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Abstract

By minimizing a deterministic criterion of the constant modulus (CM) type or of the decision-

directed (DD) type, we derive normalized stochastic gradient algorithms for blind linear equal-

ization (BE) of QAM systems. These algorithms allow us to formulate CM and DD separation

principles, which help obtain a whole family of CM or DD BE algorithms from classical adaptive

�ltering algorithms. We focus on the algorithms obtained by using the A�ne Projection adaptive

�ltering Algorithm (APA). Their increased convergence speed and ability to escape from local min-

ima of their cost function, make these algorithms very promising for BE applications.
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1 Derivation of the Normalized CMA and DD Algorithms

We address the problem of blind equalization of linear channels in digital communication systems

that employ Quadrature Amplitude Modulation (QAM), as depicted in Figure 1. Assuming a time

invariant channel, the channel and equalizer outputs at the Baud rate are given by

xk =
PM�1

i=0 ciak�i + nk = A
H
k C + nk

yk = X
H
k Wk

(1)

respectively, where C = [c(0) � � � c(M�1)]T is the (FIR(M�1)) channel impulse response, Wk =

[wk(0) � � �wk(N�1)]
T is the equalizer vector at time instant k, (N is the equalizer length), ak , nk the

channel input and output additive noise sample, respectively, at time instant k, Ak = [ak � � � ak�M+1]
H ,

Xk = [xk � � � xk�M+1]
H and T

;
H denote transpose and Hermitian transpose, respectively.

We are interested in deriving appropriately normalized versions of stochastic gradient algorithms

for the Godard [1] (or CM [2]), and DD cost functions. These normalized versions will come about

by pursuing the deterministic point of view that stochastic gradient algorithms take when faced

with the minimization of a statistical average. Consider �rst the Godard criterion

min
W

E

���jXH
k W j

p
� 1

���q : (2)

A stochastic gradient algorithm drops the expectation operator and minimizes the resulting sto-

chastic cost function by performing one iteration per sample period. So at time k we have a �lter

estimate Wk and we want to adapt it by considering the following instantaneous optimization

problem

min
Wk+1

���jXH
k Wk+1j

p
� 1

���q : (3)

It is clear that we can minimize this cost function perfectly (making it zero) leading to

jX
H
k Wk+1j = 1 (4)

8 p � 1; q � 1, while leaving Wk+1 largely undetermined (assuming N > 1). In order to �x the

remaining degrees of freedom in Wk+1, we shall impose that Wk+1 remains as close as possible to

the prior estimate Wk while satisfying the constraint (4) imposed by the new data, leading to

min
Wk+1: jX

H
k
Wk+1j=1

kWk+1 �Wkk
2 (5)

where kWk
2 = W

H
W for W 2 C

N . Let us introduce the unit circle M = fz 2 C : jzj = 1g. Then

(5) can be written as

min
Wk+1; dk2M:XH

k
Wk+1=dk

kWk+1 �Wkk
2
: (6)
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For the decision-directed case, the cost function is

min
W;dk2A

E jdk �X
H
k W j

2 (7)

where A is the symbol alphabet (constellation). For a stochastic gradient algorithm, this becomes

the instantaneous cost function

min
Wk+1;dk2A

jdk �X
H
k Wk+1j

2 (8)

which can again be minimized perfectly by making Wk+1 and dk satisfy the following constraint

X
H
k Wk+1 = dk 2 A : (9)

Keeping again Wk+1 as close as possible to Wk while satisfying the constraint (9) results in

min
Wk+1 ; dk2A:X

H
k
Wk+1=dk

kWk+1 �Wkk
2
: (10)

Hence both the Godard and the decision-directed cost functions lead to the following optimiza-

tion problem

min
Wk+1; dk2D:X

H
k
Wk+1=dk

kWk+1 �Wkk
2
; D =

8><
>:
M ; Godard (CMA)

A ; decision-directed (DD) :

(11)

This constrained problem with the hard constraints (4) or (9) can be seen to be the limiting case

of the following soft-constrained problem

min
Wk+1; dk2D

�
jdk �X

H
k Wk+1j

2 + (
1

�
�1) kXkk

2
kWk+1�Wkk

2

�
(12)

where � 2 (0; 1). Indeed, as � ! 1, problem (12) becomes problem (11) (this can be veri�ed also

by checking that as � ! 1, the solution of the soft-constrained problem, which we shall develop

below, becomes the solution to the hard-constrained problem). The parameter � regulates the

compromise between satisfying the new data at time k (the �rst term) and sticking to the a priori

knowledge (the second term). To solve (12), remark that the problem is separable. Indeed, if at

�rst we assume dk to be known, then we can solve the remaining quadratic problem for Wk+1. The

solution can be found to be

ek = dk �X
H
k Wk

Wk+1 = Wk + �Xk(X
H
k Xk)

�1
ek

(13)

where ek is the a priori error signal. Among all the possible values of dk we must choose the one

that satis�es the criterion (12). It turns out that the solution for the desired response dk is

dk = f(yk) where f(�) =

8><
>:

sign(�) ; D =M (CMA)

dec(�) ; D = A (DD) :

(14)
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yk = X
H
k Wk is the prior equalizer output, sign(z) =

z

jzj
for z 2 C (with the convention sign(0) = 1),

and the decision function dec(z) returns the element in the alphabet A that is closest to z. In

summary, the solution to both problems (11) and (12) is

Wk+1 = Wk + �Xk(X
H
k Xk)

�1 (f(XH
k Wk)�X

H
k Wk) : (15)

The resulting algorithm minimizes the deterministic criterion (12) at each time step. The

algorithm is normalized in that the step-size parameter � can be chosen anywhere in the signal-

independent interval � 2 (0; 1] for stable operation with fastest convergence for � = 1 (for � 2 (1; 2),

we can replace � by 2�� and get the same convergence dynamics but more estimation noise, so

there is no point in choosing � 2 (1; 2)). The posterior and prior error signals are related as

�k = dk �X
H
k Wk+1 = (1��) ek (16)

which shows that an update reduces the error for � 2 (0; 1]. A related signal is the posterior output

yk = X
H
k Wk+1 = dk + (1��)ek = � dk + (1��) yk : (17)

This shows that the posterior output is a convex combination of the prior output and the desired

response. Hence, the posterior output will be closer to the desired response than the prior output.

The stepsize � controls the extent to which the posterior output approaches the desired response.

This issue is illustrated explicitly in Figure 5 for the normalized CMA and DD algorithms. For

the CMA algorithm, the desired response consists of the projection of the prior output onto the

unit circle. The result of doing an update is to bring the posterior equalizer output closer to the

unit circle without changing the phase. This is a deterministic version of the CM philosophy. For

the DD algorithm, the desired response is the closest constellation point and the posterior output

approaches it also to an extent that is controlled by �.

The term Normalized CMA (NCMA) algorithm was coined in [3] where it was derived for � = 1

by setting the posterior Godard criterion equal to zero.

2 A Separation Principle for Blind Equalization

We can generalize to some extent the criterion that led to the normalized CMA/DD algorithms.

The generalized criterion is

min
Wk+1; dk2D

n
jdk �X

H
k Wk+1j

2 + kWk+1�Wkk
2
Tk

o
(18)
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where kWk
2
A = W

H
AW and Tk = T

H
k > 0. The criterion (18) is again separable. Assuming at

�rst dk to be known, we can optimize w.r.t. Wk+1. The solution can again be found to be

Wk+1 = Wk + T
�1
k Xk(1 +X

H
k T

�1
k Xk)

�1 (f(XH
k Wk)�X

H
k Wk) : (19)

We can interpret this solution to the blind equalization criterion (18) as corresponding to the

solution of the adaptive �ltering problem obtained from (18) by considering the dk to be a given

desired-response signal, augmented with the construction of the desired response dk from the prior

output yk as dk = f(yk). This leads to the following principle.

A separation principle for BE: an adaptive blind equalization algorithm of the CMA/DD-type

can be obtained by taking a classical adaptive �ltering algorithm and replacing its desired response

signal dk by f(XH
k Wk).

The separation principle applies exactly for all adaptive �ltering algorithms of the form (19) meaning

that for the corresponding blind equalization criteria (18), the solution is obtained exactly as

the corresponding adaptive �ltering algorithm augmented with the desired-response construction

dk = f(yk). However, we can apply the principle in a loose sense to adaptive �ltering algorithms

of another form. A number of applications of the separation principle are sketched in Table 1.

For the �rst application (LMS), we take Tk = ( 1
�
�kXkk

2) IN in (18). For the previously derived

normalized algorithms, we take Tk = ( 1
�
�1)kXkk

2
IN in (18). For the third application (RLS), we

take Tk = �Rk�1 where Rk =
Pk

i=0 �
k�i

XiX
H
i + R�1 and � is the exponential weighting factor.

For the RLS algorithm (see also [4]), any fast version could be used such as the Fast Transversal

Filter algorithm or the Fast Lattice/QR algorithms [5]. Also the Fast Newton Transversal Filter

algorithm [6] could be used. The last application involves the APA algorithm which we discuss

now.

3 The NSWCMA and NSWDD algorithms

The A�ne Projection Algorithm (APA) is a generalization of the NLMS algorithm in which the

data at the L latest time instants are explicitly taken into account

kDk �XH
k Wk+1k

2

P
�1

k

+ (
1

�
� 1)kWk+1 �Wkk

2 (20)

where Pk = XH
k Xk and Xk, Dk are de�ned as

Xk = [Xk Xk�1 : : :Xk�L+1] (N � L) ; Dk = [dk dk�1 � � �dL�1]
T
: (21)
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The criterion (20) is minimized exactly at each iteration by the following algorithm:

Wk+1 = Wk + �XkP
�1
k (Dk �XH

k Wk) : (22)

The APA algorithm ([7]) was �rst proposed by Ozeki and Umeda in 1984. Its derivation based

on a deterministic criterion was given in [8], where a fast version, the USWCFTF algorithm, was

derived. A fast block version was derived in [9] (and independently in [10]) and given the name of

BUCFTF algorithm. The fastest version was derived by Gay in [11] (see also [12]) and termed the

Fast AP (FAP) algorithm.

A loose application of the separation principle to the APA algorithm (instead of taking dk =

f(XH
k Wk) we take Dk = f(XH

k Wk) where f(�) operating on a vector gives the vector of the

elementwise operations) yields the following class of algorithms for blind equalization:

Wk+1 = Wk + ��Xk(X
H
k Xk)

�1(Dk �XH
k Wk) (23)

where

Dk =

8><
>:

sign(XH
k Wk)

dec(XH
k Wk)

(24)

In the case Dk = sign(XH
k Wk), (23) is the update equation of a CM-type class of algorithms called

Normalized Sliding Window Constant Modulus Algorithms (NSWCMA), whereas in the case Dk =

dec(XH
k Wk) (23) describes the class of Normalized Sliding Window Decision Directed (NSWDD)

Algorithms. In the rest of the paper we will mainly focus on the NSWCMA:

Wk+1 = Wk + ��Xk(X
H
k Xk)

�1(sign(XH
k Wk)�XH

k Wk) (25)

which corresponds to an exact minimization at each time step of the criterion

min
Wk+1

�
ksign(XH

k Wk)�XH
k Wk+1k

2

P
�1

k

+ (
1

�
� 1)kWk+1 �Wkk

2

�
: (26)

Eq. (25) describes a new parametric class of algorithms for BE of CM signals, parameterized

by the data window length L and the stepsize ��. L is an integer that expresses the number of

\CM constraints" imposed on the next equalizer setting at each iteration and varies from 1 to N .

The imposition of L constraints results in a prewhitening of the input signal by linear prediction

of order L�1 (see [8]). The prediction �lter involved corresponds to the L� L sample covariance

matrix (Pk), which is constructed from the N � L data matrix (Xk) and hence corresponds to

passing the data through a rectangular sliding window. �� is a real scalar that controls the deviation

of the new equalizer setting w.r.t. the previous one. Strictly speaking, only when �� = 1 do
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we impose a set of L constraints on Wk+1. When �� 6= 1, we compromise between these (soft)

constraints and the change in the �lter through the minimization of two weighted additive terms in

the deterministic criterion (26). Compared to the classical Godard or CMA BE algorithms, the new

algorithms replace a stochastic gradient technique with the exact minimization at each iteration

of a deterministic criterion, which involves L�1 previous regressors and hence adds memory. This

memory aspect has a bene�cial impact on the convergence speed, namely the convergence speed will

increase as L increases. The particular deterministic criterion also provides the important feature

of normalization. As a result, it is possible to choose the stepsize �� for stability (�� 2 (0; 2)) or

fastest convergence (�� = 1) independently of the input signal. This fact furthermore has a positive

impact in avoiding the problem of ill-convergence often observed in BE algorithms of the Godard

type (see [13],[17]). The inuence of noise on the algorithm has been discussed in [14],[15]: when

L approaches N , noise ampli�cation can become severe, however the problem is less pronounced

when fractionally-spaced equalization is used. A method to further overcome the noise ampli�cation

problem has been also presented in [15].

If we apply the (FAP) algorithm [11] the algorithm's complexity is 2N+20L operations/iteration,

the additive linear term in L representing the price paid for the extra constraining as compared to

the LMS algorithm.

When using the NSWCMA on non-CM constellations, the function sign(�) should be replaced

by f(�) = r1 sign(�) (rp is the dispersion constant de�ned as rp =
Ejak j

2p

Ejakj
p ).

4 Computer simulation results

In a �rst experiment, we consider the typical mobile multipath channel given in [16], through which

we transmit a white 4-QAM sequence. The received signal has an SNR of 30 dB, it is sampled at the

rate 2=T and we use an equalizer of 33 taps. Figure 3 shows the evolution of the closed-eye measure

for the CMA and two members of the NSWCMA algorithms, used with the following parameters:

in (a) �� = 0:3; L = 4, in (b) �� = 1; L = 1, and in (c) � = 0:05 (the closed eye measure is de�ned

as � =

P
i
jhij�maxi(jhij)

maxi(jhij)
, where h is the channel-equalizer cascade impulse response). Note how the

convergence speed increases for the normalized algorithms, and the more so as the number L of

CM constraints increases.

In a second experiment, we consider an all-pole AP(1) noiseless channel de�ned by C(z) =

1
1+0:25z�1

, through which we transmit a white 2-PAM sequence. Figure 4 shows the convergence
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trajectories for 40 di�erent initializations on a circle of radius 2 in the equalizer space (the FIR

equalizer length is N = 2) of three di�erent algorithmic implementations: in (4a), we have tested

the CMA (with a stepsize found by trial and error to guarantee stability), in (4b) the NSWCMA

with �� = 0:05; L = 2, and in (4c) the NSWCMA with �� = 1; L = 2. As can be seen from

the �gure, the CMA may end up, depending on its initialization, either at one of its two global

minima, or at one of the two local minima on the axis w(0) = 0. On the other hand, the NSWCMA

with a small stepsize (�� = 0:05) manages to escape in some cases from its local towards the global

minima, whereas it ends up only at its global minima when used with the large stepsize �� = 1. This

veri�es the theoretical analysis in [13], [17], which predicts the ability of the normalized algorithms

to escape more easily from the local minima of their cost function. A similar behavior has been

observed for noisy FIR channels.

5 Conclusions

Based on the derivation of normalized algorithms of the CM or the DD type for blind equalization,

we have proposed a general methodology for the design of blind adaptive algorithms of these types.

Our focus on the NSWCMA algorithm has shown its improved performance in terms of convergence

speed and ability to avoid the problem of ill convergence.
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LMS Wk+1 = Wk + �Xk(dk � yk)

CMA 1-2/DD Wk+1 = Wk + �Xk(f(yk)� yk)

NLMS Wk+1 = Wk +
�

kXkk
2Xk(dk � yk)

NCMA/NDD Wk+1 = Wk +
�

kXkk
2Xk(f(yk)� yk)

RLS Wk+1 = Wk + R
�1
k Xk(dk � yk)

RLSCMA/RLSDD Wk+1 = Wk + R
�1
k Xk(f(yk)� yk)

APA Wk+1 = Wk + �XkP
�1
k (Dk � Yk)

NSWCMA/NSWDD Wk+1 = Wk + �XkP
�1
k (f(Yk)� Yk)

Table 1: Applications of the BE separation principle.

ak

C(z) W (z)

nk

xk yk bakChannel Equalizer

Decision

Adaptive Blind

Device

Algorithm

Figure 1: A typical blind linear equalization (BE) scheme in baseband and after baud rate sampling.
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yk

yk

0

yk

yk

� ek

�k = (1��) ek

dk = sign(yk)

� ek

�k = (1��) ek

dk = dec(yk)

0

NCMA NDD

Figure 2: The con�guration of the a priori output yk, the a posteriori output yk, the desired

response dk, the a priori error signal ek and the a posteriori error signal �k for the normalized CMA

and DD algorithms (assuming a 4-QAM constellation).
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Figure 3: Noisy FIR channel, comparison in terms of convergence speed.
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FIGURE 4b: NSWCMA  (L=N), small stepsize
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Figure 4: A comparison of CMA and NSWCMA (L=2) for an AP(1) channel.
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