Model-Driven Engineering for Designing Safe
and Secure Embedded Systems

Ludovic APVRILLE, Letitia W. LI
Institut Mines-Telecom
Telecom ParisTech, CNRS/LTCI
Sophia Antipolis, France

Yves ROUDIER
EURECOM
Sophia Antipolis, France
Email: Yves.Roudier@eurecom.fr

Email: {ludovic.apvrille, letitia.li} @telecom-paristech.fr

Abstract—The communication capabilities of recent em-
bedded systems offer more opportunities for attack to
cyber criminals. Moreover, those attacks may compromise
the safety of these systems. SysML-Sec is a SysML-based
environment for the design of such embedded systems with
safety and security features.

The paper focuses on the SysML-Sec methodology contain-
ing the following stages: assumptions, requirements, attacks,
partitioning, software design and software deployment. Our
method is supported by TTool, and offers a press-button
approach for formal proof of safety and security. Previous
projects and case studies modeled and validated with SysML-
Sec range from automotive systems, drone systems, informa-
tion systems (e.g., the analysis of malware targeting banking
systems), industrial systems (Analysis of SCADA malware),
and more generally, security protocols.

I. INTRODUCTION

Inter-connected embedded systems and cyber-physical sys-
tems offer more opportunities for attack to cyber criminals.
To cite only a few examples of recent attacks on such
connected systems, we can mention ADSL routers [1],
mobile&smart phones [2], avionics [3], automotive sys-
tems [4], medical appliances such as the Hospira Symbiq
drug pump [5], and smart objects e.g. the recent vulnera-
bility disclosed on the Fitbit [6]. Such attacks also target
industrial systems whose sensors are increasingly com-
monly connected with vulnerable information systems, as
demonstrated by Stuxnet, Flame, and Duqu [7]. Attacks
threaten the dependability of such systems with various
objectives ranging from extortion to terrorist acts.
System complexity, notably in terms of code size,
distribution, and heterogeneity, is a major risk factor to
safety and security. This issue can only be mitigated by
the verification of all the interactions between functional
and non-functional requirements throughout a system’s
development cycle. The SysML-Sec environment aims to
improve the design of such complex systems with respect
to their performance, safety, and security [8]. SysML-Sec

addresses system development starting from requirements
and possible attacks, continuing into software/hardware
partitioning, and further progressing into the design of
software components. SysML-Sec is implemented within a
free/open-source tookit named “TTool” [9]. TTool offers
diagramming capabilities as well as safety and security
proofs at the push of a button. This paper summarizes the
SysML-Sec methodology, its model-based approach, and
its support by TTool.

II. SYSML-SEC METHODOLOGY
A. Methodological stages

The methodology of SysML-Sec, summarized in Fig-
ure 1, addresses all stages that are commonly used to
design an embedded system.

The requirements/attacks stage intends to identify and
analyze both requirements and attacks together with the
main application functions (Functional View). Formally
defined attack graphs [10] are used to capture attack
scenarios, which commonly rely on the exploitation of a
combination of vulnerabilities. Once defined, these graphs
can be easily migrated for reuse in analysis of other sys-
tems. Attacks can be linked together in order to assess the
impact of a specific vulnerability and the need to address
it at the risk assessment phase, e.g., once a mapping is
under evaluation.

The SW/HW Partitioning phase follows the Y-Chart
approach with the modeling of logical tasks/channels
(Functional view), candidate architectures (Architectural
view), and mapping (Mapping view) of tasks and channels
onto the architecture. Candidate architectures consist of
CPUs, hardware accelerators, buses, bridges, and memory
elements. Tasks abstract the system behavior, and define
concepts of execution time and inter-task communications.
The attributes passed between tasks are abstracted to
consider only the size of the data transferred or stored.
Once system partitioning has been completed, software

Requirements I

Functional view Architectural view

Simulation
Formal analysis

Mapping view

Formal analysis

<

‘ Use case view

SW Analysis

‘ Scenario view

Attacks

Simulation
Formal analysis

: Simulati - -
Structural view Behavioral view
“ Deployment view

SW Design

Fig. 1. System design with the SysML-Sec Methodology

design can begin. The goal of the software analysis and
design stages is to develop the software components
implementing the functions mapped onto processors at
the previous stage. Functions to be implemented are first
analyzed with SysML-based use case and scenario views
to determine a software design in terms of safety or
security-related SysML blocks (Structural view) and their
interactions, e.g., security protocols. During the design,
software components/blocks are progressively refined until
the point where executable code generation is feasible.
This refinement also includes adding security-related func-
tions (Behavioral view), e.g., cryptographic algorithms,
key management policies, and filtering policies. The de-
ployment view specifies which executable code can be
generated: local execution, specific board (hardware ar-
chitecture previously defined at mapping stage), or virtual
prototyping environment [11] (abstracting the same hard-
ware architecture).

Iterations over the complete method are assumption-
driven [12]. More precisely, the system specification is
first limited in scope, then progressively enlarged to in-
clude further details. Assumptions expressing the scope
of the specification are explicitly described in a Modeling
Assumption Diagram. The safety and security assumptions
are included within this model, thus impacting the safety
and security proofs at each new iteration. Advancing from
version n to version n + 1, modifications on diagrams and
properties are thus traced within the Modeling Assumption
Diagrams.

B. Verification of properties along the SysML-Sec method

During the functional stage, simulations and (formal)
verifications are performed in order to identify safety-
related issues, e.g., deadlock situations, non-reachability

of error states, etc. Functional models are untimed, which
means that no performance study can be conducted on
them. However, the mapping of functions over execution
nodes gives to the former a logical and physical execution
time. Thus, post-mapping simulations and formal verifica-
tions are intended to demonstrate the system performance
on the selected hardware architecture, including the study
of latencies, the load of processor and buses, and commu-
nication time. The results are determined how the logical
functions - including the security mechanisms - are linked
to the underlying hardware. For example, a given security
protocol may impact a bus load, a cryptographic function
may impact a processor load, and both can consequently
increase the overall system latency. The mapping scheme,
for example, mapping a cryptographic function over a
hardware accelerator, or instead on a general-purpose
processor, also impacts system latencies. The performance
analysis thus intends to study both safety and security
functions mapped on different conditions [13]. The result
of this study is a hardware/software architecture that
complies with both safety and security requirements, and
that can resist attacks of the given risk level.

During the first iterations of the software design, sim-
ulation can be used to debug the models [14]. When the
model has been refined to include all relevant behavior,
formal verification can also be used to assess safety
properties [15] [16] (e.g., the reachability of a given state,
or its liveness). Security proofs can also be performed
on software design diagrams. The latter are transformed
into a security-oriented formal specification in pi-calculus
[17]. This specification is automatically sent by TTool to
ProVerif, along with the confidentiality and authenticity
properties to be proved [18]. These properties may refer

to the confidentiality of a SysML block attribute or the
authenticity of a message exchanged by two blocks.

When the model is too large to be verified, model-
to-code transformations are used to perform security and
safety tests on the code itself.

III. TTooL

The free and open-source TTool software supports all
SysML-Sec methodological stages, including model cap-
ture, simulation, and verification. In fact, TTool is a multi-
profile toolkit whose main strength is to offer a press-
button approach for performing simulation and formal
proofs from models. TTool supports the automatic proof
of both safety and security properties in LOTOS [19],
UPPAAL [16] and ProVerif [18]. For user convenience,
results of the verification are back-traced to the graphical
models. For example, Figure 2 displays a subset of the
software design of HTTPS/TLS. The confidentiality and
authenticity proofs have been conducted on this SysML-
Sec model, and the results have been back-traced in the
form of a lock added adjacent to the relevant model
element, such as an authenticity pragma or block attribute
whose confidentiality property has been queried. A green
lock indicates the property is satisfied, a grey lock in-
dicates the property cannot be proved, and a red lock
indicates the property is not satisfied.

IV. RELATED WORK

From our experience, partitioning is a central issue in
embedded systems. Achieving a correct partitioning that
adheres to safety requirements necessitates that the impact
of security mechanisms be understood and quantified as
early as possible. SecuretUML, for example, extends UML
to provide capabilities to consider security in a model and
verify its security requirements. [20]. We note that only
a few authors, notably Eames and Moffet [21], and more
recently Pietre-Cambacédes [22] and Raspotnig [23], have
dealt with the relationships between security and safety
requirements. For instance, the last two authors discuss
quite thoroughly the relationships that can be established
between security and safety requirements. In particular,
these studies can describe conflicts, but also reinforcement
relationships (when safety and security concur towards the
same design), or conditional dependence. We think that
obtaining similar descriptions within SysML-Sec would
require the engineering methodology to be extended with
an additional feedback interaction from all engineering
phases to the specification phase: for instance, the satisfac-
tion of safety requirements should be checked based on the
security mechanisms introduced before any further safety
mechanism would be introduced. We did not evaluate any

such methodological step. However, we plan to investigate
these issues in the future.

V. CONCLUSION - FUTURE WORK

Attacks are now widely conducted on embedded and
cyber-physical systems. Unfortunately, current software
engineering methods first focus on the safety and a fast
time-to-market of these systems, with considerations for
security as an after-thought.

SysML-Sec addresses this issue with a model-driven en-
gineering approach combining semi-formal specifications
of both safety and security features and properties at any
given development cycle phase. SysML-Sec is supported
by a free/open-source toolkit, TTool. Simulations and
formal proofs on models can be easily conducted with
TTool, in order to assess function, architectural choices
and software design choices, in terms of performance,
safety properties, and security properties.

SysML-Sec has been previously used in the design and
evaluation of embedded systems (e.g., automotive archi-
tectures), security protocols (TLS), analysis of complex
attacks (Stuxnet, Zeus/Zitmo).

Our future work concerns the enhancement of security
modeling and validation capabilities at the partitioning
stage. The partitioning of tasks onto execution nodes
impacts security, as data sent between two tasks mapped to
the same CPU cannot be intercepted. Such consideration
of security may reduce latencies or hardware in removing
the need to encrypt certain data. Furthermore, channels can
be mapped onto either public or private buses. Similarly
to the ProVerif-based security proof of software design,
we indeed intend to define and implement a mapping-
to-proverif model transformation to consider security. We
also intend to introduce a security-oriented modeling as-
sistant to help identify threats, their countermeasures, and
supporting hardware and software architectures. This as-
sistance might be based on a library of modeling patterns.

REFERENCES
[1] F. Assolini, “The Tale of One Thousand and One
DSL Modems, kaspersky lab,” Oct. 2012. [Online].

Available: http://www.securelist.com/en/blog/208193852/The_tale_
of_one_thousand_and_one_DSL_modems

[2] D. Maslennikov, “Russian cybercriminals on the move: profiting
from mobile malware,” in The 20th Virus Bulletin Internation
Conference, Vancouver, Canada, Oct. 2010, pp. 84-89.

[3] A. Costin and A. Francillon, “Ghost in the Air(Traffic): On insecu-
rity of ADS-B protocol and practical attacks on ADS-B devices,”
in BLACKHAT 2012, July 21-26, 2012, Las Vegas, NV, USA, Las
Vegas, USA, 07 2012.

[4] T. Hoppe, S. Kiltz, and J. Dittmann, “Security Threats to Automo-
tive CAN Networks - Practical Examples and Selected Short-Term
Countermeasures,” Rel. Eng. & Sys. Safety, vol. 96, no. 1, pp. 11—
25, 2011.

) File Edit V&Y Code Generation View Tool Help

[

HB|=a|®| | & i)

&, | 100% | & B W

urr. || Fen || 0

& &) |&] | |o |2

B TTool /h

[\ SysMLSec_Methodology | 38 Requirements 3% MonAuthenticatedClient | B9 AuthenticatedClient |

T o Sy 3% Block Diagram | % System | 2z Server | & Client |

o 58 Requi| :

TRl B |Pew|- ®m |E @11 |%

uthe

@gSynta =
iy <<block>= =

o I |FyEr; Sstem L Model Pragma

#PrivatePublickeys Server senverPrivic senerPUbK

~ in chin[Message mi
~ out chout{Message)

I

#PrivatePublickeys Client clientPrivi clientPubk
#PrivatePublickeys Server CAPrivk CAPUbK
#PrivatePublickeys Client CAPrivi CAPLBE | 4
#InitialSystemknowledge Server, CAPrivk Client, CAR

- cert\erified : bool;

- fillarl : Messags;

- dliertHello ;: Messags;

- serverHelo | Messags;

- fillarZ : Messags;
[isecretMessage : Message;
- dientCert : Messags;

L

<<cryptoblock=> & <<cryptoblock=>
Client Server
- serverCert : Message; - CAPUbK : Key;
- serverPubK : Kay, - CAPrivK : Kay;
A -PMS :int; - serverCert : Message;

- M3 : Message; - serverPubk : Key;

- CAPUBK : Keay; - serverPrivk : Key;

- CAPrivK : Kay; - PMS : Message;

- M3 : Massags;
- dliertHallo : Messags;

- serverHello ; Messags;

- filerl : Messags;

- secretMessage ; Messags;
- diertCert : Messags;

- certierified : boal,

Property Pragma

ﬂ #Authenticity Client. sendMessage, secretMessage
#Confidentiality Client. secretMessage

[4]

i TTool: /fhomes/apvrille/Work/TTool/papers/dem .

= i

Quit TTool

[5

—

(6]

(71

[8

—

9

—

[10]

(1]

[12]

[13]

[14]

[15]

[16]

Fig. 2. SysML-Sec model in TTool featuring the results of a security formal verification

ICS-CERT, “Hospira lifecare pca infusion system vul-
nerabilities, advisory (icsa-15-125-01b),” https://ics-cert.us-
cert.gov/advisories/ICSA-15-125-01B, Jun. 2015. [Online].
Available: https://ics-cert.us-cert.gov/advisories/ICSA-15-125-01B
A. Apvrille, “Geek usages for your fitbit flex tracker
hacklu, luxemburg, october 2015 Slides at fra-
madrive.org/index.php/s/WkénxAKMpVTdQI4, Oct. 2015.

D. Maynor, “Scada security and terrorism: We’re not crying wolf!”
in Invited presentation at BlackHat BH 2006. Presentation avail-
able at: https://www.blackhat.com/presentations/bh-federal-06/BH-
Fed-06-Maynor-Graham-up.pdf, USA, 2006.

L. Apvrille and Y. Roudier, Model-Driven Engineering and Soft-
ware Development. Switzerland: Springer International Publish-
ing, 2016, ch. Designing Safe and Secure Embedded and Cyber-
Physical Systems with SysML-Sec, pp. 293-308.
L. Apvrille, “TTool,” ttool.telecom-paristech.fr,
[Online]. Available: ttool.telecom-paristech.fr

L. Apvrille and Y. Roudier, “Sysml-sec attack graphs: Compact
representations for complex attacks,” in The Second International
Workshop on Graphical Models for Security (GraMSec 2015), vol.
9390. Verona, Italy: Springer, LNCS, Jul. 2015, pp. 35-49.

D. Genius and L. Apvrille, “Virtual yet precise prototyping: An
automotive case study,” in 8th European Congress on Embedded
Real Time Software and Systems (ERTS2°2016), Toulouse, Jan.
2016.

P. De Saqui-Sannes and L. Apvrille, “Making modeling assump-
tions an explicit part of real-time systems models,” in 8th Eu-
ropean Congress on Embedded Real Time Software and Systems
(ERTS2°2016), Toulouse, France, Jan. 2016.

H. Schweppe, Y. Roudier, B. Weyl, L. Apvrille, and D. Scheuer-
mann, “C2x communication: Securing the last meter,” in The 4th
IEEE International Symposium on Wireless Vehicular Communica-
tions: WIVEC2011, San Francisco, USA, Sep. 2011.

L. Apvrille and P. De Saqui Sannes, “AVATAR/TTool : un envi-
ronnement en mode libre pour SysML temps réel,” Génie Logiciel,
no. 98, pp. 22-26, Sep. 2011.

L. Apvrille and P. De Saqui-Sannes, “Requirements analysis,”
Embedded Systems: Analysis and Modeling with SysML, UML and
AADL, 2013.

J. Bengtsson and W. Yi., “Timed automata: Semantics, algorithms

Dec. 2003.

[17]

(18]

[19]

[20]

[21]

[22]

[23]

and tools,” in Lecture Notes on Concurrency and Petri Nets. W.
Reisig and G. Rozenberg (eds.), LNCS 3098, Springer-Verlag,
2004, pp. 87-124.

F. Lugou, L. W. Li, L. Apvrille, and R. Ameur-Boulifa, “Sysml
models and model transformation for security,” in Conferénce
on Model-Driven Engineering and Software Development (Mod-
elsward’2016), Rome, Italy, Feb. 2016.

B. Blanchet, “Automatic Verification of Correspondences for Secu-
rity Protocols,” Journal of Computer Security, vol. 17, no. 4, pp.
363-434, Jul. 2009.

ISO-LOTOS, “A Formal Description Technique Based on the Tem-
poral Ordering of Observational Behaviour,” in Draft International
Standard 8807, International Organization for Standardization -
Information Processing Systems - Open Systems Interconnection,
Geneva, July 1987.

J. Jirjens, “Umlsec: Extending uml for secure systems
development,” in Proceedings of the 5th International Conference
on The Unified Modeling Language, ser. UML ’02. London,
UK, UK: Springer-Verlag, 2002, pp. 412-425. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647246.719625

D. P. Eames and J. D. Moffett, “The integration of safety and
security requirements,” in SAFECOMP, 1999, pp. 468—480.

L. Pietre-Cambacedes and M. Bouissou, “Cross-fertilization be-
tween safety and security engineering,” Rel. Eng. & Sys. Safety,
vol. 110, pp. 110-126, 2013.

C. Raspotnig and A. L. Opdahl, “Comparing risk identification
techniques for safety and security requirements,” Journal of Systems
and Software, vol. 86, no. 4, pp. 11241151, 2013.

