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ABSTRACT

This contribution elaborates on the concept of blind iden-
ti�cation of multiple FIR channels with prior knowledge
(WPK). The prior knowledge considered here corresponds
to the transmitter (TX) (pulse shaping) and/or receiver
(RX) �lters present in digital communication systems. Ex-
ploitation of this prior knowledge allows the estimation to
concentrate on the impulse response of the actual channel
part itself. Hence this estimation can be done more accu-
rately. Since the prior information is expressed in terms
of the channel impulse response, we review a number of
blind channel estimation methods that are parameterized
by the channel and consider their extension to incorporate
the prior knowledge. These methods include Subchannel
Response Matching (SRM), subspace �tting and Maximum
Likelihood (ML) techniques. We also discuss performance
limits in the form of Cramer-Rao bounds (CRBs). Both
the methods and the CRBs are discussed in a deterministic
and a Gaussian context for the unknown transmitted sym-
bols. Simulation results indicate that the exploitation of
the prior knowledge can lead to signi�cant improvements,
that one particular SRM WPK method often outperforms
another one, and that ML methods can still further improve
performance.

1. INTRODUCTION

The goal of blind identi�cation is to identify the unknown
channel using the received signal only. Most of the work
on blind identi�cation considers the entire channel which
includes the shaping �lter, the actual propagation chan-
nel and the receiver �lter. However, usually the only un-
known quantity is the multipath, the 'propagation channel'.
Blind channel identi�cation exploiting the prior knowledge
of TX/RX �lters has been introduced in [1] and further ex-
plored in [2]. These blind techniques exploit a multichannel
formulation corresponding to a Single Input Multiple Out-
put (SIMO) vector channel. The channel is assumed to have
a �nite delay spread NT . The multiple FIR channels can
be obtained by oversampling a single received signal, but
can also be obtained from multiple received signals from
an array of antennas (in the context of mobile digital com-
munications [3],[4]) or from a combination of both. For m
channels the discrete-time input-output relationship can be
written as:

y(k) =

N�1X
i=0

h(i)a(k�i) + v(k) = H AN (k) + v(k) (1)

where y(k) = [yH1 (k) � � � y
H
m(k)]

H;h(i) =�
hH1 (i) � � �h

H
m(i)

�H
, v(k) = [vH1 (k) � � � v

H
m(k)]

H, H =

[h(N�1) � � �h(0)], AN (k) =
�
a(k�N+1)H � � �a(k)H

�H
and

superscript H denotes Hermitian transpose. Let H(z) =PN�1

i=0
h(i)z�i = [HH1 (z) � � �H

H
m(z)]

H be the SIMO chan-

nel transfer function, and h =
�
h
H(N�1) � � �hH(0)

�H
.

Consider the symbols i.i.d. if required and additive indepen-
dent white Gaussian circular noise v(k) with rvv(k�i) =
E v(k)v(i)H = �2vIm �ki. Assume we receive M samples:

YM (k) = TM (H )AM+N�1(k) +VM (k) (2)

whereYM(k) = [yH(k�M+1) � � �yH(k)]H and similarly for
VM (k). TM (X ) is a block Toepliz matrix with M block
rows and [X 0p�(M�1)q] as �rst block row, X being con-
sidered as a block row vector with p � q blocks. We shall
simplify the notation in (2) with k =M�1 to

Y = T (H )A+V : (3)

We assume that mM > M+N�1 in which case the chan-
nel convolution matrix T (H ) has more rows than columns.
If the Hi(z); i = 1; : : : ;m have no zeros in common, then
T (H ) has full column rank (which we will henceforth as-
sume). For obvious reasons, the column space of T (H ) is
called the signal subspace and its orthogonal complement
the noise subspace. The signal subspace is parameterized
linearly by h.

2. BLIND CHANNEL ESTIMATION

The channel can either be parameterized by its impulse re-
sponse h or by the noisefree multivariate prediction error
�lter P(z) and h(0) which satisfy P(z)H(z) = h(0) [4].
However, it is not clear how to express prior information on
the TX/RX �lters in terms of the prediction �lter. Hence
we stick here to blind methods that are parameterized in
terms of h. Two approaches exist, depending on whether
the symbols are considered deterministic or Gaussian un-
knowns.

2.1. Methods for Deterministic Symbols

2.1.1. Subchannel Response Matching (SRM)

In order to explain the SRM technique [5], consider
�rst the case of two channels: m = 2. One can ob-
serve that for noise-free signals, we have H2(z)y1(k) �
H1(z)y2(k) = 0, which can be written in matrix form as

[H2(z) �H1(z)]y(k) = H?y(z)y(k) = H?y(z)H(z)a(k) =

0 where e.g. Hy(z) = HH(1=z�). Stacking these zeros into
a vector for the signal fy(k)gk=0���M�1, we get an expres-
sion of the form Y h = 0 for some structured matrix Y.
Under the constraint khk2 = 1, we �nd h = Vmin(Y

HY)
where Vmin(A) denotes the eigenvector corresponding to
the minimum eigenvalue of A. For m > 2, blocking
equalizers H?y(z) can be constructed by considering the

(sub)channels in pairs. The choice of H?y(z) is far from



unique. To begin with, the number of pairs to be con-
sidered, which is the number of rows in H?y(z), is not
unique. The minimum number is m�1 whereas the maxi-

mum number is m(m�1)

2
, with corresponding H?

min(z) and

H?

max(z). The choice of H
?

min(z) is not unique. The convo-

lution H?(z)y(k) involving fy(k)gk=0���M�1 can be written

in matrix form as T (h?)Y. Since for the noise-free signal we
get T (h?)Y= 0, the SRM method minimizes the criterionT (h?)Y2

2
. By the law of large numbers, asymptotically

this criterion can be replaced by its expected value, which
can be rewritten in the frequency domain as

J = 1
2�j

H
tr fĤ

?y

SyyĤ
?

g dz
z
=

�2
a

2�j

H
HyĤ

?

Ĥ
?y

Hdz
z
+

�2
v

2�j

H
tr fĤ

?y

Ĥ
?

g dz
z

(4)

We shall call H?

bal(z) balanced if tr fH?y(z)H?(z)g =

�Hy(z)H(z) for some real scalar �. In that case

min
k
^
hk=1

J = ��
2
v +

�2a
2�j

min
k
^
hk=1

I
H
y

Ĥ
?

Ĥ
?y

H
dz

z
(5)

which leads to the correct value ĥ = h (and hence an unbi-
ased estimate!) apart from a scale factor (and assuming the
channel order is chosen correctly). The minimum number

of rows in H
?y

bal(z) is m in which case � = 2. The choice

for such a H?

bal;min(z) is not unique. Note that H?

max(z)
is balanced with � = m�1. In the literature, the SRM
method (which has been reinvented several times) is always

proposed using H?

max(z). We get for instance

H
?y

min(z) =

24 �H2(z) H1(z) � � � 0
...

...
. . .

...
�Hm(z) 0 � � � H1(z)

35 (6)

H
?y

bal;min(z) =

26664
�H2(z) H1(z) 0 � � � 0

0 �H3(z) H2(z) � � �
...

...
. . .

. . . 0
H1(z) 0 � � � 0 �Hm(z)

37775
(7)

Continuing with this H?y

bal
(z), its ith row can be written as

H
?y

bal;i(z) =HT (z)Pi; Pi+1 = CPiC
H ;

P1 =

26664
0 1 0 � � �
�1 0 � � �

0
...

. . .
...

37775 ; C =

26664
0 � � � 0 1
1 0 � � � 0

0
. . .

...
... 0 1 0

37775 :
(8)

For this H?y

bal(z), the SRM criterion
T (h?)Y2

2
can be

written as the minimization w.r.t. h of

tr fT (h?)YYHT H(h?)g

= tr fh?

 
M�1X
k=N�1

YN (k)Y
H
N (k)

!
h
?Hg

= (M�N+1) tr fh? bRY Y h?Hg
(9)

where the ith row of h? is h?i = h
T Si ; Si = IN 
 Pi :

Hence the SRM criterion in (9) becomes

min
h
h
H
A h ; where A =

mX
i=1

Si bR�Y Y SHi : (10)

It is expected that the use of aH?y

bal
(z) with more rows leads

to improved performance.

2.1.2. Signal Subspace Fitting (SSF)
The covariance matrix of the received signal can be de-

composed into signal and noise subspace contributions:

RY Y = EYYH =

M+N�1X
i=1

�iViV
H
i +

mMX
i=M+N

�iViV
H
i

= VS�SV
H
S + VN�NV

H
N

(11)
Since both T (H ) and VS should span the signal subspace,
we can introduce the following signal subspace �tting prob-
lem:

min
h ;T

kT (H )�VSTkF (12)

where kXk2
F

= tr fXHXg. After optimization w.r.t. T ,
we obtain [4]

min
khk2=1

tr fT H(H )P?

VS
T (H )g = min

khk2=1
h
H
Ah (13)

where P?

X = I � PX = I � X(XHX)+XH and + denotes
Moore-Penrose pseudo-inverse. A can be determined from
P?

VS
= PVN . The solution is again h = Vmin(A).

2.1.3. Noise Subspace Fitting (SSF)

Similarly, VN spans the noise subspace and T H(h?)
spans most of it. So we can introduce the following sig-
nal subspace �tting problem:

min
h ;T

T H(h?)�VNT
F
: (14)

After optimization w.r.t. T , we obtain min
khk2=1

of

tr fT (h?)P?

VN
T H(h?)g = tr fh?Bh?Hg = h

H
Ah

(15)

where B can be determined from P?

VN
= PVS and A =Pm

i=1
SiBS

H
i .

2.1.4. Deterministic ML (DML)

With the Gaussian noise assumption, maximizing the
likelihood reduces to min

A;h kY � T (H )Ak2. After op-

timization w.r.t. A we get minh Y
HP?

T (H )
Y. Now we

have approximately P?

T (H )
� P

TH(h
?
)
where the approx-

imation error disappears asymptotically. Hence we get
min

khk=1 of

Y
H
P
TH(h

?
)
Y= h

H
�
YH [T (h?)T H(h?)]+Y

�
h = h

H
Ah

(16)

where T (h?)Y = Yh for some Y. The iterative quadratic
(IQ) strategy considers the quadratic "numerator" of the

criterion, and for h
? in the "denominator" the value

from the previous iteration is used. If the initializa-
tion is consistent, then only one iteration leads to an
ABC estimate. Note that interpreting the SRM method



as a least-squares (LS) problem, the DML criterion is
the corresponding optimally weighted LS problem: the
noise in T (h?)Y is T (h?)V with covariance matrix

�2vT (h
?)T H(h?). Asymptotically, any choice for H?(z)

leads to the same performance since PH?y
(z)

= PH?y

min
(z)
.

2.2. Methods for Gaussian Symbols

Whereas with deterministic symbols the channel can only
be determined blindly up to an arbitrary complex scale fac-
tor, in the Gaussian symbols case also the norm of the
channel gets estimated. The main approach in the Gaus-
sian case is ML (GML). In this case Y � N (0; RY Y ) with

RY Y = �2aT (H )T H(H ) + �2vI. The negative log likelihood
to be minimized is

L(h) = c
t + ln detRY Y +YHR�1Y YY : (17)

Standard optimization techniques such as the Gauss-
Newton or scoring methods can be applied.

3. TX/RX FILTER KNOWLEDGE

Consider a certain oversampling factor m and let the over-
sampled transfer function H(z) = C(z)G(z) of the overall
channel be the cascade of the actual channel C(z) and the
combined TX/RX �lter G(z). Each of these transfer func-
tions can be decomposed into its polyphase components at

the symbol rate, e.g. H(z) =
Pm�1

i=0
z�iHi(z

m). These
components can also be represented in the SIMO form,

G(z) = [GH1 (z) � � �G
H
m(z)]

H =
PK�1

k=0
g(k)z�k and C(z) =

[CH1 (z) � � �C
H
m(z)]

H =
PL�1

k=0
c(k)z�k with K+L�1 = N .

The relations between the polyphase components can be
obtained from

m�1X
i=0

z
�i
Hi(z

m
) =

 
m�1X
k=0

z
�k
Gk(z

m
)

! 
m�1X
l=0

z
�l
Cl(z

m
)

!
(18)

In particular for m = 2 we geth
H0(z)
H1(z)

i
=

h
G0(z) z�1G1(z)
G1(z) G0(z)

ih
C0(z)
C1(z)

i
=

h
C0(z) z�1C1(z)
C1(z) C0(z)

ih
G0(z)
G1(z)

i
(19)

or H(z) = G(z)C(z) = C(z)G(z). In the time domain, we
get

TM (H ) = TM (G)TM+K�1(C) (20)

where C is similar to H and

G =
�
g(K�1) � � �g(0)

�
; g(k) =

h
g0(k) g1(k� 1)
g1(k) g0(k)

i
(21)

and we assume g1(K�1) = 0. The relation between h and c

is h = T TL (Gt)c where t denotes transposition of the blocks:

G
t =
�
g
T (K�1) � � �gT (0)

�
.

In CDMA applications, large excess bandwidth exists
and hence large oversampling factors can be used. In
TDMA applications, only a small excess bandwidth is
available and the oversampling factor will usually be lim-
ited to m = 2. However, more channels can be ob-
tained by e.g. exploiting multiple antenna signals. In
that case we get Hi(z) = Gi(z)Ci(z) for every an-
tenna signal i = 1 : : : q (where Gi(z) may be in-

dependent of i) and H(z) = [HH
1 (z) � � �H

H
q (z)]

H =
blockdiagfG1(z) � � �Gq(z)gC(z) where now H(z) and C(z)
regroup mq channels.

4. BLIND METHODS WPK

Prior TX/RX �lter knowledge gets exploited by express-

ing h = T TL (Gt)c and searching for c. Since all four
deterministic methods discussed above are of the form
min

khk=1 h
HAh, we get minc c

HT �(Gt)AT T (Gt)c. In all

methods except SRM, we can use kck = 1 as non-triviality
constraint. For SRM however, the noise contribution has
to be taken into account properly in order to avoid bias.
One solution as proposed independently in [6] is to trans-

late khk2 = 1 into the constraint cHT �(Gt)T T (Gt)c = 1
which leads to a generalized eigenvalue problem that can
alternatively be transformed into a regular Vmin problem.
This solution consists again in constraining the �lter in
such a way that it has no inuence on the noise compo-
nent. A second solution consists of (asymptotically) re-
moving the noise contribution altogether. For a balanced
H?, the contribution of the noise to EA is a multiple of
identity, whereas the contribution of the signal is singu-
lar. Hence, the noise contribution can be removed by con-
sidering minkck=1 c

HT �(Gt)(A� �min(A) I)T
T (Gt)c. For

GML, one needs to introduce (20) in (17).

5. CRAMER-RAO BOUNDS WPK

In [4], the deterministic Cramer-Rao Bound (CRB) for the
estimation of h from (2) was derived. Its extension to the
estimation of c can be shown to be

CRBc = �
2
v

h
AHM+K�1;LT

H
M (G)P?

T (H )
TM(G)AM+K�1;L

i+
(22)

where AM+K�1;L = AM+K�1;L 
 Im is such that
AM+K�1;Lc = TM+K�1(C)A. The CRBc for c can be
transformed into a bound for the unbiased estimation erroreh = h�bh WPK on the overall channel h = T TL (Gt)c :

Ceh = EehehH � T TL (Gt)CRBcT
�

L (G
t) : (23)

For the Gaussian case, things are a bit more intricate. Let
the Fisher information matrices (FIM) J' be de�ned as:

J' = EY=c

�
@ ln f(Y=c)

@'�

��
@ ln f(Y=c)

@ �

�H
(24)

and we will consider Jcc and Jcc� . In the deterministic
case, Jcc� = 0. In that case, Jcc can be considered as a
complex FIM, and Cec � J�1cc , the complex CRB. If Jcc� 6=

0 as in the Gaussian case, J�1cc is also a bound on Cec , but not
as tight as the actual CRB which we obtain by considering

cR =
�
Re(c)T Im(c)T

�T
, the associated real parameters.

We get:

JR(cR) = 2
h
Re(Jcc) �Im(Jcc)
Im(Jcc) Re(Jcc)

i
+2
h
Re(Jcc�) �Im(Jcc�)
Im(Jcc�) Re(Jcc�)

i
(25)

and

Jcicj = tr

(
R
�1
Y Y

�
@RY Y

@c�i

�
R
�1
Y Y

�
@RY Y

@c�j

�H)
; (26)

Jcic�j = tr

�
R
�1
Y Y

�
@RY Y

@c�i

�
R
�1
Y Y

�
@RY Y

@c�j

��
; (27)

@RY Y

@c�i
= �

2
aTM (H )T HM+K�1

�
@C

@ci

�
T HM (G) (28)

These results were derived independently in [6], where some
examples show that the Gaussian assumption improves the
estimation quality considerably in certain cases.
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Figure 2. Comparison of SRM WPK with kck = 1
and khk = 1

6. SIMULATION RESULTS

In Figure.1, the performance of SRM and SRM WPK
are compared to the corresponding deterministic CRB and
CRB WPK. The data frame length is M = 162, oversam-
pling factor m = 2 and the symbols are i.i.d. BPSK. The
overall channel is the convolution of a raised cosine pulse
limited to 13T with rollo� factor � = 0:9, and a two ray mul-
tipath channel c(t) = �(t)� 0:82 �(t�T ). The performance
measure is the Normalized MSE (NMSE) which is aver-

aged over 100 Monte-Carlo runs: NMSE= 1
100

P100

i=1
kbh(i)�

hk2=khk2. The CRBs are normalized and computed as

tr fCRBhg=khk
2 and tr fT TL (Gt)CRBcT

�

L (G
t)g=khk2.

Our simulation results show that in terms of CRB, the ap-
proach WPK outperforms the one without this prior infor-
mation. The di�erence between SRM and SRM WPK is
even more spectacular: SRM on the complete channel suf-
fers from channel zeros that are almost in common, whereas
SRM WPK performs well.
In Figure.2, we used the same data and we compare the

two unbiased forms of SRM WPK: the one using khk = 1
and the one using kck = 1 but A��min(A)I: it is clear that
the second approach outperforms the �rst one (by a factor
of more than 5 at SNR=10dB).
In the simulation illustrated in Figure.3, the idea is to

study the behavior of the SRM WPK and IQML WPK
(one iteration initizalized with SRM WPK) methods versus
the conditioning of the propagation channel C . We adopt

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
10

−4

10
−3

10
−2

10
−1

10
0

a

N
S

E

CRB WPK

IQML

SRM

Figure 3. Comparaison of SRM WPK and IQML

the same pulse-shaping �lter as before and we consider a
propagation channel de�ned as:

C =
h
1 1
1 a

i
: (29)

When a = 1, the two subchannels are parallel (zero in
common), and when a = �1 the two subchannels are or-
thogonal (channel well conditioned). Simulation results, at
SNR=30dB, and for values of a ranging from -1 to 0.8, show
that for on the average IQML does not perform drastically
better than SRM (the best improvement is about a factor
of two, obtained for a = 0:4); but we have noted that for
some realizations IQML outperforms SRM signi�cantly.
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