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Abstract : Subspace fitting has become a well known method to identify FIR Single Input Multiple Output (SIMO)
systems, only resorting to second-order statistics. The main drawback of this method is its computational cost, due to
the eigendecomposition of the sample covariance matrix. We propose a scheme that solves the subspace fitting problem
without using the eigendecomposition of the cited matrix. The approach is based on the observation that the signal
subspace is also the column space of the noise-free covariance matrix. We suggest a two-step procedure. In the first step,
the column space is generated by arbitrary combinations of the columns. In the second step, this column space estimate
is refined by optimally combining the columns using the channel estimate resulting from the first step. Our method only
requires computation of two eigenvectors of a small matrix and of two projection matrices, although yielding the same
performance as the usual subspace fitting.

1. INTRODUCTION

Subspace fitting algorithms have been applied to the
multi-channel identification problem. In [8], it was
shown that oversampled and/or multiple antenna re-
ceived signals may be modeled as low rank processes
and thus lend themselves to subspace methods, exploit-
ing the orthogonality property between the noise sub-
space of the covariance matrix and the convolution ma-
trix of the channel. Recent papers [1] [10] provide per-
formance analysis of these methods. The huge major-
ity of algorithms recently proposed to perform subspace
fitting resort to SVD (singular value decomposition),
which make them of little use for real-time implemen-
tations. On the other hand, literature on other, computa-
tionally less demanding rank revealing decompositions
[3] has lead to some fast subspace estimation methods
(see a.o. [5]). The usual scheme is to use a rank reveal-
ing decomposition (the SVD being the best, but the less
cost-effective one) to determine the so called signal sub-
space. Possible candidates for this decomposition are the
URV decomposition, the rank revealing QR decomposi-
tion and the HQR factorization in a Schur-type method
(see [5] and references therein).

Recently, using the circularity property of the noise
in a real symbol constellation based communication sys-
tem, Kristensson, Ottersten and Slock proposed in [6]
an alternative subspace fitting algorithm. In this paper,
we show that this method can be used in the general
case, leading to a consistent estimate, and that the per-
formance is similar to that of the usual subspace fitting
algorithms. Our method does not require the eigende-
composition of the covariance matrix. Nevertheless, as
in the usual subspace fitting method, the computation of
a projection matrix is required which may remain com-
putationally demanding. Although we do not discuss this
topic in detail here, fast algorithms can be used to allevi-
ate this problem. In this paper, we consider the channel
identification problem, but the ideas presented here ap-
ply to any subspace fitting problem.

2. DATA MODEL

We consider a communication system with one emit-
ter and a receiver consisting of an array ofM antennas.
The received signals are oversampled by a factorm w.r.t.
the symbol rate. We furthermore consider linear digital
modulation over a linear channel with additive noise, so
that the received signaly(t) = [y1(t) : : : yM (t)]T has the
following form

y(t) =
X
k

h(t � kT )a(k) + v(t)

wherea(k) are the transmitted symbols,T is the symbol
period andh(t) = [h1(t) : : :hM (t)]T is the channel im-
pulse response. The channel is assumed to be FIR with
durationNT . If the received signals are oversampled at
the ratem

T
, the discrete input-output relationship can be

written as :

y(k) =
N�1X
i=0

h(i)a(k � i) + v(k) = HAN (k) + v(k)

where
y(k) = [y(kT )Hy(kT + 1

mT )
H : : : y(kT + m�1

mT )H ]H ,
h(k) = [h(kT )Hh(kT + 1

mT )
H : : :h(kT + m�1

mT )H ]H ,
v(k) = [v(kT )Hv(kT + 1

mT
)H : : : v(kT + m�1

mT
)H ]H ;

H = [h(0); : : : ; h(N�1)] and AN (k) =
[a(kT ) : : :a((k�N+1)T )], superscriptH denoting con-
jugate transpose. So we get a SIMO system withMm
channels. We consider additive temporally and spatially
white Gaussian circular noisev(k) with rvv(k � i) =
E
�

v(k)v(i)H
	

= �2vIMm�ki. Assume we receiveL
samples :

YL(k) = TL(H)AL+N�1(k) + VL(k)

whereTL(H) is the convolution matrix ofH, YL(k) =
[yH (k) � � �yH(k�L+1)]H and similarly forVL(k). In
an obvious shorthand notation, we will use the following
expression :

Y = HA + V :
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We assume thatmML > L + N � 1, so that the con-
volution matrixH is “tall” and we assumeH to have
full column rank (which leads to the usual identifiability
conditions). The covariance matrix ofY is

RYY = E
�

YYH
	
= HRAAH

H + �2vI

3. SUBSPACE FITTING

3.1. Signal Subspace Fitting
One can write the eigendecomposition of the co-

variance matrixRY Y = E
�

YYH
	

= VS�SVH
S +

VN�NVH
N in which VS has the same dimensions asH

and�N = �2vI . The signal subspace can be expressed
as:

rangefVSg = rangefHg

We can then formulate the classical subspace fitting
problem :

min
H;Q

jjH � VSQjj2F

SinceVN spans the noise subspace, this leads to

min
H

Ht

"
LMmX
i=D?

TN (VHt
i )T H

N (VHt
i )

#
HHt

whereVi is columni of V = [VSVN ],D? = N+L and
superscriptt denotes the transposition of the blocks of a

block matrix. Under constraintjjHjj = 1, bHt
is then the

eigenvector corresponding to the minimum eigenvalue of
the matrix between the brackets. One can lower the com-
putational burden by usingD? > N + L, loosing some
performance (see a.o. [7],[9]).

Obviously, the projection on the noise subspace sat-
isfies :

PVN
= P?VS

= I � PVS
= I � VS(VH

S VS)
�1VH

S

which leads to the equivalent maximization :

max
H

Ht

24D?�1X
i=1

TN (VHt
i )T H

N (VHt
i )

35HHt

3.2. Noise Subspace Fitting
Similarly to signal subspace fitting,VN spans the

noise subspace andT H (H?) spans most of it, whereH?

is such thatH?y(z)y(k) = 0 andHy(z) = HH (1=z�)
(for more details, see [2]). Hence, the following noise
subspace fitting (NSF) can be introduced :

min
H;Q

T H(H?)�VNQ
2
F

(1)

4. ALTERNATIVE SIGNAL SUBSPACE FITTING

4.1. The method

In the absence of noise, we have :

RY Y = HRAAH
H = R = VS�

0

SVH
S + VN�

0

NVH
N

where�
0

S = �S � �2vI and�
0

N = 0. From this expres-
sion, we observe that the column spaces ofH andR are

the same, leading us to introduce the following subspace
fitting criterion :

min
H;Q

jjH� bRBQjj2F (2)

wherejj:jjF denotes Frobenius norm andbR is a consis-
tent estimate ofR. The matrixB has the same dimen-
sions asH and is fixed; we will see later how its choice
influences the performance. Note that the range ofF =bRB provides an estimate for the signal subspace. We can
takebR asbR = bRYY �b�2vI = bRYY ��min(bRYY )I where
�min(:) denotes the minimum eigenvalue (a rank reveal-
ing decomposition ofbRY Y � �min(bRY Y )I would lead
to a better estimate ofR). We note that the simulations
below show that even simplybR = bRYY can work well
also. The criterion (2) is separable inH andQ. Mini-
mizing w.r.t.Q first yields

Q = (FHF)�1FHH :

Substitution in (2) yields :

min
H

jjP?FHjj
2
F = min

H
trace

�
HHP?FH

	
:

With the constraintjjHjj = 1, we get:

bH = arg max
jjHjj=1

�
trace

�
HHPFH

	
= HtFHHt

	
whereF is a sum of submatrices of block sizeN of PF.
The solution is thusVmax(F), the eigenvector ofF cor-
responding to�max(F). Given thatR = HRAAHH ,
not every choice forB is acceptable. For instance, if
the columns ofB are in the noise subspace, thenF = 0
for bR = R. Intuitively, the best choice forB should be
B = H, which corresponds to matched filteringHH with
H (postmultiplication ofB with a square non-singular
matrix does not change anything since that matrix can
be absorbed inQ). These considerations lead to the fol-
lowing two-step procedure:
step 1: at first, B is chosen to be a fairly arbitrary se-
lection matrix. The first step yields a consistent channel
estimate (ifHHB is non-singular).
step 2: in this step, the consistent channel estimate of
the first step is used to formbH and we solve (2) again,
but now withB = bH.
For the first step, for instance the choiceBH = [I 0]
leads to something that is quite closely related to the
“rectangular Pisarenko” method of Fuchs [4]. We found
however that aB of the same block Toeplitz form asH
but filled with a randomly generated channel works fairly
well (this choice will be the one used in the simulations).

4.2. Asymptotics: exact estimation
Aymptotically, bR = R. We get F = RB =

HRAAHHB. AssumingRAA > 0, then ifHHB is non-
singular, we get

PF = PH = PVS
: (3)

If furthermore we have a consistent channel estimate,
then we can take asymptoticallyB = H. In that case,



the use ofR = RY Y and henceF = RY YH also leads
to (3). Pursuing this issue further, and applying a per-
turbation analysis similar to the one hereunder, we will
have a consistent estimate of the channel withbR = bRY Y

as SNR!1.
4.3. Perturbation analysis
For the first step of the algorithm, we get a consis-

tent channel estimate ifHHB is non-singular. We can
furthermore pursue the following asymptotic (first order
perturbation) analysis.This analysis is based on the per-
turbation analysis of a projection matrix. IfbF = F+�F,
then up to first order in�F, PbF = PF +�PF where

�PF = 2Sym
�
P?F �F (FHF)�1FH

�
(4)

where2Sym(X) = X+XH .
a. Optimality of B = H
Let bR = R+�R, then using the eigendecomposition

of R, we get up to first order

�R = �VS �
0

S VH
S + VS ��

0

S VH
S + VS �

0

S �VH
S

+�VN �
0

N VH
N + VN ��

0

N VH
N + VN �

0

N �VH
N

Let B = VSBS + VNBN where we assumeBS non-
singular. Then usingbF = bRB leads to

�PF = 2Sym
�

PVN

h
�Vs�

0

S + VN ��
0

NBNB�1S
i

(HHVS)�1R�1
AA(H

HH)�1HH
�

This shows thatBN = 0 is optimal.
b. Asymptotic equivalence of the two SSF
UsingbF = (bRY Y � �min(bRY Y )I) bH with bRY Y andbH consistent estimates, one can show that�PF is the

same as withbF = bVS . Hence we get up to first order

P
(bRY Y ��min(bRYY )I )bH = P

(bRY Y ��2vI )H
= PbVS

:

This shows that the alternative signal subspace fitting
method gives asymptotically exactly the same perfor-
mance as the original SSF method. Furthermore, as long
as consistent estimates are used for�2v andH, the corre-
sponding estimation errors have no influence up to first
order.

c. Simplified method
When we use simplybF = bRYY

bH, then we get

�PF = 2Sym(PVN

�
�VS +�H(VH

S H)�1�N�
�1
S

�
VH
S )

The use ofbRY Y instead ofbR leads to the appearance
of the second term, the relative importance of which is
proportional to�N�

�1
S . Hence this term is negligible at

high SNR.

5. ALTERNATIVE NOISE SUBSPACE FITTING

Another possibility to formulate the NSF criterion is :

min
H

T (H?)R
1

2

Y Y

2
F

(5)

where the matrix square-root is of the formR
1

2

Y Y =

VS�
1

2

BQ for some unitaryQ. This NSF criterion can be
written asminH of

trfT (H?)R
1

2

Y YR
H

2

YY T (H
?)Hg

= trfT (H?)RY Y T (H?)Hg

= trfH?
�PM�1

k=N�1 RYY (k)
�

H?Hg

= (M�N+1)trfH?R̂YY H?Hg

(6)

Furthermore, it is possible to write this NSF criterion as

min
H

HH B H :

This coincides with the Subchannel Response Matching
(SRM) formula in [2]. This proves that the noise sub-
space fitting problem given by (5) is nearly equivalent to

the SRM problem, apart from a weighting matrix�
1

2

N .

6. SIMULATIONS

6.1 Signal Subspace fitting
In our simulations, we use a randomly generated real

channel of length 6T, an oversampling factor ofm = 1
andM = 3 antennas. We draw the NRMSE of the chan-
nel, defined as

NRMSE=

vuut 1

100

100X
l=1

jjĤ
(l)
� Hjj

2

F
=jjHjj2

F

whereĤ
(l)

is the estimated channel in thelth trial.
The SNR is defined as(kHk2�2a)=(mM�2v). The

correlation matrix is calculated from a burst of 100
QAM-4 symbols. For these simulations, we used 100
Monte-Carlo runs.

We draw the NRMSE for the first step of the al-
gorithm, the second step and the subspace fitting with
eigendecomposition.

These curves show that the proposed algorithm
yields the same performance as the subspace fitting al-
gorithm with eigendecomposition (even slightly better
at low SNR, but this is not relevant). It is to note
that we made the simulation usinĝRYY and R̂Y Y �
�min(R̂Y Y )I , which gives the same performance.
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Figure 1: Subspace Fitting performance



Furthermore, we also include the NRMSE of channel
estimate when using a perfect estimated covariance for
the two steps. Comparison of the two graphs illustrates
the preponderance of the covariance estimation error on
the channel estimation error.
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Figure 2: Subspace Fitting performance

6.2 Noise Subspace fitting
In these simulations, we use a randomly generated

complex channel of length 3T, an oversampling factor of
m = 1 andM = 3 antennas and 300 Monte-Carlo runs.

In the figure hereunder, we plot the curves corre-
sponding to NMSE versus SNR using the NSF technique

with R
1

2

Y Y replaced byRY Y . We also plot the normal-
ized deterministic Cramer-Rao bound [9]. The obtained
curves are identical to SRM curves. In order to study
the influence of noise, on NSF performance, we con-
sider NMSE computed witĥRYY , R̂YY � �min(R̂Y Y )I
andR̂YY � �2vI : the obtained curves are superimposed
which shows that noise has little influence on NSF (note
that this was to be expected since the considered NSF is
equivalent to SRM and it is well known that usingR̂Y Y

or R̂Y Y � �I leads to same performance for SRM).
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Figure 3: NSF performance

7. CONCLUSIONS

We have proposed a new two-step algorithm for
solving the signal subspace fitting problem, in the
channel identification context, which is computation-
ally less demanding than the usual algorithms. Per-
turbation analysis shows the asymptotic equivalence of

the eigendecomposition-free approach to the original
method. This equivalence was confirmed by simulation
results. Further work should explore different rank re-
vealing decompositions that can improve the finite sam-
ple performance and explore fast algorithms for the cal-
culation of the projection matrix and associated perfor-
mance if degraded. Continuing our investigations for
the noise subspace fitting, we found a tight link between
noise subspace fitting and SRM.
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