

HIGHTS: towards sub-meter positioning accuracy in vehicular networks

Jérôme Härri (EURECOM) on Behalf of HIGHTS ETSI ITS Workshop March 6-8, 2018

HIGHTS Associated Member Group

15 AMG partners from 7 countries

11 Companies, 2 Universities, 1 Public Institute

Acknowledgements

- Whole HIGHTS team for their support and feedback in preparing this work
 - In particular Nil Garcia (Chalmers), Benoît Denis (CEA-LETI), Ronald Raulefs (DLR), Paul Spaaderman (PSConsultancy) with supporting slides

Some Applications in ITS Requiring High Precision Positioning

- Road Hazard Warning
- Safety of vulnerable road users
- Autonomous driving
- Platooning
- Cooperative adaptive cruise control
- Lane merge assistance
- Automated parking
- Emergency vehicle approaching
- Signal violation / Intersection Safety
- Traffic signal priority request by designated vehicles
- Green Light Optimal Speed Advisory (GLOSA)
- Probe vehicle data
- Information on fueling & charging stations for alternative fuel vehicles
- On street parking management & information
- Park & Ride information
- Traffic information & Smart routing

H2020 HIGHTS Project

Today's Positioning Accuracy

Where am I?

- Absolute positioning
- GNSS geo-location providing a positioning precision of the order of 2-7 meters in favorable conditions.
 - Favorable access to at least 4 satellites

Where am I compared to others?

- Relative positioning
- UWB, Radar, LIDARs ranging providing sub-meter accuracy in the order of 10 cm (at short distance).

Technical Objectives of HIGHTS

Technical Objectives of HIGHTS

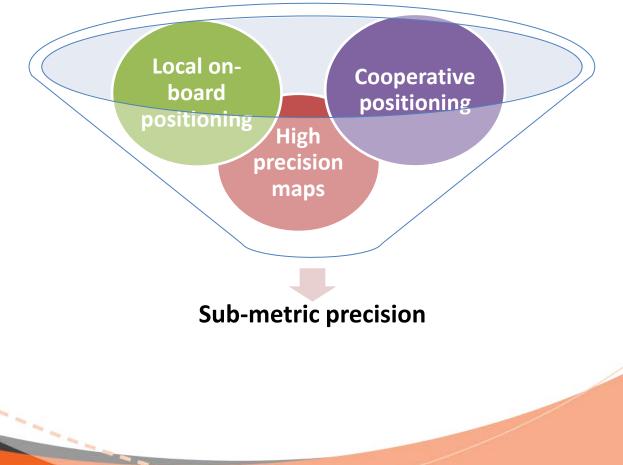
• HIGHTS aims at providing up to a 0.25m precision in all vehicular traffic conditions.

Highly accurate dynamic map leveraging from GNSS

- Technological enablers to provide highly accurate dynamic maps (GNSS, sensors, radars, LIDARs, ITS-G5, etc)
- Enhanced precision through crowd sensing (between cars)
- Integrate into the LDM, new POTI message

Innovative solution for safety application and warning

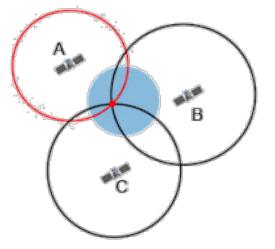
 HIGHTS will address two prominent use cases: Highly Autonomous Driving (HAD) and Safety of Vulnerable Traffic Users

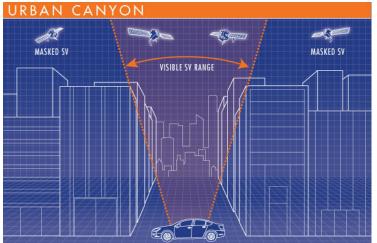

Support for European Wide Service Platforms (EWSP).

- Technological enabler for a service layer (called facilities in ETSI TC ITS)
 - Participate to the EU-wide standardization (ETSI, CEN, ISO, IEEE)

Enabling High Precision Ubiquitous Positioning

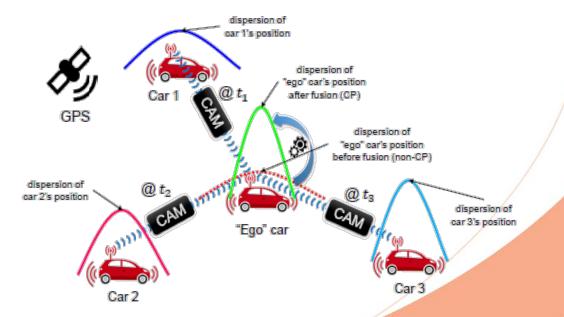
• What's the "magic" behind the 25 cm?




-

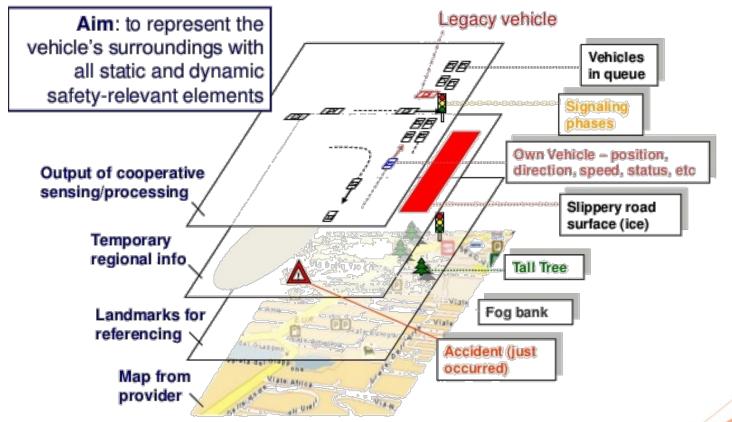
H2020 HIGHTS Project

Local on-Board Positioning



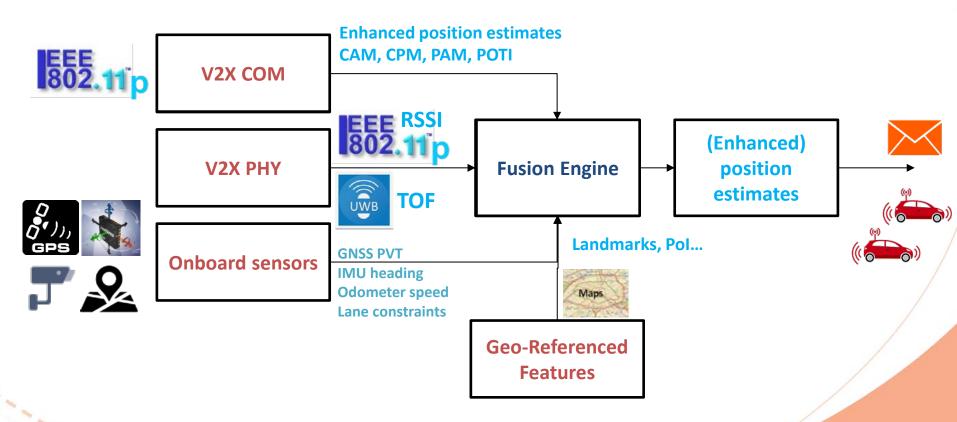
- On-board positioning
 - Typically GNSS (e.g., GPS)
 - Trilateration using pseudoranges from satellites
 - From 7 to 2 m
- Challenges
 - Signal easily blocked on urban canyons
 - Dynamic environment causes changing multipath propagation (reflections)
 - Multipath propagation induces significant positioning errors and ambiguities

Cooperative Positioning



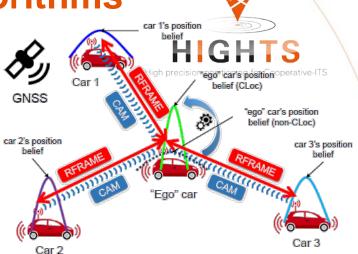
- Current research based on ITS-G5 or "vehicular Wi-Fi"
- Trilateration using ranges betwen vehicles
- More vehicles better precision
- Challenges:
 - Complex fusion
 - Careful neighbor selection
 - Highly dynamic V2V channel (e.g., Urban)
 - Multipath propagation
 - Correlated shadowing

Local Dynamic Maps (LDM)



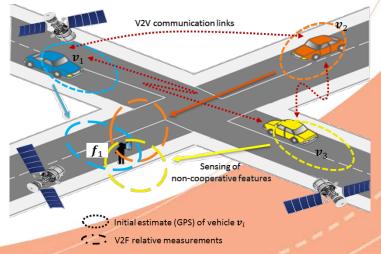
12

HIGHTS Positining - Input Systems

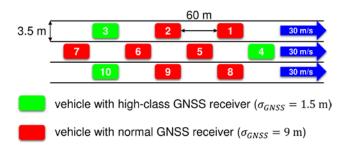

13

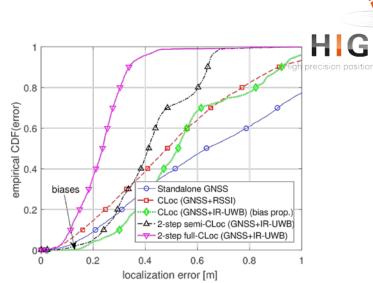
-

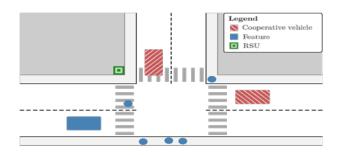
Selected High Positioning Algorithms

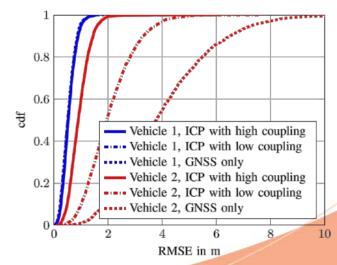

- V2X-enhanced GNSS (ITS-G5 + IR-UWB + GNSS +...)
 - Cooperative particle-based fusion integrating:
 - Virtual anchors' positions (data in ITS-G5 CAMs)
 - V2V RT-ToF (IR-UWB) or V2V RSS (out of received CAMs)
 - On-board GNSS (various classes) and sensors (inertial unit, camera-based lane detector...)

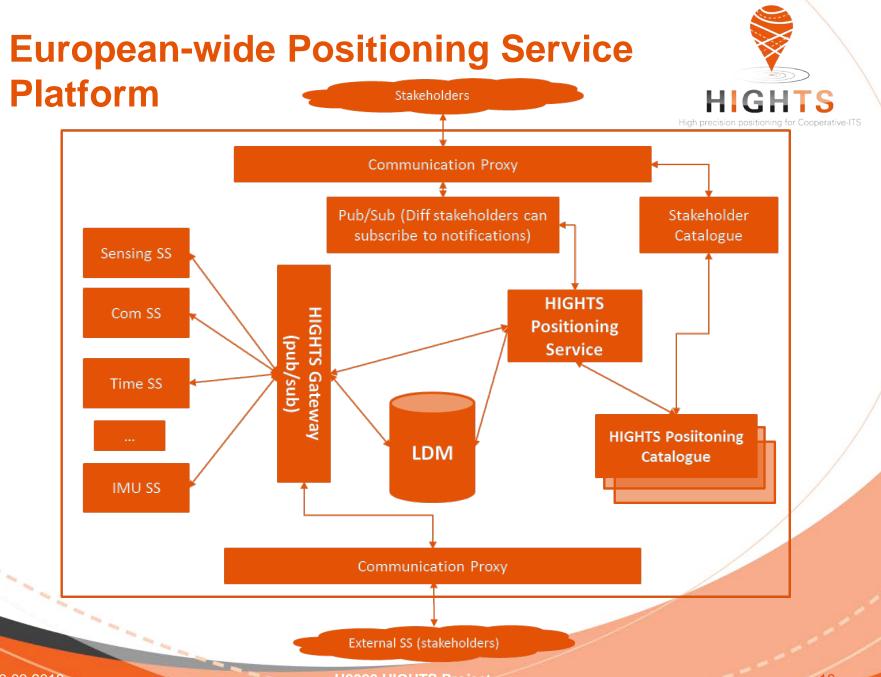
• Mitigation of harmful effects inherent to cooperative particle-based hybrid data fusion (overconfidence in high-dimensional cooperative fusion filters and error propagation)


> Drawing max. gains from accurate relative V2V ranging (e.g., IR-UWB within 0.2m) and make it global


- Implicit Cooperative Positioning (ICP)
 - Joint estimation of sensed features' and sensing vehicles' positions without V2V measurements
 - Initial positions via GPS
 - Distributed Gaussian message passing + Consensus (for features' beliefs and outgoing messages)
 - → "Ego" loc RMSE improvement in urban canyons (depending on nb of features)

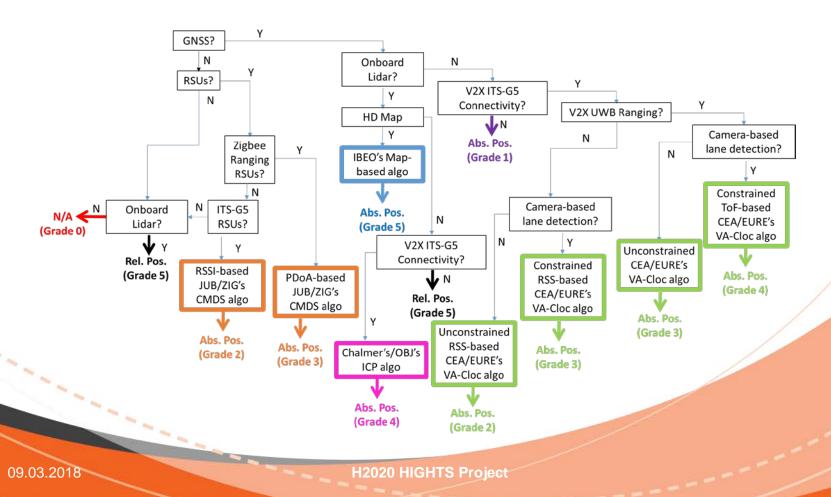

Selected Results


 V2X-enhanced GNSS (ITS-G5 + IR-UWB + GNSS +...)



Implicit Cooperative Positioning (ICP)

09.03.2018


H2020 HIGHTS Project

16

Selecting optimal Positioning Algorithm

European-wide Positioning Service Platform

- THE FORMER STREET, STR
- Input Available technologies & technologies operating level
- Output Cooperative Algorithm required and Positioning Grade

Helmond Integration Meeting

Vehicle Configuration

	EGO Objective	Observer TASS	Observer IBEO	Target TASS
Radio	 ITS-G5 (Cohda) ZigPos radio unit BeSpoon OBU 	 ITS-G5 (Cohda) BeSpoon OBU 	 ITS-G5 (Cohda) BeSpoon OBU 	• ITS-G5 (Cohda)
Ego-Sensors	 Ibeo Lidar system OxTS RTK-GPS XSENS GPS/IMU Bosch IMU Camera system Velodyne 360° Lidar 	 Ibeo Lidar system OxTS RTK-GPS XSENS GPS/IMU 	 Ibeo Lidar system GeneSys RTK-GPS XSENS GPS/IMU 	• Cohda GPS
	 Data logging PC NTP Server (Cohda) 	 Data logging PC NTP Server (Cohda) 	 Data logging PC NTP Server (Cohda) 	

Helmond Test meeting 12/2017

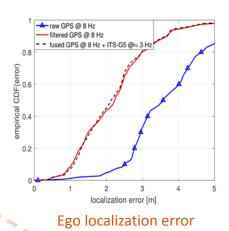
Test Scenarios

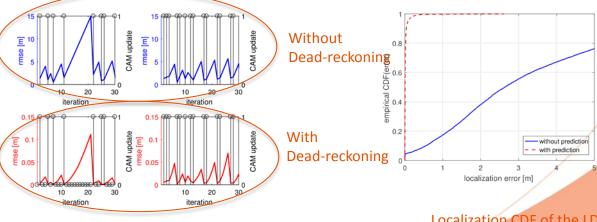
- Brandevoort Roundabouts:
 - Roundabout with full platoon
 - Roundabout with incoming vehicles from all directions
 - Oncoming traffic (De Voort, between roundabouts)
- Motorway N270:
 - Overtaking maneuvers

ide Lande

- Non-collinear vehicle setup
- Helmond City

lelmond Bran


oter


HIGHTS Proof-of-Concept

Results

Critical ECDF values	10%	50%	90%
Raw GPS (local, harsh GPS) 1 st trip	6.8m	6.9m	7.1m
ICP	3.5m	3.8m	4.2m
Raw GPS (local, harsh GPS) 2 nd trip	2.5m	3.6m	>5m
VA-CLOC	0.6m	2.1m	4.0m

Localization RMSE of the LDM

Localization CDF of the LDM

20

Wrap Up – where we are and where we still need to go

- Achievements
 - Develop a set of complementary High precision protocols reaching sub-meter accuracy
 - Performed a proof-of-concept and prototyping in TASS test site
 - Specified the architecture and a prototype of the HIGHTS EWPSP
 - Contributed to standard with new messages (PAM, POTI) and LDM
- Challenges ahead
 - Need efficient protocols for sensor exchange (CPM) and Fusion data
 - ITS-G5 beneficial but its Tx profile need to be tweaked...
 - Tx profile not adapted to DCC
 - Still required work on Maps and degree of uncertainties

Looking into the telescope –

EWPSP – Positioning as a Service

Dissemination...

TRA 2018 – Come see our joint workshop (with TIMON, ROADART)

- IEEE WPNC 2018
 - Submission open soon !!

Thank you. Any questions?

Jérôme Härri (haerri@eurecom.fr)

http://hights.eu/