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Abstract—In massive MIMO systems, to partition users into
groups and serve the groups separately can significantly re-
duce the processing complexity. In the existing literature, user
grouping is done by classifying the channel covariance matrices.
Consequently, the inter-group interference due to user grouping
and per group processing is not taken into account. In addition,
those methods only work for a fixed number of groups, and
the optimal group number is hard to determine. In this paper,
a joint user grouping and beamforming strategy is proposed
to jointly optimize the number of groups, the user grouping,
and the beamforming. The scheme is derived by maximizing
the total expected signal-to-interference-leakage-and-noise-ratio
(SLNR) lower bound in the network via two-timescale stochastic
optimization techniques. Numerical results demonstrate signifi-
cant sum rate performance gain over the baseline scheme in the
literature.

Index Terms—Massive MIMO, User grouping, Beamforming,
Two-timescale stochastic optimization

I. INTRODUCTION

Massive MIMO can achieve very high performance gain
through transmitting the signal over a large number of an-
tennas. However, the large dimension of the antenna array
significantly increases the complexity in terms of channel state
information (CSI) feedback and beamforming. One of the
important techniques for complexity reduction is to separate
users into groups so that the base station (BS) can compute the
beamformers for each group separately. Towards this end, the
work [1] proposed user grouping based on the second order
channel statistics, such that the users in the same group share
similar channel statistics in the spatial domain, but users from
different groups have almost orthogonal statistics. Following
the user grouping, the work [2] and some follow up works [3]
and [4] proposed two-layer precoding strategies to decompose
the beamformer into a pre-beamformer specified for each
group and an inner precoder adaptive to the instantaneous
channel for each user. With the pre-beamforming, the channel
dimension is reduced, and the BS can process each group
of users with much lower complexity. It was shown in [1]
and [2] that good performance can be achieved with reduced
complexity in instantaneous processing under the scenario that
users are geographically clustered.

However, it is in general challenging to find a good user
partition. First, in some scenarios, users may be uniformly
distributed in geographic locations, and hence, their signal

subspace may overlap with one another. As a result, it may
be infeasible to set users apart so that the signal subspaces
of different groups are nearly orthogonal. In this case, smart
pre-beamformers should be jointly designed to steer the group
signal to the null signal subspace of the other groups. Second,
it is difficult to determine the optimal number of groups to
form. More groups may lead to more inter-group interference,
whereas, fewer groups may result in higher complexity in per
group processing.

In prior works on user grouping, [1] and [5] studied several
subspace based user grouping algorithms. These algorithms are
mostly based on the similarity between the channel covariance
matrices, but the inter-group interference due to user grouping
and per group processing is ignored. Note that, if the users are
already clustered in their geographic locations, the subspace
based user grouping may work well. However, if the users
are uniformly distributed, such methods may result in large
inter-group interference. In addition, the number of groups G
is fixed in [1] and [5], and it is not clear how to choose a
good parameter G. Intuitively, the optimal G should depend
on the user topology as well as the beamforming strategy.
For a given user grouping result, a pre-beamforming problem
was studied in [4], where a trace quotient problem was
formulated to balance the signal energy and the inter group
interference. However, without a good user grouping, the pre-
beamforming would not achieve the potential performance of
massive MIMO. In general, user grouping and beamforming
should depend on each other. Such observation motivates a
joint design on user grouping and beamforming, which has
not been well addressed in the literature.

This paper attempts to jointly design the user grouping
and beamforming for low complexity per grouping processing
in massive MIMO systems. We formulate an optimization
problem to jointly determine the number of groups G, the
user grouping, and the associated pre-beamforming, as max-
imizing the overall expected SLNR of the network. Two
efficient techniques are developed to find the solution. First,
the problem is decomposed into an inner precoding problem
and a joint user grouping and pre-beamforming problem. It is
shown that the inner precoding and pre-beamforming can be
relaxed to matrix trace quotient problems, which can be solved
efficiently. Second, to solve the grouping problem, we apply
the merge-and-split algorithm inspired from the coalitional
game theory to search for a suboptimal grouping solution978-1-5090-1749-2/16/$31.00 c⃝2016 IEEE



with flexible group numbers. Numerical results demonstrate
significant sum rate performance gain over the subspace based
baseline algorithm in [1].

II. SYSTEM MODEL

A. Channel Model

Consider a single cell massive MIMO system, where the BS
equips with Nt antennas and serves K ≤ Nt single antenna
users. Denote the downlink channel between the BS and the
kth user as hH

k , where hk ∈ CNt is modeled as

hk = R
1
2
k h

ω (1)

in which hω ∼ CN (0, I) is a random vector with independent
and identically distributed (i.i.d.) elements , Rk = E

{
hkh

H
k

}

is the channel covariance matrix known by the BS with
tr {Rk} = lkNt, and lk denotes the large-scale fading co-
efficient. It is assumed that rank(Rk) ≪ Nt. In particular,
consider that the transmission signal from the BS has narrow
angular spread (AS) △, and there is a diffuse field of isotropic
scatters around the users. The (p, q)th entry of the transmit
covariance matrix Rk is given by [6]

[Rk](p,q) = lk

ˆ π

−π

ej[φp(θ)−φq(θ)]P(θ − θk)dθ (2)

where φp(θ)−φq(θ) accounts for the phase difference between
the pth and qth antenna elements over the angle of departure
(AOD) θ at the BS, the function P(θ−θ) is the power angular
spectrum (PAS) with respect to (w.r.t.) the AOD θ at the BS.

The rank deficiency property motivates the two-layer beam-
forming structure as follows.

B. Two-layer Beamforming

Consider that K users are partitioned into G groups, where
the number G is to be determined. The BS delivers message
xg,i to user i in group g using beamformer w̃g,i ∈ CNt with
the following structure

w̃g,i = Vgwg,i (3)

where Vg ∈ CNt×M is the pre-beamformer that is assigned
identically to the users in group g, wg,i ∈ CM is the inner
precoder for each user i in group g, and M is a system param-
eter that can be chosen as the number of dominant eigenvalues
of the channel covariance matrices Rk. In particular, the pre-
beamformer Vg is designed in conjunction with user grouping
and adaptive to the global CSI statistics, whereas, wg,i is
computed from the local instantaneous CSI within a group.

Considering equal power allocation among all the users, the
received signal at user i in group g is given by

yg,i =

√
P

K
hH
g,iVgwg,ixg,i +

√
P

K

∑

j∈Sg\{i}

hH
g,iVgwg,jsg,j

+

√
P

K

∑

l̸=g

∑

j∈Sl

hH
g,iVlwl,jxl,j + ng,i

where Sg denotes the set of users in group g, the term ng,i ∼
CN (0, 1) is the additive Gaussian noise with unit variance,
and P is the noise normalized total transmit power.

Assume that the BS knows perfectly the M -dimensional
equivalent channels {hH

g,kVg}. Since the inner precoders wg,i

are computed in a M -dimensional subspace for each group
individually, the complexity has been significantly reduced.

The goal of this paper is to investigate how to separate the
users into groups S1, S2, . . . , SG with associated beamformers
Vg and wg,i, and a properly chosen group number G.

III. JOINT USER GROUPING AND BEAMFORMING DESIGN

There are many beamforming methods proposed for mul-
tiuser massive MIMO systems in the literature. In particular,
we focus here on the minimum mean-square error (MMSE)
beamforming [7], which is simple and considered to achieve
good performance from low to high signal-to-noise ratio
(SNR).

Let HH = [h1,h2, . . . ,hK ]H ∈ CK×Nt be the composite
channel matrix. The transmit beamforming matrix that satisfies
the MMSE criteria is given by [7]

W̃MMSE = H(HHH+ αI)−1

where α = K/P . From the result in [8], the kth normalized
w̃MMSE

k column of W̃MMSE can be written as w̃MMSE
k =

ejθw̃SLNR
k , where w̃SLNR

k is a vector obtained from the SLNR
maximization criterion as follows

w̃SLNR
k = arg max

∥w̃k∥2=1
SLNRk !

|hT
kw̃k|2∑

j ̸=k |hjw̃k|2 + α
. (4)

In this section, we exploit the above SLNR property to en-
able joint user grouping and beamforming for low complexity
per group processing in massive MIMO.

A. Formulation via Stochastic Optimization

The two-layer beamforming structure in (3) imposes two
additional constraints on the beamformer w̃g,i: (i) the users in
the same group g have the same pre-beamformer Vg , which
only depends on the channel statistics and the grouping result,
and (ii) the inner precoder depends on the intra-group CSI. As
a result, we cannot directly maximize the instantaneous SLNR
in (4), but instead, the expected value E{

∑
i∈Sg

SLNRg,i}
for each group. A mathematical tool to tackle these structural
constraints is multi-timescale stochastic optimization [9], [10]
described as follows.

Let HH
g = [{hk}k∈Sg

]H be the composite channel matrix
for group Sg . Let S = {S1, S2, . . . , Sg, . . . } be a user
partition, where Si ̸= ∅, Si

⋂
Sj = ∅ for i ̸= j, and⋃

g Sg = {1, 2, . . . ,K}. The SLNR criteria in (4) under joint
user grouping and two-layer beamforming is given by the
following stochastic optimization problem

max
S,{Vg},{wg,i(·)}

|S|∑

g=1

E

⎧
⎨

⎩
∑

i∈Sg

SLNRg,i

⎫
⎬

⎭ (5)

subject to ∥wg,i∥2 = 1, ∀i ∈ Sg, ∀g
VH

gVg = I, ∀g



where

SLNRg,i

=
|hH

g,iVgwg,i|2∑

j∈Sg\{i}

|hH
g,jVgwg,i|2 +

∑

l̸=g,j∈Sl

|hH
l,jVgwg,i|2 + α

in which, the expectation is taken over the channel statistics of
all the users in the network, and wg,i(Hg,Vg) is a function
to be optimized that depends on the pre-beamformer Vg and
the intra-group channel realizations Hg, the pre-beamformer
Vg depends on the global channel statistics, and finally,
the grouping variable S is to be optimized to achieve the
maximum total expected SLNR.

Using the decomposition technique for two-timescale
stochastic optimization in [10], the problem in (5) can be
decomposed into a series of inner precoding problems for each
channel realization Hg in each group g

Γg(Vg;Hg) = max
{wg,i;i∈Sg}

E

⎧
⎨

⎩
∑

i∈Sg

SLNRg,i

∣∣Hg

⎫
⎬

⎭ (6)

subject to ∥wg,i∥2 = 1, ∀i ∈ Sg

and a joint user grouping and pre-beamforming problem

max
S,{Vg}

|S|∑

g=1

E {Γg(Vg;Hg)} (7)

subject to VH
gVg = I, g = 1, 2, . . . , |S|.

B. The Inner Precoding

For each group g, given the intra-group channel realization
Hg, the expectation is evaluated over the channels from
outside the group g. Hence, it is very difficult to obtain the
explicit expression of the objective function (6). To circumvent
this challenge, we relax the inner problem by deriving a lower
bound on E

{
SLNRg,i

∣∣Hg

}
in terms of the second order

statistics Ri for i /∈ Sg as follows.
Lemma 1 (Lower bound of the conditional SLNR): The

following holds

E
{

SLNRg,i

∣∣Hg

}
≥

wH
g,iG̃g,iwg,i

wH
g,iTg,iwg,i

(8)

where G̃g,i ! VH
ghg,ih

H
g,iVg and

Tg,i =
∑

j∈Sg\{i}

G̃g,j +VH
g

( ∑

l̸=g,j∈Sl

Rl,j

)
Vg + αI.

As a result, the inner problem in (6) can be relaxed as
the maximization on the expected SLNR lower bound in (8).
This yields a standard trace quotient problem [11], and the
maximizer w⋆

g,i of (8) is given by

w⋆
g,i =

√
ϕg,iT

−1
g,iV

H
ghg,i (9)

where the coefficient ϕg,i is to normalize w⋆
g,i such that

∥w⋆
g,i∥ = 1.

C. The Joint User Grouping and Pre-beamforming

Using the inner precoding solution w⋆
g,i in (9), the max-

imum value of the conditional SLNR lower bound (8) is
obtained, but the unconditional SLNR E {Γg(Vg;Hg)} =
E
{
E
{

SLNRg,i

∣∣Hg

}}
in (7) is still hard to compute. To

compromise, we derive the lower bound of E {Γg(Vg;Hg)}
in the following lemma.1

Lemma 2 (Lower bound of the expected SLNR): Under
inner precoding (9), the expected SLNR can be lower bounded
as

E {Γg(Vg;Hg)} ≥
tr
{
VH

gQgVg

}

tr
{
VH

gQ−gVg

} (10)

where

Qg = R̄g −
1

M

∑

i∈Sg

Kg−1∑

m=1

λm(Rg,i)I (11)

Q−g =
∑

l̸=g

R̄l +
α

M
I (12)

in which R̄g !
∑

i∈Sg
Rg,i denotes the aggregate covariance

matrix of the users in group g, λm(A) denotes the mth largest
eigenvalue of matrix A, and Kg = |Sg| denotes the number
of users in group g.

Using Lemma 2, we relax the maximization problem (7) by
maximizing the lower bound of the objective function (7). The
relaxed joint user grouping and pre-beamforming problem can
be written as

max
S,{Vg}

|S|∑

g=1

tr
{
VH

gQgVg

}

tr
{
VH

gQ−gVg

} (13)

subject to VH
gVg = I, g = 1, 2, . . . , |S|.

Remark 1 (Comparison to subspace based grouping):

Mathematically, the subspace based grouping in [1] and
[5] is to minimize the overall the chordal distance∑G

g=1

∑
i∈Sg

∥UiU
H
i − ŪgŪ

H
g ∥2F , where Ui is a Nt × M

matrix that consists of M dominant eigenvector of Ri, Ūg

consists of M dominant eigenvectors of
∑

i∈Sg
UiU

H
i (repre-

senting the group center), and the number of groups G is fixed.
As a result, the inter-group interference is ignored. As a com-
parison, the objective (13) characterizes the expected SLNR,
where the inter-group interference is captured. Moreover, the
problem (13) also optimizes the number of groups G.

IV. ALGORITHMS FOR JOINT USER GROUPING AND

PRE-BEAMFORMING

The joint user grouping and pre-beamforming problem (13)
is hard to solve, since the number of feasible user partitions
is exponential to the number of users K . Note that, even
for a fixed group number G in the simple subspace based
grouping, the K-means algorithm proposed in [1] and [5] does
not guarantee to find the optimal grouping. Therefore, we only
focus on suboptimal solutions to (13).

1Related result can be found in [4], but the lower bound here is tighter.



Algorithm 1 Pre-beamforming Algorithm

1) Initialization: Obtain Qg and Q−g from (11)-(12).

Choose a starting point V
(0)
g .

2) Given V
(n)
g , compute ρ(n) =

tr{V(n)H
g QgV

(n)
g }

tr
{
V

(n)H
g Q

−gV
(n)
g

} .

3) Choose V
(n+1)
g to be the eigenvectors of Qg−ρ(n)Q−g

corresponding to the M largest eigenvalues.
4) Repeat from Step 2 until (ρ(n+1) − ρ(n))/ρ(n) < ϵ.

A. Solution to the Pre-beamformer

Given the user grouping S, the optimal pre-beamformer
V⋆

g = V⋆
g(S) is the solution that maximizes the ma-

trix trace quotient tr
{
VH

gQgVg

}
/tr

{
VH

gQ−gVg

}
. Although

such maximization problem is non-convex, there exists itera-
tive algorithm that is proven to converge to the global optimal
solution V⋆

g at quadratic convergence rate [11], [12]. The pre-
beamforming algorithm is summarized in Algorithm 1.

A good property of Algorithm 1 is that the objective value
ρ(n) in Step 2) strictly increases every step. Since the algorithm
converges at quadratic rate, one can terminate the algorithm
after very few steps, without losing too much precision to the
optimal solution V⋆

g .

B. Algorithm for User Grouping

Given a user grouping S, define v(Sg) as a function that
quantifies the value of forming user group Sg . In particular,
we choose

v(Sg) !
tr
{
(V⋆

g)
HQgV

⋆
g

}

tr
{
(V⋆

g)HQ−gV⋆
g

}

i.e., approximately the maximum SLNR for group Sg. From
Section IV-A, v(Sg) can be efficiently computed.

The joint user grouping and pre-beamforming problem in
(13) is equivalent to maximizing the total grouping value
VG =

∑|S|
g=1 v(Sg) over all feasible user grouping S. To avoid

exhaustive enumeration, we propose an iterative algorithm
based on two rules, merge and split. The merge-and-split
algorithm was introduced and studied in [13] for coalition
formation in cooperative game theory and applied to many
applications in wireless communication systems [14], [15].
The merge and split algorithm for user grouping is summarized
in Algorithm 2.

A good property of the merge-and-split algorithm is that it
terminates in finite steps. This is because each merge or split
operation strictly increases the total value VG, but since there
are only finite feasible user partitions S, the merge-and-split
iteration must reach a local maximum point in finite steps.

To implement the merge and split algorithm, a good initial-
ization is important to accelerate the algorithm termination and
avoid bad local optimal point. For example, if the initial group-
ing is the grand user set itself, i.e., S = {S1} = {1, 2, . . . ,K},
then it costs a huge complexity to try every combination of
splitting S1. On the other hand, if the initial grouping is to
form each user a group itself, i.e., S = {{1}, {2}, . . . , {K}},
then the algorithm may suffer from bad local optimum. This is

Algorithm 2 User Grouping via Merge and Split

1) Initialization: Choose a initial user grouping S =
{S1, S2, . . . }.

2) Merge: Merge any two user groups Si and Sj , if the
merge yields a higher group value, i.e., {Si, Sj} →
Si

⋃
Sj if v(Si

⋃
Sj) > v(Si) + v(Sj).

3) Split: Split a group Si into two subgroups S(1)
i and

S(2)
i , if the split yields a higher sum group value, i.e.,

Si → {S(1)
i , S(2)

i } if v(Si) > v(S(1)
i ) + v(S(2)

i ).
4) Repeat the merge and split operations until the user

grouping does not change anymore.

because, the initial inter-group interference too large due to the
large number of groups, and consequently, merging any two
groups cannot significantly reduce the inter-group interference
but lose some signal energy. To avoid these, we choose the K-
means algorithm to partition the users into G0 groups based
on the dominant subspace of the covariance matrices.

K-means initialization:

1) Choose a parameter G0 and randomly select G0 users
k1, k2, . . . kG0 . Let Ūg = Ukg

, for g = 1, 2, . . . , G0,
where Uk consists of M dominant eigenvectors of the
covariance matrix Rk.

2) For each user k, choose a group g such that ∥UkU
H
k −

ŪgŪ
H
g ∥2F ≤ ∥UkU

H
k − ŪlŪ

H
l ∥2F for all l ̸= g. Let

k → Sg.
3) For each group g, let Ūg be a matrix that contains the

M dominant eigenvectors of
∑

i∈Sg
UiU

H
i .

4) Repeat from 2) until the user grouping does not change.

Remark 2 (Complexity): Since the user grouping is updated
in a slow timescale (e.g., once over thousands of channel re-
alizations), the computational complexity could be ignored in
the long run. The system can still benefit from the complexity
reduction for inner precoding under the two-layer structure.

V. NUMERICAL RESULTS

Consider a single cell massive MIMO system with users
randomly and uniformly distributed in a 600 × 400[m] area.
The BS equips with Nt = 60 antennas and is placed at the
coordinate (0,−200[m]) as illustrated in Fig. 1. The extended
WINNER channel model [16] under the urban macro scenario
(light-of-sight (LOS) case) is adopted to model the path
loss. The transmit covariance is modeled as (2), with AS
△ = 15 degree and uniform PAS. The noise at the receiver is
normalized such that the average path gain is 0 dB.

The performance of the proposed scheme is compared to
the following baseline (subspace based method in [1]): users
are grouped based on the chordal distance on the dominant
eigen subspace of the covariance matrices using the K-means
algorithm.

Fig. 2 shows the sum rate over the total number of users
in the cell under total transmission power P = 10 dB. The
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Figure 2. Sum rate over the total number of users in the cell under total
transmission power P = 10 dB.

parameter M for two-layer beamforming is chosen as M = 8.2

First of all, for the baseline in [1], it is better to have fewer
groups when the number of users K is small, but more groups
when K is large. However, the baseline cannot dynamically
adjust the group number G. As a comparison, the proposed
scheme always performs the best, because it not only adapts
the number of groups to the total number of users and channel
statistics, but also it is aware of the inter-group interference
via the proposed joint user grouping and beamforming design.
Second, for a large number of users, the marginal sum rate
gain of adding more users to the network decreases. This is
because the inter-group interference also increases due to the
uniform placement of the users.

2The choice of M follows the guideline in [1], which is close to but smaller
than the number of dominant eigenvalues of the channel covariance matrix.

VI. CONCLUSIONS

In this paper, a joint user grouping and beamforming strat-
egy was proposed under the two-layer beamforming structure.
The problem was formulated as the maximization of the total
expected SLNR in the network. Using multi-timescale stochas-
tic optimization techniques, the problem was decomposed into
a series of inner precoding problems and a joint user grouping
and pre-beamforming problem, where closed form solutions
were derived for the inner problems and a merge-and-split al-
gorithm was proposed for the outer problem. As a comparison
to the conventional design where the number of groups is fixed
in a heuristic way, under the proposed method, the number
of groups, the user grouping, and the pre-beamformer are
jointly optimized. Numerical results demonstrated significant
performance gain in terms of sum rate over the baseline
scheme in the literature.

APPENDIX

A. Proof of Lemma 1 (Sketch):

The lower bound can be derived as follows

E
{

SLNRg,i

∣∣Hg

}
≥

|hH
g,iVgwg,i|2∑

(l,j) ̸=(g,i)

E
{
|hH

l,jVgwg,i|2
∣∣Hg

}
+ α

due to the Jesen’s inequality on the convex function f(x) =
a

b+cx
. The denominator can be derived as

∑

(l,j) ̸=(g,i)

E
{
|hH

l,jVgwg,i|2
∣∣Hg

}
+ α

=
∑

j∈Sg\{i}

wH
g,iV

H
ghg,jh

H
g,jVgwg,i

+
∑

l̸=g,j∈Sl

wH
g,iV

H
gE

{
hl,jh

H
l,j

∣∣Hg

}
Vgwg,i + α

= wH
g,iV

H
g

⎛

⎝
∑

j∈Sg\{i}

Gg,j +
∑

l̸=g,j∈Sl

Rl,j + αI

⎞

⎠Vgwg,i

where the first equality is due to the fact that the inner
precoder wg,i only depends on the in-group channel re-
alization Hg but not the inter-group channels {hl,j} for
l ̸= g, and moreover, Vg only depends on the channel
statistics but not the channel realizations. The second equality
is because the channels between users are independent, i.e.,
E{hl,jh

H
l,j

∣∣Hg} = E{hl,jh
H
l,j} = Rl,j , and Gg., ! hg,jh

H
g,j .

With further straight-forward manipulations, the results in
Lemma 1 can be obtained.

B. Proof of Lemma 2 (Sketch):

The lower bound can be derived as follows

E {Γg(Vg;Hg)} = E

⎧
⎨

⎩ max
{wg,i(·)}

E

⎧
⎨

⎩
∑

i∈Sg

SLNRg,i(wg,i)
∣∣Hg

⎫
⎬

⎭

⎫
⎬

⎭

≥ E

⎧
⎨

⎩
∑

i∈Sg

γL
g,i(w

ZF
g,i;Vg,Hg)

⎫
⎬

⎭ (14)



where γL
g,i(wg,i;Vg,Hg) !

wHG̃g,iw

wHTg,iw
takes the form of the

lower bound in Lemma 1, in which G̃g,i and Tg,i are given
in Lemma 1 for each user i in group g. The inequality is due to
the fact that the zero-forcing (ZF) precoder wZF

g,i is not optimal
in maximizing γL

g,i(w;Vg,Hg).
The function γL

g,i(w
ZF
g,i;Vg,Hg) can be evaluated as

|hH
g,iVgw

ZF
g,i|2

(
wZF

g,i

)H
[
VH

g

(∑

l̸=g

R̄l

)
Vg

]
wZF

g,i + α

(15)

where R̄g !
∑

i∈Sg
Rg,i denotes the aggregate covariance

matrix of users in group g.
1) The numerator of (15): In particular, the ZF precoder

wZF
g,i in (15) can be written as

wZF
g,i =

Pg,iV
H
ghg,i

∥Pg,iVH
ghg,i∥

where

Pg,i = I− H̃g,−i(H̃
H
g,−iH̃g,−i)

−1H̃H
g,−i

is a M×M projection matrix to project the equivalent channel
VH

ghg,i for user i in group g to the null space of spanned by the

vectors {VH
ghg,j : j ∈ Sg, j ̸= i}. Here H̃g,−i = VH

gHg,−i,
Hg,−i = [{hg,j : j ∈ Sg, j ̸= i}] is the Nt × (Kg − 1) matrix
containing the channel vectors in group g except user i, and
Kg = |Sg| is the number of users in group g.

Using the projection matrix property Pg,i = Pg,iP
H
g,i =

PH
g,i, the following holds

|hH
g,iVgw

ZF
g,i|2 =

|hH
g,iVgPg,iV

H
ghg,i|2

∥Pg,iVH
ghg,i∥2

= ∥Pg,iV
H
ghg,i∥2 = tr

{
hH
g,iVgPg,iV

H
ghg,i

}
.

Therefore, we have

E

{
|hH

g,iVgw
ZF
g,i|2

∣∣∣∣Hg,−i

}

= E
{

tr
{
hH
g,iVgPg,iV

H
ghg,i

} ∣∣Hg,−i

}

= tr
{
Pg,iV

H
gRg,iVgPg,i

}

≥
M∑

m=Kg

λm(VH
gRg,iVg)

= tr
{
VH

gRg,iVg

}
−
∑Kg−1

m=1 λm(VH
gRg,iVg)

≥ tr
{
VH

gRg,iVg

}
−
∑Kg−1

m=1 λm(Rg,i)

where the function λm(A) yields the mth largest eigenvalue of
A. In the inequality, the equality is achieved when the channel
vectors in Hg,−i span the (Kg − 1)-dimensional dominant
eigen subspace of VH

gRg,iVg , and consequently, the projector
Pg,i projects the matrix VH

gRg,iVg onto the subspace spanned
by the M −Kg + 1 eigenvectors corresponding to the M −
Kg + 1 least eigenvalues.

Since the above result does not depend on channel realiza-
tion Hg,−i, we have E

{
|hH

g,iVgw
ZF
g,i|2

}
≥ tr

{
VH

gRg,iVg

}
−

∑Kg−1
m=1 λm(Rg,i).

2) The denominator of (15): The first term in the denomi-
nator of (15) can be upper bounded as

(
wZF

g,i

)H
[
VH

g

(∑

l̸=g

R̄l

)
Vg

]
wZF

g,i =

∥∥∥∥

(∑

l̸=g

R̄l

) 1
2

Vgw
ZF
g,i

∥∥∥∥
2

≤
∥∥∥∥

(∑

l̸=g

R̄l

) 1
2

Vg

∥∥∥∥
2

2

∥wZF
g,i∥2 ≤ tr

{
VH

g

∑
l̸=gR̄lVg

}

where ∥ · ∥ is the vector Euclidean norm, and ∥ · ∥2 is the
matrix Euclidean norm (spectral norm).

With further straight-forward manipulations, the results in
Lemma 2 can be obtained.
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