
Luc Deneire1 and Dirk T.M. Slock

Institut EURECOM, 2229 route des Crˆetes, B.P. 193,
06904 Sophia Antipolis Cedex, FRANCE

Tel: +33 493002651 Fax: +33 493002627
fdeneire, slockg@eurecom.fr

Abstract: We consider a Spatial Division Multiple Access
(S.D.M.A.) situation in whichp users operate on the same
carrier frequency and use the same linear digital modulation
format. We considerm > p antennas receiving mixtures
of these signals through multi-path propagation (equivalently,
oversampling of the received signals of a smaller number of
antenna signals could be used). Current approaches to mul-
tiuser blind channel identification include subspace-fitting tech-
niques [7], deterministic Maximum-Likelihood (DML) tech-
niques [13] and linear prediction methods [13]. The two first
techniques are rather closely related and give the channel apart
from a triangular dynamical multiplicative factor (see [7]),
moreover, they are not robust to channel length overestimation.
The latter approach is robust to channel length overestimation
and yields the channel estimate apart from a unitary static multi-
plicative factor, which can be determined by resorting to higher
order statistics. On the other hand, Gaussian Maximum Likeli-
hood (GML) methods have been introduced in [5] for the single
user case and have given better performances than DML. Ex-
tending GML to the multiuser case, we can expect good per-
formances, and, as will be shown in the identifiability section,
we will get the channel apart from a unitary static multiplicative
factor.

I Problem Formulation

Consider linear digital modulation over a linear channel
with additive Gaussian noise. Assume that we havep trans-
mitters at a certain carrier frequency andm antennas receiving
mixtures of the signals. We shall assume thatm > p. The
received signals can be written in the baseband as

yi(t) =

pX
j=1

X
k

aj(k)hji (t� kT ) + vi(t) (1)

where theaj(k) are the transmitted symbols from sourcej, T
is the common symbol period,hji (t) is the (overall) channel
impulse response from transmitterj to receiver antennai. As-
suming the

�
aj(k)

	
andfvi(t)g to be jointly (wide-sense) sta-

tionary, the processesfyi(t)g are (wide-sense) cyclostationary
with periodT . If fyi(t)g are sampled with periodT , the sam-
pled processes are (wide-sense) stationary. Sampling in this
way leads to an equivalent discrete-time representation. We
could also obtain multiple channels in the discrete-time do-
main by oversampling the continuous-timereceived signals, see
[11],[14].

We assume the channels to be FIR. In particular, after sam-
pling we assume the (vector) impulse response from sourcej to
be of lengthN j. Without loss of generality, we assume the first
non-zero vector impulse response sample to occur at discrete-
time zero. LetN =

Pp

j=1N
j andN1 = maxj(N j) . The

discrete-time received signal can be represented in vector form
as

y(k) =

pX
j=1

Nj�1X
i=0

h
j(i)aj(k�i) + v(k)

=
N1�1X
i=0

H(i)a(k�i) + v(k)

=

pX
j=1

HjA
j

Nj (k) + v(k)

= HAN (k) + v(k)

(2)

y(k) =
�
yH1 (k) � � �yHm (k)

�H
;v(k) =

�
vH1 (k) � � �vHm(k)

�H
;

hj(k) =
h
h
jH
1 (k) � � �hjHm (k)

iH
;

Hj =
�
h
j(N j�1) � � �hj(0)

�
;H =

�
H1 � � �Hp

�
;

H(k) =
�
h
1(k) � � �hp(k)

�
;a(k) =

�
a1H(k) � � �apH(k)

�H
;

Ajn(k) =
�
ajH(k�n+1) � � �ajH(k)

�H
;

AN (k) =
h
A1H
N1 (k) � � �A

pH
Np (k)

iH
:

(3)
where superscriptH denotes Hermitian transpose.

We consider additive temporally and spatially white Gaus-
sian circular noisev(k) with Rvv(k � i) = E

�
v(k)vH (i)

	
=

�2vIm�ki. Assume we receiveM samples :

Y M (k) = T p
M (H) AN+p(M�1)(k) + V M (k) (4)

where Y M (k) =
h
Y H (k �M + 1) � � �Y H(k)

iH
and

V M (k) is defined similarly whereasT p
M (H) is the multichan-

nel multiuser convolution matrix ofH, with M block lines.
Therefore, the structure of the covariance matrix of the received
signalY (k) is

RYY = T p
M (H)RAAT

pH
M (H) + �2vImM (5)

whereRAA = E
n
AN+p(M�1)(k)A

H
N+p(M�1)(k)

o
. From

here on, we will assume mutually i.i.d. white sources with
power�2a (RAA = �2aI).
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Likelihood.

In stochastic ML, the input symbols are modeled as Gaussian
quantities. ML estimation with a Gaussian prior for the sym-
bols has been introduced in [15] and [5] for the single user case
and its robustness properties have been shown. Rewriting equa-
tion (4) in shorthand :Y = T (H)A + V , with Gaussian hy-
potheses on the noise and the symbols (V � N (0; RVV ) and
A � N (0; RAA)). We want to maximizef(Y jH). Hence,
Y � N (0; RYY ) and the corresponding log-likelihood func-
tion to be minimized is :

min
H

n
ln(detRYY ) + Y

HR�1
YY Y

o
: (6)

A Identifiability conditions

Parameters are considered identifiable when they are deter-
mined uniquely by the probability distribution of the data (i.e.
8Y , f(Y j�) = f(Y j�0) ) � = �0). In the models we will
consider, data have a Gaussian distribution, so identifiability in
this case means identifiability from the mean and the covariance
of Y , hence from the covariance ofY , since its mean is zero.
Another indicator of identifiability is regularity of the Fisher
Information Matrix (FIM). This point of view is not equivalent
however [10]. In particular, discrete valued ambiguities cause
unidentifiability but don’t lead to singularity of the FIM.

On the basis of the number of parameters (excluding a uni-
tary mixture) compared to the number of equations, we arrive
at :

Necessary condition M > N
m
+ 1

2

Sufficient condition In the Gaussian model, them-channel
H is identifiable blindly up to a unitary static mixture factor if

1. (i) The channel is irreducible and column reduced.

2. (ii) M � L (L =
l
N�p
m�p

m
).

Identifiability means identifiability fromRYY , which is
equivalent to having enough data such thatT (H) is tall, which
leads to(ii), and full column rank, which leads to(i). We have
�2v = �min(RYY ). H can be identified from the de-noised
RYY by linear prediction [13] or Schur triangularization (see
here under). The unitary static mixture is in fact block diagonal,
where the different blocks correspond to channels of the same
length. Indeed an arbitrary unitary mixture can be undone by
forcing the proper channel lengths for the different users with
different channel lengths.

Sufficient condition Any minimum-phase channel (i.e.
H(z) = H(z)R(z) with H(z) irreducible and column reduced,
andR(z) minimum-phase) can be identified up to a static mix-
ture for a largerM . Indeed, linear prediction allows to identify
H(z) and the correlation sequence ofR(z) [13, 14] from which
R(z) can be identified up to a unitary mixture by spectral fac-
torization.

A nice feature of Blind GML methods is their robustness to
channel length overestimation. Indeed, let

Syy(z) = �2aH(z)Hy(z) + �2vIm (7)

whereH is of lengthN1 (with some users having possibly
shorter channels).

Now, takeH of lengthN
1
� N1, then, asymptotically,

GML givesH such that :

H(z)H
y
(z) = H(z)Hy(z)

) H(z) = H(z)�(z) ; �(z)�y(z) = Ip
(8)

and�(z) is a p � p FIR filterof lengthN
1
� Np (assuming

N1 � N2 � � � � � Np). Now, a lossless FIR square transfer
function is necessarily of the form

�(z) = diagfz�n1 ; : : : ; z�npg	 (9)

0 � nj � N
1
�N j � 1; j = 1; : : : ; p

where	H	 = Ip. This means that GML based methods (as
well as Linear Prediction methods and the Schur method de-
velopped here under) yield consistent channel estimates, even
when the channel lengths have been overestimated.

C Prediction Based GML

Let P(z) =
PL

i=0 p(i)z
�i with p(0) = Im be the MMSE

multivariate prediction error filter of orderL for the noise-

free received signalY (k). If L � L =
l
N�p
m�p

m
, then it can

be shown [13] thatT (P )T (H) = T (h(0)), or equivalently
P(z)H(z) = h(0). From this expression, it is clear thatH(z)
andfP(z);h(0)g are equivalent parameterizations. Expressing
T (P )Y � N (0; �2aT (h(0))T

H (h(0)) + �2vT (P )T H (P )),
we can apply the GML procedure described here above, and
minimize w.r.t.fP ;h(0)g [5]. A consistent estimate to initial-
ize the IQML procedure can be obtained by a linear prediction
algorithm (e.g. the multichannel Levinson algorithm).

D Channel Based GML

a Initialization

A consistent estimate to initialize the IQML procedure could be
derived from the linear prediction algorithm, and then deriving
the channel estimate from the prediction quantities. Another
idea is to resort to the Schur algorithm which gives, as part of
the triangular factor ofR = RYY � �2vI, a consistent estimate
of the channel.



noise-free received signalY . Let Y denoteY the prediction
errors, thenY can be perfectly predicted fromeY , thus, the co-
variance matrix of the error in estimatingY from eY is zero :

R = RY ~YR
#
~Y ~Y

R~YY = UHDU (10)

where# denotes some pseudo-inverse. If the triangularization
is performed block-wise,D is a block-diagonal whose firstL�1
blocks are full rank, theLth block has rank(1�L)(m�p)+N

and subsequent blocks are of rankp. From prediction consider-
ations,~Y contains, from the(L+1)th block onwards, the trans-
mitted symbolsa(k), apart from an instantaneous unitary mix-
ture. Hence, sinceUH = RY ~YR

#
~Y ~Y

, UH contains, from the

(L+ 1)th block onwards, the channel impulse response (again,
apart from an instantaneous unitary mixture).

A modification of the generalized Schur Algorithm The
generalized Schur Algorithm provides an efficient way of per-
forming LU triangularization of Toeplitz or Near-Toeplitz ma-
trices, based on their low displacement rank. Let�R = R �
ZRZH = GH�G be the displacement of the block Toeplitz
correlation matrix, which is of rank (at most)2m, whereG is
called the generator (of size2m�Km) and� the signature ma-
trix. The Schur algorithm then proceeds by applying�-unitary
transformations to perform partial triangularization ofR. Af-
ter L � 1 steps, we will encounter singularities, which could
be treated by perturbations techniques [6] (indeed, look-ahead
techniques as in [6] do not apply in our case), but, apart from
the precision problems generated, these techniques do not pro-
vide the channel estimate. Indeed, the matrix being singular, the
triangularization is not unique any more, and we have to force
D andU to have the structure ofR#

~Y ~Y
andR~YY , which, from

the cross- and auto-correlation properties of the prediction error
~Y andY , can be determined as below. Consider we perform a
scalar triangularization, then forD, the structure is :

D = diag[� � � � ��; � � �0; � � 00; � � 00; � � �] (11)

with the rank profile described above, andU has zero lines cor-
responding to the zeros inD. Considering that the non-zero
lines inU repeat themselves from theLth block onwards, we
concentrate on the stepsL�1 andL. At stepL�1, we can just
put zeros when we encounter the singularity. After this step, the
Schur complement with respect to theL principal minor is not
any more strictly related to the generators of the preceding step,
so we have to compute it’s generator anew, knowing that it’s
displacement rank is now2p, which completes the algorithm.

b Channel Complement Based GML

Apart from the first procedure described, one can base the min-
imization on an orthogonal channel complement, introduced,
a.o. in [4, 9]. Consider the single user case, withm = 2
channels, one can observe that for noise-free signals, we have
[H2(z) �H1(z)]Y (k) = 0, which leads toH?y(z)H(z) = 0,
whereH?y(z) = [H2(z) � H1(z)]. This can be extended to
more than two channels [3].

ment :

T (H1?y)Y � N (0; R)

R = T (H1?y)
�
�2a
Pp

i=2 T (H
i)T H(Hi) + �2vI

�
T H(H1?y)

(12)
This will lead to the following ML minimization :

min
H1

(ln(detR) + Y HT H(H1?y)R�1T (H1?y)Y ) (13)

where we consider the channels of the other users as known (es-
timated separately) . Hence, we can pursue an approximate ML
procedure, using consistent estimates (determined in the initial-
ization step described here above) to initializeR, and repeat this
procedure for each user.

It’s rather obvious that, for non-minimal channel comple-
ments [3],R is low rank, which means the the Gaussian pdf is
only present in a subspace. One possibility to get around this is
to use Tikhonov regularization (R+�I), the other one is to use a
projection on the subspace (which is computationally more in-
tensive). Both approaches give very similar results. Use of the
first regularization in (13) shows that theln(detR) can be ne-
glected, which leads to the use of an IQML (Iterative Quadratic
ML) algorithm [5, 2].

c Combined DML/GML approach

Let user 1 be the user of interest, we will perform Deterministic
Maximum Likelihood (DML) on the first user and GML on the
others. That is, if we consider the first source to be deterministic
and the other to be white Gaussian sources of power�2a :

Y � N (T (H1)A1; �2a

pX
i=2

T (H i)T H(H i) + �2vI

| {z }
=R

) (14)

which leads to the following approximate ML minimization :

min
H1

;A1

�
Y � T (H1)A1

�H
R�1

�
Y � T (H1)A1

�
(15)

which can be sequentially solved inA1;H1. Plugging bA1 =
(T H (H1)R�1T (H1))�1T H (H1)R�1Y in (15), and tak-
ing into account thatP?

R
� 1

2 T (H1

)
= P

R
H
2 T H (H1?y

)
, since

T (H1?y)R
1

2R� 1

2 T (H1) = 0, we get the same criterion as
(13) apart from theln(detR).

d Global Channel Complement Based GML

ConsiderH?y =

2
64
H1?y

...
H

p?y

3
75, we can consider the data filtered

by this collection of chqnnel complements :

T (H?y)Y � N (0; R)

R = T (H?y)
�
�2a

Pp

i=1 T (H
i)T H(H i) + �2vI

�
T H (H?y)

(16)



min
H

(ln(detR) + Y HT H (H?y)R�1T (H?y)Y ) (17)

which is a way of doing the minimization in one shot rather than
sequentially.R is again singular and requires regularization.

E Iterative Quadratic GML (IQGML) Ap-
proach

The Iterative Quadratic ML algorithm (IQML) can be used to
solve (13) and (17), where theln(detR) is neglected. The de-
nominatorR, computed thanks to the previous iterationm is
considered as constant and hece the criteria (13) and (17) be-
come quadratic. It is proved to be consistent at high SNR and
requires a very good initialization. At low SNR conditions,
a Denoised Iterative Quadratic ML (DIQML) has been devel-
opped in [2], which can be applied here.

F Pseudo-Quadratic GML (PQGML) Approach

The principle of PQML has been first applied to sinusoids in
noise estimation [12] and to single user channel identification
in [8, 2]. The gradient of the approximated GML cost func-
tion may be arranged asP(h)h, whereh = Vec(H) and
P(h) is ideally positive semi-definite. The ML solution veri-
fiesP(h)h = 0, which is solved under a non triviality condition
by the PQML strategy as follows: in a first step,P(h) is consid-
ered constant, and asP(h) is positive semi-definite,h is chosen
as the eigenvector corresponding to the smallest absolute eigen-
value ofP(h). This solution is used to reevaluateP(h) and
other iterations may be done. The PQ approach can be applied
to any of the previous promlem formulation. For the basic GML
problem in (6) however, it leads to an uninteresting result since
in that casem the expected value ofP(h) is zero. The quantities
involved in the sequential channel complement method in (13)
are, for useri :

P(hi) = YHR#Y � BHB (18)

whereYhi = T (Hi?y)Y , B�h�i = T H (Hi?y)B andB =
R#T (H i?y).

III Simulations

In order to evaluate the performance of the algorithms, we
have computed the Normalized MSE (NMSE) on the estimated
channels, averaged over 100 Monte Carlo runs. We have used
a randomly generated channel withp = 2 users,N1 = 3 and
N2 = 4, andm = 4 subchannels. The symbols are i.i.d. BPSK
and the data length isM = 250. Due to the different channel
lengths, we did not need to use higher order statistics, which
means that the NMSE is not affected by separation problems.

We first evaluate the performance of the Schur algorithm
compared to the Weighted Linear Prediction algorithm [1]. The
performance of both algorithms is comparable. Experience with
the Schur algorithm shows that some refinements could be done
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The IQGML procedure applied to the channel complement
formulation gave poor results and are not reported here.

We have simulated the PQGML algorithm base on the com-
plement channel. It turns out that this algorithm gives relatively
poor results for short data bursts and suffers from the near far
effect. This can be explained as follows. In (13),

min
H1

Y HT H(H1?y)R�1T (H1?y)Y ; (19)

R = T (H1?y)
�
�2a

Pp

i=2 T (H
i)T H(H i) + �2vI

�
T H(H1?y).

The term between square brackets represents the Interference
plus Noise term and is processed globally in the PQGML ap-
proach, which leads, even at relatively high SNR, to a sort of
equivalent noise of high power, but with a lower dimension-
ality. Indeed, despite this noise-like behavior of the interfer-
ence, the PQGML worked fairly well for SNR’s above 20 dB
(and a SINR of 0 dB, i.e. two equal power users) , but rather
poorly below that. Furthermore, the ”noise-like” nature of the
interference gives rise to a near-far effect (the highest power
user completely shadowing the lower power users, resulting in
break-downs for negative SINR’s). This gives clues for better
algorithms, in which the subspace structure of the term between
brackets should be used.

IV Conclusions

Deterministic approaches (such as subspace fitting) for the
blind estimation of multiple channels, especially in the multi-
user case, only allow to estimate the channel modulo a large
class of ambiguities. Using a Gaussian model for the sources,
which exploits their second-order moments and especially the
white and decorrelated nature of the sources, allows to reduce
the ambiguities in channel estimation to (at most) an instanta-
neous mixture.



GML problem and some algorithms to obtain consistent initial-
izations. The IQGML family of algorithm fails to work for the
complement channel approach, and experience with IQML for
the single user case, where it is proved to be inferior to PQML,
leads to abandon this track. The PQGML approach applied to
the channel complement asymptotically gives a consistent chan-
nel estimate, and, despite the noise-like behavior of the interfer-
ence in (13) leads to fair results at high SNR’s. This leads to
at least two new future approaches, where the structure of the
interference should be used and the global complement channel
approach studied.
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