook-statistics/. (2018).

[15] Sascha Fahl, Marian Harbach, Marten Oltrogge, Thomas Muders, and Matthew
Smith. 2013. Hey, You, Get Off of My Clipboard. In International Conference on
Financial Cryptography and Data Security. Springer.

[16] Adrienne Porter Felt and David Wagner. 2011. Phishing on Mobile Devices. In
Proc. of IEEE Workshop on Web 2.0 Security & Privacy (W2SP).

[17] Earlence Fernandes, Qi Alfred Chen, Justin Paupore, Georg Essl, J Alex Halder-
man, Z Morley Mao, and Atul Prakash. 2016. Android UI Deception Revisited:
Attacks and Defenses. In Proc. of Financial Cryptography and Data Security (FC).

[18] Yanick Fratantonio, Chenxiong Qian, Pak Chung, and Wenke Lee. 2017. Cloak
and Dagger: From Two Permissions to Complete Control of the UI Feedback
Loop. In Proceedings of the IEEE Symposium on Security and Privacy (S&P).

[19] Google. 2017. Digital Asset Links. https://developers.google.com/
digital-asset-links/v1/getting-started. (2017).

[20] Google. 2017. OpenYOLO for Android. https://openid.net/specs/
openyolo-android-03.html. (2017).

[21] Google. 2018. Accessiblity Service. https://developer.android.com/guide/topics/
ui/accessibility/services. (2018).

[22] Google. 2018. Autofill Framework. https://developer.android.com/guide/topics/
text/autofill. (2018).

[23] Google. 2018. Enable automatic sign-in across apps and websites.
https://developers.google.com/identity/smartlock-passwords/android/
associate-apps-and-sites/. (2018).

[24] Google. 2018. Google Smart Lock. https://get.google.com/smartlock/. (2018).
[25] Google. 2018. Google Smart Lock - Associate apps and sites. https://developers.

google.com/identity/smartlock-passwords/android/associate-apps-and-sites.
(2018).

[26] Google. 2018. Keeper. https://keepersecurity.com/. (2018).
[27] Google. 2018. Safe Browsing. http://www.google.com/transparencyreport/

safebrowsing/. (2018).
[28] Google. 2018. Smart Lock for Passwords affiliation form. https://docs.google.

com/forms/d/e/1FAIpQLSc3FCn8ccGpgXd1jtLBVRlNJ6EhWQK50hNO5jT_
9nuqHI79pg/viewform. (2018).

[29] Google. 2018. Verify Android App Links. https://developer.android.com/training/
app-links/verify-site-associations/. (2018).

[30] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu
Zhang, and Guofei Jiang. 2015. SUPOR: Precise and Scalable Sensitive User Input
Detection for Android Apps. In USENIX Security Symposium.

[31] Yeongjin Jang, Chengyu Song, Simon P Chung, Tielei Wang, and Wenke Lee.
2014. A11y Attacks: Exploiting Accessibility in Operating Systems. In Proc. of
the Conference on Computer and Communications Security (CCS).

[32] E. Kirda and C. Kruegel. 2005. Protecting users against phishing attacks with
AntiPhish. In Proceedings of the Computer Software and Applications Conference
(COMPSAC), Vol. 1. 517–524 Vol. 2. https://doi.org/10.1109/COMPSAC.2005.126

[33] Zhiwei Li, Warren He, Devdatta Akhawe, and Dawn Song. 2014. The Emperor’s
New Password Manager: Security Analysis of Web-based Password Managers..
In USENIX Security Symposium. 465–479.

[34] Lookout. 2015. Trojanized adware family abuses accessibility service to
install whatever apps it wants. https://blog.lookout.com/blog/2015/11/19/
shedun-trojanized-adware/. (2015).

[35] Spandas Lui. 2016. Accessibility Service Helps Malware Bypass An-
droid’s Beefed Up Security. http://www.lifehacker.com.au/2016/05/
accessibility-service-helps-malware-bypass-androids-beefed-up-security/.
(2016).

[36] Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu, and Xiaofeng
Wang. 2015. UIPicker: User-Input Privacy Identification in Mobile Applications.
In USENIX Security Symposium.

[37] Marcus Niemietz and Jörg Schwenk. 2012. UI Redressing Attacks on Android
devices. Black Hat Abu Dhabi (2012).

[38] Chuangang Ren, Yulong Zhang, Hui Xue, Tao Wei, and Peng Liu. 2015. Towards
Discovering and Understanding Task Hijacking in Android. In Proc. of USENIX
Security Symposium.

[39] Ricardo MartÃŋn RodrÃŋguez. 2013. How to take advantage of Chrome aut-
ofill feature to get sensitive information. https://blog.elevenpaths.com/2013/10/
how-to-take-advantage-of-chrome.html. (2013).

[40] David Silver, Suman Jana, Dan Boneh, Eric Yawei Chen, and Collin Jackson.
2014. Password Managers: Attacks and Defenses. In USENIX Security Symposium.
449–464.

[41] Statista. 2018. Percentage of all global web pages served to mobile
phones from 2009 to 2018. https://www.statista.com/statistics/241462/
global-mobile-phone-website-traffic-share/. (2018).

[42] Ben Stock and Martin Johns. 2014. Protecting Users Against XSS-based Pass-
word Manager Abuse. In Proceedings of the 9th ACM symposium on Information,
computer and communications security. ACM, 183–194.

[43] Dinesh Venkatesan. 2016. Malware may abuse AndroidâĂŹs
accessibility service to bypass security enhancements.
http://www.symantec.com/connect/blogs/malware-may-abuse-android-s-
accessibility-service-bypass-security- enhancements. (2016).

[44] Longfei Wu, Benjamin Brandt, Xiaojiang Du, and Bo Ji. 2016. Analysis of click-
jacking attacks and an effective defense scheme for Android devices. 2016 IEEE
Conference on Communications and Network Security (CNS) (2016), 55–63.

https://1password.com/
https://www.dashlane.com/
https://www.lastpass.com/
https://www.skycure.com/blog/95-4-android-devices-susceptible-accessibility-clickjacking-exploits/
https://www.skycure.com/blog/95-4-android-devices-susceptible-accessibility-clickjacking-exploits/
https://www.skycure.com/blog/accessibility-clickjacking/
https://www.skycure.com/blog/accessibility-clickjacking/
https://www.digitaltrends.com/computing/browser-bug-can-fill-in-personal-information-in-hidden-fields/
https://www.digitaltrends.com/computing/browser-bug-can-fill-in-personal-information-in-hidden-fields/
https://yoast.com/autocomplete-security/
https://yoast.com/autocomplete-security/
https://doi.org/10.1145/1073001.1073009
https://doi.org/10.1145/1073001.1073009
http://www.businessofapps.com/data/facebook-statistics/
http://www.businessofapps.com/data/facebook-statistics/
https://developers.google.com/digital-asset-links/v1/getting-started
https://developers.google.com/digital-asset-links/v1/getting-started
https://openid.net/specs/openyolo-android-03.html
https://openid.net/specs/openyolo-android-03.html
https://developer.android.com/guide/topics/ui/accessibility/services
https://developer.android.com/guide/topics/ui/accessibility/services
https://developer.android.com/guide/topics/text/autofill
https://developer.android.com/guide/topics/text/autofill
https://developers.google.com/identity/smartlock-passwords/android/associate-apps-and-sites/
https://developers.google.com/identity/smartlock-passwords/android/associate-apps-and-sites/
https://get.google.com/smartlock/
https://developers.google.com/identity/smartlock-passwords/android/associate-apps-and-sites
https://developers.google.com/identity/smartlock-passwords/android/associate-apps-and-sites
https://keepersecurity.com/
http://www.google.com/transparencyreport/safebrowsing/
http://www.google.com/transparencyreport/safebrowsing/
https://docs.google.com/forms/d/e/1FAIpQLSc3FCn8ccGpgXd1jtLBVRlNJ6EhWQK50hNO5jT_9nuqHI79pg/viewform
https://docs.google.com/forms/d/e/1FAIpQLSc3FCn8ccGpgXd1jtLBVRlNJ6EhWQK50hNO5jT_9nuqHI79pg/viewform
https://docs.google.com/forms/d/e/1FAIpQLSc3FCn8ccGpgXd1jtLBVRlNJ6EhWQK50hNO5jT_9nuqHI79pg/viewform
https://developer.android.com/training/app-links/verify-site-associations/
https://developer.android.com/training/app-links/verify-site-associations/
https://doi.org/10.1109/COMPSAC.2005.126
https://blog.lookout.com/blog/2015/11/19/shedun-trojanized-adware/
https://blog.lookout.com/blog/2015/11/19/shedun-trojanized-adware/
http://www.lifehacker.com.au/2016/05/accessibility-service-helps-malware-bypass-androids-beefed-up-security/
http://www.lifehacker.com.au/2016/05/accessibility-service-helps-malware-bypass-androids-beefed-up-security/
https://blog.elevenpaths.com/2013/10/how-to-take-advantage-of-chrome.html
https://blog.elevenpaths.com/2013/10/how-to-take-advantage-of-chrome.html
https://www.statista.com/statistics/241462/global-mobile-phone-website-traffic-share/
https://www.statista.com/statistics/241462/global-mobile-phone-website-traffic-share/

	Abstract
	1 Introduction
	2 Background
	3 Android Password Managers
	4 Web and Mobile Apps Worlds
	4.1 The Mapping Problem
	4.2 Attacker Practicality Aspects
	4.3 Vulnerable Mappings

	5 Case Studies
	5.1 Methodology
	5.2 Keeper
	5.3 Dashlane
	5.4 LastPass
	5.5 1Password
	5.6 Google Smart Lock

	6 Instant Apps for Full UI Control
	7 Practical Phishing Attacks
	7.1 End-to-end proof-of-concept
	7.2 Hidden Password Fields

	8 a Secure-by-Design API
	9 Related Work
	10 Conclusions
	References

