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ABSTRACT

Blind channel identi�cation and equalization based on sec-
ond-order statistics by subspace �tting and linear prediction
have received a lot of attention lately. On the other hand,
the use of cyclic statistics in fractionally sampled channels
has also raised considerable interest. We propose to use
these statistics in subspace �tting and linear prediction for
(possibly multiuser) channel identi�cation. The main ben-
e�t expected is to get rid of the dependence on the color of
the additive noise, due to the properties of the cyclocorre-
lations. We also present some simulations to illustrate the
e�ectiveness of the method.

1. PROBLEM POSITION

We consider a communication system with p emitters and a
receiver constituted of an array of M antennas. The signals
received are oversampled by a factor m w.r.t. the symbol
rate. The channel is FIR of duration NT=m where T is the
symbol duration. The received signal can be written as :

x(n) =

1X
k=�1

h(k)u(n�k)+v(n) =

1X
k=�1

h(n�km)ak+v(n)

where

u(n) =

1X
k=�1

ak�(n � km)

The received signal x(n) and noise v(n) are a M � 1
vectors. x(n) is cycloctationary with period m whereas
v(n) is assumed not to be cyclostationary with period m.
h(k) has dimension M � p, a(k) and u(k) have dimensions
p� 1.

2. CYCLIC STATISTICS

x(n) is cycloctationary with period m whereas v(n) is as-
sumed not to be cyclostationary with period m. Hence, the
correlations :

Rxx(n; �) = E
�
x(n)xH(n� �)

	
are cyclic in n with period m(H denotes complex conjugate
tranpose). One can easily express them as:
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Rxx(n; �) =
1X

�=�1

1X
�=�1

h(n� �m)Raa(�)h
H(n� �m+ �m� �)

+Rvv(�)

We then express the kth cyclocorrelation as :

R
fkg
xx (�)

4

=
1

m

m�1X
l=0

Rxx(l; �)e
�| 2�lk

m = Ek
�
x(l)xH(l � �)

	
whose value is :

R
fkg
xx (�) = 1

m

1X
�=�1

1X
�=�1

h(�)Raa(�)

hH(�+ �m� �)e�|
2��k
m +Rvv(�)�(k)

We can introduce a cyclic correlation matrix as :

R
fkg
xx

4

=2
6664

R
fkg
xx (0) R

fkg
xx (1) � � � R

fkg
xx (K � 1)

R
fkg
xx (�1) R

fkg
xx (0) � � � R

fkg
xx (K � 2)

...
...

. ..
...

R
fkg
xx (1�K) R

fkg
xx (2�K) � � � R

fkg
xx (0)

3
7775

= TK(HND
fkg

DFT )R
fkg
uu T

H
K (HN ) + �(k)Rvv

where R
fkg
uu = Raa 
 Im

�, where 
 is a block kronecker
product, where the �rst matrix is a block matrix and the
second matrix is a elementwise matrix.

�

ruu(n; �) = E fu(n)u(n� �)g

=

1X
i=�1

1X
j=�1

�(n� im)�(n� jm� �)a(i)aH(j)

r
fkg
uu

(�)=Pm�1

l=0

P
i

P
j
�(l� im)| {z }
)l=i:m=0

�(n� jm� �)a(i)aH(j)raa(j � i)wkl

where w = e
�{ 2�

m

r
fkg
uu

(�)=

1X
j=�1

�(jm+ �)raa(j)



TK(HN ) is the convolution matrix of HN =
[h(0)h(1) � � �h(N � 1)] and

D
fkg

DFT = blockdiag[Ip�pje
�| 2�k

m Ip�pj � � � je
�|

2�(N�1)k

m Ip�p]

This shows that the cyclic correlations at cycle frequency
k 6= 0 are not a�ected by the additive non k=T cyclo-
stationary noise, whatever its color.

3. CHANNEL ESTIMATION BY SUBSPACE

FITTING.

3.1. The classical way

Let's come back to the p = 1 case and write H0

N =

HND
fkg

DFT , the index k being deduced from the context.
One can write the (compact form of the) SVD of the

cyclocorrelation matrix R
fkg
xx =UDVH with the relations:

rangefUg = rangefTK(H
0

N)g

and
rangefVg = rangefTK(HN )g

We have assumed that TK(H
0

N)g is full rank, which is
the usual condition (indeed, one can easily verify than
rankfTK(HN )g = rankfTK(H

0

N )g). We can then solve the
classical subspace �tting problem :

min
H0
N
;T

jjTK(H
0

N )�UT jj
2

F

If we introduce U? such that [UU?] is a unitary matrix,
this leads to

min
H0
N

H
0t
N

2
4D?X
i=1

TN (U
?Ht
i )T H

N (U?Ht
i )

3
5H0Ht

N

where U?

i is a K � 1 block vector with M � 1 blocks,
D
? = N+K�1 and superscript t denotes the transposition

of the blocks of a block matrix. H
0Ht
N is then the eigenvec-

tor corresponding to the minimum eigenvalue of the matrix
between brackets.
The case p > 1 can be (partially) solved in a manner

similar to [Slo94] and [Lou96].

3.2. A low complexity algorithm

The above derivation relies on the orthogonality between
the signal and noise subspaces. When k 6= 0, we have :

R
fkg
xx = TK(H

0

N )R
fkg
uu T

H
K (HN )

where the noise contribution to the covariance expression
disappears. From this, we observe that the left column

space of TK(H
0

N ) and of R
fkg
xx are the same. This leads to

the following subspace �tting criterion:

min
HN ;Q

jjTK(H
0

N )� R̂
fkg

xx BQjj

2

F (1)

Hence
R
fkg

uu;Lm
= Raa;L 
 Im

The matrix B has the same dimensions as TK(HN ) and
is �xed. Its choice inuences the quality of the channel esti-
mate. The criterion is separable in HN and Q. Minimizing
w.r.t. Q gives :

Q = (F
H
F)

�1
F
H
TK(H

0

N ); F = R̂
fkg

xx B

Substitution in (1) leads to :

min
HN

jjP
?

FTK(H
0

N )jj
2

F

where P?F = I�PF and PF = F(FHF)�1FH . With the

constraint jjHN jj = jjH0

N jj = 1, we get:

Ĥ0

N = arg max
jjHN jj=1

TK(H
0

N )
HPFTK(H

0

N )

= arg max
jjHN jj=1

H
0
t
NFH

0H
t

N

where F can easily be constructed from PF and t is the
usual block transpose operator. The solution is thus the
maximum eigenvector of F . As in [KOS96], the choice of B
is set to B = TK(HN ), leading to a two step algorithm, the
�rst step where B is an arbitrary selection matrix, yielding
a consistent estimate of the channel, the second step where
B = TK(ĤN ).
The main bene�t of this procedure is the low complexity

of the algorithm, compared to the �rst one, as we don't
need to make an eigendecomposition of the complete cyclic
covariance matrix.
As noted in [KOS96], the use of the conjugate correla-

tions (or conjugate cyclic correlations) for BPSK and MSK
modulations can lead to the same conclusions for the k = 0
case.
Let's further note that, for k = 0, the use of this algo-

rithm is also possible if we consider ~R
f0g

xx = R
f0g
xx �Rvv, in

the case of a known or estimated noise covariance matrix.

4. LINEAR PREDICTION

In this section, we assume uncorrelated symbol sequences.
Consider vectors of signals

XLm(n) = [x(n)
H
x(n � 1)

H
� � �x(n � Lm+ 1)

H
]
H
;

ULm+N�1(n) = [u(n)H � � �u(n� Lm�N + 1)H ]H, then
we have the equation XLm(n) = TLm(HN )ULm+N�1(n).
The linear prediction equations are then :

x̂(n)jXLm(n�1)
= p1x(n� 1) + � � �+ pLmx(n� Lm)

~x(n)jXLm(n�1)
= x(n)� x̂(n)jXLm(n�1)

~x(n)jXLm(n�1)
= [IM �PLm]| {z }

=
�PLm

XLm+1(n)

To �nd the prediction �lter, we express orthogonality of the
prediction error to the past using the cyclocorrelation. This
gives the normal equations :



Ek
�
~x(n)XH

Lm+1(n)

	
= [IM�PLm]R

fkg

xx;Lm+1 = [�
2fkg

~x;Lm0 � � � 0]

Where

�
2fkg
~x;Lm

4

= E
k
�
~x(n)~x

H
(n)
	

= [IM�PLm ]Ek
�
XLm+1(n)X

H

Lm+1(n)

	
[IM�PLm]

H

= �PLmR
fkg

xx;Lm+1
�P
H
Lm

The prediction error can be expressed as : ~x(n) =
h(0)u(n) + (HN � PLmT (HN ))ULm+N�1(n � 1), where
HN = [h(1) � � �h(N)0 � � � 0].
The cyclovariance of the error becomes :

E
k
�
~x(n)~x

H
(n)
	
=
�
2
a

m
h(0)h

H
(0) +

�
2
a

m
H
0

NH
H

N

where HN = HN +PLmT (HN ). Minimizing this cyclo-

variance with respect to PLm leads to HN = 0.
Hence, from the prediction quantities, we can determine

a zero forcing (ZF) equalizer and the channel similarly to
[SP94].

5. SIMULATIONS

5.1. Subspace �tting

In this section, we restrict ourselves to the p = 1 case, using
a randomly generated real channel of length 5T, following
a raised cosine with 90 % excess bandwith.
The receiver has M = 3 antennas and we oversample by

m = 3. We draw the NRMSE of the channel, de�ned as

NRMSE =

vuut 1

50

50X
l=1

jjĥ
(l)

� hjj
2

F =jjhjj
2

F

where ĥ
(l)

is the estimated channel in the l
th trial. In

the �gures below, the NRMSE in dB has been calculated
as 10 � log 10(NRMSE). The estimation is based on the
classic subspace �tting of the k = 1 cyclocorrelation ma-
trix. This matrix is calculated from a burst of 100 QAM-4
symbols (note that if we used real sources, we would have
used the conjugate cyclocorrelation, wich is another means
of getting rid of the noise, provided it is circular). For these
simulations, we used 50 Monte-Carlo runs and a channel
length of 18 (neglecting the 5 �rst and 6 last near zero val-
ues of the channel). The estimations for an SNR of 20 dB
are reproduced hereunder.
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This channel estimate is then followed by a linear MMSE-
ZF multichannel equalizer to give us the MSE at the output
in the �gure below and an estimation of the BER (for SNR=
0,5 and 10 dB), this latter is obtained by simulation on
100000 QAM-4 symbols for each channel estimate : i.e. 107

bits for each SNR.
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Furthermore, we simulated two colored noise scenarios,
the �rst one in a spatially correlated noise with correlation

matrix

 
1 :7 :49
:7 1 :7
:49 :7 1

!

the other with a spatio-temporally �ltered noise by

hn =

 
:346 �:180 :057 �:057 �:365 �:358
:298 :068 �:231 :053 :090 �:229
:387 �:100 :413 :172 :032 :079

!
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* −−  filtered noise

+ −−  white noise

o −− Spatial colored noise

For comparison purposes, we also made estimations with
k = 0 and for the classical subspace �tting based on the
covariance matrix with M �m channels. We illustrate the
e�ect of the (raised cosine transmission) �lter on the overall
channel estimation performance. The tree bottom curves
correspond to the estimation of the convolution of channel
and �lter. The two top curves corresond to the estimation of
the (original) channel alone (no tranmission �lter present).
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5.2. Linear prediction

Simulations on this method proved to be rather poor (for
k = 1), in the sense that we have to use rather large bursts
of symbols to get a proper estimation. For illustration, we
include the evolution of the NRMSE as the burst length
grows for a well-behaved channel (of length 2T and ran-
domly generated). This simulation is done with SNR=25,
M=3, m=3.
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6. CONCLUSION

We have proposed two new channel identi�cation schemes
based on cyclic statistics which are independent of the color
of the additive noise. The subspace �tting gives good per-
formance, but the bene�t of the independence on the noise
color is to be moderated by the loss due to the rather low
cyclic spectral power at k 6= 0.
On the other hand, our approach, with k = 0 gives better

results than the classical scheme. This is mostly due to the
fact that we can better re�ne the channel length estimate
(and should be preceded by a good channel length estima-
tion algorithm). Indeed, if we use a channel of the form
(where M = 2 and m = 2)�

� � � � � � �

� � � � � � �

�

where � is a near zero value, the cyclocorrelation approach
can a�ord to restrict to the central part of the channel, but
the classical approach will try to �nd the M �m multichan-

nel : 0
B@

� � �

� � �

� � �

� � �

1
CA or

0
B@

� � �

� � �

� � �

� � �

1
CA

with 2 more (near zero) parameters to estimate, which will
globally give a worse estimation. The cyclic correlation ap-
proach with k = 0 simply corresponds to the use of a mean
correlation matrix estimated at T

m
separated lags.

Unfortunately, at least in mobile environments, where the
burst lengths are short, the linear prediction method pro-
posed gives poor results. When long data pieces are avail-
able, it could work. A possible direction to improve this
method is the use of the best linear predictor proposed by
[Mia93], where an equivalent multivariate stationary pro-
cess is built, which catches more prediction properties as
the classical multivariate process obtained by vectorization
of the oversampled signals.
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