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Abstract – 5G network architecture and its functions are yet to be defined. However, it is generally agreed that 

cloud computing, Network Function Virtualization (NFV) and Software Defined Networking (SDN) will be key 

enabling technologies for 5G. Indeed, putting all these technologies together ensures several advantages in terms 

of network configuration flexibility, scalability, and elasticity, which are highly needed to fulfill the numerous 

requirements of 5G. Furthermore, 5G network management procedures should be as simple as possible; allowing 

network operators to orchestrate and manage the lifecycle of their Virtual Network Infrastructures (VNIs) and 

the corresponding Virtual Network Functions (VNFs), in a cognitive and programmable fashion. To this end, we 

introduce the concept of “Anything as a Service” (ANYaaS), which allows a network operator to create and 

orchestrate 5G services on demand and in a dynamic way. ANYaaS relies on the reference ETSI NFV 

architecture to orchestrate and manage important services such as mobile Content Delivery Network as a Service 

(CDNaaS), Traffic Offload as a Service (TOFaaS), and Machine Type Communications as a Service (MTCaaS). 

Ultimately, ANYaaS aims for enabling dynamic creation and management of mobile services through agile 

approaches that handle 5G network resources and services. 

 

Keywords: 5G, mobile cloud networking, NFV, federated networked cloud, carrier cloud, OpenStack, CDN, and traffic 

offload. 

 
1. Introduction 

 

5th generation mobile networks (5G), also referred to as beyond 2020 mobile communications systems, represent 

the next major phase of the mobile telecom industry, going beyond the current Long Term Evolution (LTE)1 and 

IMT-advanced systems. In addition to increased peak bit rates, higher spectrum spectral efficiency, better 

coverage, and the support of potential numbers of diverse connectable devices, including Machine Type 

Communications (MTC) devices, 5G systems are required to be cost-efficient, flexibly deployable, elastic, and 

above all programmable. The need for lowering the mobile infrastructure costs and rendering their deployment 

flexible and elastic has become critical for the sustainability of mobile operators worldwide, mainly in light of 

the ever-growing mobile data traffic on one hand and the stagnant (rather falling) Average Revenue per User 

(ARPU) on the other hand. With current mobile network designs, such required flexibility and elasticity are all 

but impossible to realize particularly due to the traditional usage of specific-purpose networking equipment that 

can neither dynamically scale with mobile traffic nor be easily upgraded with new functions.  

Along with recent and ongoing advances in cloud computing and their support of virtualized services, it has 

become promising to design flexible, scalable, and elastic 5G systems benefiting from advanced virtualization 

techniques of cloud computing and exploiting recent advances relevant to Network Function Virtualization 

																																																								
1	For the sake of readability, abbreviations used in this paper are listed in Table 1.	



(NFV). Indeed, with regard to the latter, and thanks to the numerous advantages it offers in terms of network 

configuration flexibility, scalability, and elasticity, NFV has emerged as one of the key visions of the future 5G 

architecture. Researchers in both industry and academia have been designing new architectures for elastically 

composing and operating a virtual end-to-end network platform, on demand, on top of fragmented physical 

infrastructures provided by federated networked cloud [1]. Software-Defined Networking (SDN) techniques 

have been seen as promising enablers for this vision of carrier cloud, which will likely play a crucial role in the 

design of 5G wireless networks.  

Indeed, the 5G architectural design should be as flexible as possible by relying on NFV, SDN and cloud 

computing. This flexibility consists in building, on-demand and within very short times [2], instances of Virtual 

Network Infrastructures (VNIs) along with their composing Virtual Network Functions (VNFs), e.g. Packet Data 

Network Gateway – PGW and Serving Gateway – SGW, i.e., to scale up to sudden traffic growth. Meanwhile, 

the trend towards the decentralization/distribution of the cloud architecture, in the format of cloudlet or the so-

called federated networked cloud (i.e., edge or Fog computing), should allow the placement of VNFs nearby 

end-users. This shall reduce the end-to-end communication path between mobile users and corresponding 

servers, which will definitively improve users’ Quality of Experience (QoE). The 5G network system should 

also allow mobile operators to create and orchestrate, in an easy and dynamic way, network services targeting a 

specific optimization of network resources, e.g. caching, traffic offload, or optimization of a specific application. 

In this vein, we devise in this paper the concept of ANYthing as a Service (ANYaaS), wherein on-demand 

creation and orchestration of 5G services are specified and enabled exploiting the benefits of both cloud 

computing and NFV. ANYaaS allows the instantiation of one or multiple mobile network-related VNIs, along 

with their integration, in order to build a specific 5G service targeting a specific network resource optimization. 

Among the service instances that ANYaaS may launch are the following: 

- Mobile CDN as a Service (CDNaaS): It creates and allows the management of a service instance of a 

virtual CDN whereby CDN VNF instances (e.g., IPTV, Video on Demand, Video caches) are 

instantiated and strategically placed over the federated networked cloud nearby users and supported by 

smart caching strategies based on, among others, content popularity and viewers’ geographical 

distribution and mobility patterns. The latter may also serve as a trigger for the instantiation of new 

CDN VNFs so that video content of interest are cached at nearby cache VNFs following the mobility of 

an individual or a group of viewers, similar in spirit to the concept of Follow Me Cloud (FMC) [3]. 

- Traffic Offload as a Service (TOFaaS): It creates and allows the management of a service instance of a 

VNI, consisting of Local Gateway (L-GW) VNF instances (e.g., alternatively VNF instances of small-

scale PGW), over the underlying federated networked cloud. L-GW VNFs are assumed to have the 

ability to selectively offload IP traffic towards specific networks as determined by the policies of 

mobile operators. Exploiting the benefits of a distributed cloud architecture, L-GW VNFs may be 

instantiated at cloudlets nearby the Radio Access Network (RAN) to achieve efficient utilization of 

network resources, similar in spirit to the Mobile Edge Computing (MEC) concept [11].  

The envisioned ANYaaS concept may create one single service instance operating individually or multiple 

correlated service instances ensuring efficient integration between them. As an example of multiple services, 

CDNaaS and TOFaaS can be created, in an efficiently integrated fashion, to complement the role of each other. 

Further details on this use case will be given in Section 4.   



This paper is organized as follows. Section 2 details the ANYaaS concept and describes its orchestration system 

and how it is integrated within the ETSI NFV reference architecture [4]. Section 3 takes the offering of CDNaaS 

and TOFaaS as a use case to describe in detail the working of ANYaaS. Section 4 discusses technological trends 

that allow the creation of a Proof of Concept (PoC) of ANYaaS. Using CDNaaS as an example, the section also 

investigates which virtualization approaches (Virtual Machine or Container) is appropriate to CDN VNF. 

Finally, the paper concludes in Section 5. 

Table 1: Glossary. 

Abbreviation Name 
ANYaaS Anything as a Service 
ARPU Average Revenue Per User 
CDNaaS Content Distribution Network as a Service 
DC Data Center 
EM Element Manager 
EPC Evolved Packet Core 
FMC Follow Me Cloud 
HSD Horizontal Serial Deployment 
L-GW Local Gateway 
LIPA Local IP Access 
LTE Long Term Evolution 
MANO Management and Orchestration 
MME Mobility Management Entity 
MTCaaS Machine Type Communications as a Service 
NFV Network Function Virtualization 
NFVI NFV Infrastructure 
PM Physical Machine 
PoC Proof of Concept 
QoE Quality of Experience 
RAN Radio Access Network 
SA Service Area 
SDN Software Defined Networking 
SI Service Instance 
SIC Service Instance Components 
SIG Service Instance Graph 
SIPTO Selective IP Traffic Offload 
SLA Service Level Agreement 
SO Service Orchestrator 
TOFaaS Traffic Offload  as a Service 
VIM Virtual Infrastructure Manager 
VM Virtual Machine 
VNF Virtualized Network Function 
VNFC Virtualized Network Function Component  
VNI Virtual Network Infrastructure  
VSD Vertical Serial Deployment 

 

 



2. Anything as a Service: Concept Description 
 

 

 
	
	

 
(a) Abstract level architecture of the ANYaaS service 

orchestrator (b) Management lifecycle of Service Instances 
	

Fig. 1. ANYaaS concept.	
Carrier cloud reveals a new way to ease the management of mobile networks, adding to them flexibility, 

elasticity, and programmability features, provisioned as potential 5G services. Carrier cloud is about enabling the 

on-demand edification of a carrier-grade mobile network on the cloud in an elastic way. In other words, the aim 

is to enlarge the service domain of cloud computing from the traditional way, whereby storage and computing 

are provided as a service at data centers, to the provision of mobile connectivity (as well) as a service. In this 

vein, we introduce the concept of ANYaaS, wherein solutions to optimize 5G resources are presented to mobile 

operators through a unique framework, allowing the on-demand instantiation and orchestration of services such 

as dynamic caching of video data (CDNaaS), offloading specific traffic (TOFaaS) or building lightweight EPC 

to handle the traffic of specific applications (e.g. MTC) [2]. An abstract level architecture of the ANYaaS 

Service Orchestrator (SO) is depicted in Fig. 1(a). ANYaaS SO comprises a number of specific-purpose SOs that 

create graphs for their offered Service Instances (SI), namely Service Instance Graph (SIG). A SI is a single 

instance of a certain service type (e.g., CDN, MTC, and TOF). It may consist of multiple Service Instance 

Components (SIC), e.g., cache VNF in case of CDN and L-GW VNF in case of TOF. SO of each SI gives as 

output the corresponding SIG, which is a network map of nodes (and links between them) hosting the SICs of a 

SI, over the underlying federated networked cloud. SI Graphs are formed based on different VNF placement 

algorithms [12] and taking different metrics relevant to the SI (e.g., caching strategies in case of CDN, L-GW 

VNF placement in case of TOF considering the relative geographical distances between L-GWs and end-users 

on one hand, and L-GWs and Caches of associated CDN on another hand). For instance, TOFaaS SO provides a 

TOFaaS SIG that indicates where to place L-GW VNFs over the underlying federated cloud along with 

appropriate specifications of the VMs that will be running the L-GW VNFs in order to efficiently offload traffic 

of a specific application. ANYaaS SO receives monitoring information about the performance of each 

instantiated VNF to decide on the corresponding SIG. For example, it may instantiate more lightweight vEPC 

VMs to cope with a sudden increase in MTC traffic. It may also release or migrate VMs when demand for a 

specific service changes – to reduce the number of cache VNFs of a CDN SI when the cached content is no more 

popular or users interested in the cached content have moved to another location. The ANYaaS SO may be 

controlled by a specific high-level web interface or by providing a REST northbound API. The provided REST 

API should allow an abstraction of the configuration of the ANYaaS service. Through the Service Instances 

Integrator, the ANYaaS SO orchestrates several SIs, considering synergies between them and updating, when 



necessary, their corresponding SIGs. Whilst Fig. 1(a) shows the case of specific service orchestration (i.e., 

CDNaaS, TOFaaS and MTCaaS), ANYaaS would integrate several other services that aim to optimize network 

and cloud resources.   

The management lifecycle of SIs is performed by ANYaaS SO through interaction with a NFV orchestration 

system as schematically depicted in Fig. 1(b). A user (i.e., individual as well as enterprise user) first 

communicates with ANYaaS SO through a web-based interface using the provided REST API. Upon request for 

the creation of a service, the ANYaaS SO forwards the request including the needed configuration parameters to 

the NFV orchestrator to create that service instance. Based on the service profile available at the ANYaaS SI 

portfolio, which includes the configuration and descriptor of each available SI, the NFV SO asks the Virtual 

Infrastructure Manager (VIM) to allocate resources and deploy the service on the underlying federated cloud. It 

should be noted that the descriptor and configuration files are service specific. The deployment will be based on 

the SIG formed by the corresponding SI SO using adequate VNF placement algorithms. The service descriptor 

also includes the image/software repository of VNFs to be launched. The VIM represents a cloud controller 

platform, such as OpenStack. The VIM is in charge of the provisioning and deployment of cloud resources, 

together with the management and monitoring of the deployed SI and its SICs. The SI manager is responsible for 

the VNF lifecycle, in terms of software update, and scaling and monitoring VNFs throughout the service 

lifecycle. Monitoring information are made available to the ANYaaS SO and NFV orchestrator through 

standardized interface (e.g., Or-VNFM interface as depicted in Fig. 2) or through a specific API interface to the 

ANYaaS SO. Based on these monitoring information, the ANYaaS SO may take decisions on whether to 

instantiate new SI/SICs or to release resources. It is worth noting that the envisioned architecture of the ANYaaS 

SO is fully compliant with the ETSI NFV reference architecture as defined by the Management and 

Orchestration (MANO) working group [4]. Fig. 2 shows how the ANYaaS SO can be integrated within the ETSI 

NFV reference architecture. In the envisioned architecture, the SI manager includes both the SI VNF manager 

and the SI Element Manager (EM; i.e., monitoring). Unlike the MANO recommendation, in the proposed 

architecture, the SI VNF manager is not responsible for scaling up or down a service. It is rather the role of the 

ANYaaS SO that takes this decision and communicates the determined action to implement (i.e., scale up or 

down) to the VNF manager. The communication between the ANYaaS SO and SI VNF manager may be carried 

out through a proprietary interface. The NFV Service Catalogue is similar to the descriptor of the ANYaaS SIs. 

One SI VNF manager is created per each ANYaaS SI. The associated SIG is communicated to the VIM through 

the Nf-Vi interface. Note that all the reference interfaces are the same as those defined in the reference 

architecture. Table 2 summarizes the functional blocks and interfaces used in Fig. 2 as per the MANO definition.  

 



 
Fig 2. Possible integration of the proposed ANYaaS concept within the reference ETSI NFV architecture.	

 

Table 2: Functional blocks and interfaces used in Fig. 2 as per the MANO definition. 

Name Type Function 

NFV Orchestrator Functional Block Orchestrates NFVI resources across multiple VIMs and does 
lifecycle management of Network Services 

NFV Service Catalogue Functional Block Represents the repository of all  VNF packages 
NFV Instance Repository Functional Block Holds information about available/reserved/allocated NFVIs  
VNF Manager Functional Block Responsible for the lifecycle management of VNF instances  
Virtualized Infrastructure 
Manager  

Functional Block Control and manage the NFVI compute, storage and network 
resources 

Os-MA Interface Used for data exchange between OSS/BSS and NFV Orchestrator 
(e.g., SI lifecycle management) 

Or-Vnfm Interface Used for data exchange between NFV orchestrator and VNF 
Manager (e.g., VNF instantiation and NFVI resource allocation 
for a VNF) 

Or-Vi Interface Used for data exchange between the NFV orchestrator and VIM 
(e.g., NFVI resource reservation/release, VNF software image 
addition/deletion/update) 

VeEn-VFm Interface Used for data exchange between Element Management (EM) and 
VNF Manager (e.g., VNF instantiation and VNF instance query) 

VeNf-VFm Interface Used for data exchange between VNF and VNF Manager (e.g., 
VNF instantiation and VNF instance query) 

Vn-Nf Interface Used for data exchange between VNF SI and the NFV 
Infrastructure (e.g., southbound API) 

Nf-Vi Interface Used for data exchange between VIM and NFV Infrastructure 
(e.g., allocation of VMs with specific compute/storage resources 
and VM migration) 

 

 

 

 

 

 

 

 



3. ANYaaS: TOFaaS and CDNaaS Use Case 
 

 
(a) The monitoring step. 

 
(b) The SIG enforcement and deployment step. 

Fig 3. Monitoring-based CDN and TOF SIG creation and enforcement in the envisioned ANYaaS SO. 

 

To describe the functionalities of ANYaaS SO and the lifecycle management of its offered service instances, we 

consider the use case whereby a mobile operator needs to cope with increasing amounts of video traffic. For this 

purpose, the mobile operator intends creating a cost-efficient mobile CDN whereby popular videos are 

strategically cached (i.e., CDNaaS). The mobile operator also wants to have requests to popular videos handled 

by the created mobile CDN and the corresponding video traffic to be offloaded at traffic offload points nearby its 

RAN (TOFaaS) and that is not to congest the scarce resources of its core network. For video caching, several 

techniques have been proposed to place popular video content at several locations in the mobile network, i.e. 

RAN (eNB) or P-GW [6][8]. Depending on their strategies for video placement in the network, caching 

techniques could considerably reduce the load on the mobile core network. More details on improving mobile 

network performance through content caching could be found in [8]. Throughout the remainder of this section, 

we rather focus on how the envisioned CDN and TOF service instances would be orchestrated and managed 

using the ANYaaS SO.  
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Fig. 3 illustrates how the ANYaaS SO instantiates/deploys a CDN and a traffic offload network as services. 

Whilst Fig. 3(a) shows the step of monitoring the resources of the underlying cloud infrastructure and the end-

user’s geographical distribution and behavior in terms of video viewership, Fig. 3(b) illustrates the determination 

of the two CDN and TOF SIGs and their enforcement/orchestration through adequate cloud management 

platforms (e.g., OpenStack). The ANYaaS SO is assumed to receive feedback from monitoring tools that gather 

data information about the performance and resource availability of the underlying cloud infrastructure along 

with the behavior of mobile users. Information on available resources and users’ behavioral patterns are used to 

create profiles on users and cloud performance. If a specific traffic, consuming large network resources, is 

detected, the ANYaaS SO may request the NFV orchestrator the instantiation of a TOFaaS service instance. This 

request may be also a follow-up to an explicit request from the mobile operator through the REST API or based 

on policies pre-configured in the ANYaaS SO. The trigger may also include the traffic pattern, the users’ profiles 

and their locations over the network. The TOFaaS configuration profile may include, among many parameters, 

the description of the virtual container or the VM description (i.e. the L-GW VNF), the number of TOFaaS 

instances to deploy, the specifications of VMs to run the different SICs forming the TOFaaS instances, their 

placement over the underlying federated cloud, the allocated IP ranges, and the S1-MME interface to enable 

users to connect to the MME. It is worth noting that (i) the S1-MME interface allows connection to the MME to 

handle users mobility and (ii) the VNF placement in the network is carried out using specific algorithms such as 

those introduced in [8][9]. Finally, the VIM takes over and deploys the VMs in the selected DCs according to the 

SIG provided in the previous step. The VMs are connected to the network through SDN by creating appropriate 

routing rules through the southbound API (e.g., OpenFlow). A TOFaaS manager is also created, which is in 

charge of the lifecycle and the monitoring of the deployed VNF. The TOFaaS informs the ANYaaS SO of any 

changes in the VNF state in order to scale up or down. Moreover, the monitoring information should help to 

detect the case of VNF failure. The TOFaaS manager is connected to the VIM monitoring tool such as 

Ceilometer available in OpenStack. The ANYaaS SO can also trigger the migration of a L-GW VNF from one 

DC to another, in case traffic has moved to another location, e.g. users are moving from one location to another 

while connecting to the same service.  

 
Fig 4. CDNaaS in action. 

The deployment of a mobile CDN and its caches depend on the network operator policies and its business 

relationship with the content providers. Regarding the latter, a content provider may install a CDN server in the 
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mobile core network, e.g. standalone server or a virtual instance hosted in the cloud (as depicted in Fig. 3). 

Through DNS (Domain Name System) redirection, all users’ requests are redirected to the local CDN server 

hosted in the mobile core network. If the server has the requested content, it will subsequently forward the 

content to the user. Otherwise, it will send the request to the original server and cache the response for future 

requests. To create a CDN SI, ANYaaS OS follows the same procedure as for the creation of TOF service 

instance, making some important considerations. For example, the storage size is more important in CDNaaS 

than in TOFaaS since it has an impact on the number of video content that a CDNaaS SIC can cache. Fig. 4 

shows an example CDN service instance, whereby users’ requests are redirected to the closest CDNaaS SIC.  

Based on content popularity and its geographical distribution, the ANYaaS OS may specify the locations where 

CDNaaS SICs have to be deployed. The NFV orchestrator then builds the CDNaaS SI using the configuration 

descriptor. Based on the number of locations concerned by the CDNaaS SI to deploy, the CDNaaS descriptor 

specifies the number of VNFs to deploy, their configuration and their placement over the federated cloud. The 

descriptor also indicates the CDN software to be used for CDNaaS VNFs. Notable examples of such CDN 

software are Squid2 and NGINX3. The VIM then instantiates the VMs and creates the CDNaaS manager to 

handle the different CDNaaS SICs. The manager agent monitors the CDNaaS SICs and makes this information 

available to the ANYaaS SO in order that the latter reacts (scale up or down) to any change in the network traffic 

or to the failure of a VM. Finally, the VMs are interconnected together through a suitable SDN technology (e.g., 

OpenFlow) building a hierarchical CDN, i.e. if one CDNaaS SIC does not have the content it can ask another 

CDNaaS SIC before asking the central CDN server. Once the CDNaaS SICs are active, the CDN server is 

updated in order to take the new CDNaaS SICs when serving future users requests as illustrated in Fig. 4.  

So far, we have shown the situation where ANYaaS SIs are separately built; independently of each other. 

However, there are cases where two or more SIs may be correlated and their respective performances may 

improve if their respective SIGs are jointly formed rather than being separately formed independently of each 

other. Throughout the remainder of this section, we show how the Service Instances Integrator of the envisioned 

ANYaaS SO can improve the performance of the network when integrating SIGs of both CDNaaS and TOFaaS 

SIs. For this purpose, we consider the case whereby a mobile operator receives a request to stream a live event 

over a specific region targeting a specific population of mobile users. Such use-case could represent a local 

event, e.g. a music concert not broadcast on TV. This use case is different from the CDNaaS use-case, presented 

in the previous section, as there is no agreement being established with a content provider and accordingly no 

central CDN server is needed. Furthermore, caches should be carefully placed over the federated cloud. As 

stated in [7], the cost in terms of the communication path in the mobile network is not inversely proportional to 

the distance of the cache location to the eNodeB. The cost is rather a convex function of the relative distance of 

the locations of caches to eNodeBs. For instance, according to the presented results, placing a cache at two hops 

distance from an eNB and associating it to a L-GW represents the best solution. Accordingly, this use-case 

requires forming CDNaaS and TOFaaS SIGs together to optimize the cache placement. One of the main 

challenges in this use-case relates to the orchestration of both service instances, i.e., which service instance 

should be built first or whether the orchestration should create both service instances in an atomic way. In the 

following, we illustrate how the ANYaaS SO addresses this challenge.  

																																																								
2	www.squid-cache.org	
3	http://wiki.nginx.org/Nginx	



	
Algorithm 1. ANYaaS SO pseudo-algorithm to decide whether to jointly or separately form SIGs. 

Upon receiving a request from a content provider, the ANYaaS SO sends a notification to the NFV orchestrator 

to build the respective CDN and TOF SIs. The ANYaaS SO indicates that multiple SIs are needed and 

integration between these SIs is required. The SI integration is deemed by the ANYaaS according to some logic 

or explicitly indicated by the content provider or mobile operator. The NFV orchestrator then uses the service 

descriptor to indicate the creation of integrated services, CDNaaS and TOFaaS. The most critical step is done at 

the service descriptor and configuration where SIC placement in the federated cloud is decided. The SIC 

placement algorithm begins by determining where to place the TOFaaS SIC that maximizes the coverage of 

users, which would be interested in the content. Furthermore, L-GWs should be, in general, at a distance from 

RAN nodes that optimizes the network as stated in [7]. Upon the instantiation of the TOFaaS SI, the CDNaaS 

SICs are placed near to the L-GW SICs. After that, the NFV orchestrator builds the SIG map and sends a request 

to the VIM in order to deploy the SI according to this map. The VIM deploys the VMs to host the different SICs 

of the two TOFaaS and CDNaaS SIs creates the SI managers in charge of the lifecycle of the two SIs. The SI 

manager sends the monitoring information to the ANYaaS SO, which can ask to change the SI requirement if the 

SI placement is not efficient. For instance, if users’ QoE is lower due to the fact that SIG is not optimal, i.e. SIs 

are not placed at the optimal positions or the users have changed location. Algorithm 1 summarizes the pseudo-

algorithm used to decide whether to jointly or separately form SIGs. 

4. ANYaaS: VNF performance challenges and solutions  
4.1. Implementation issues 

As illustrated in Fig. 2, ANYaaS SO’s functional blocks are compliant with the ETSI NFV reference 

architecture. The envisioned ANYaaS SO uses mainly the same standardized interfaces to communicate with the 

referenced architectural blocks, e.g., the NFV orchestrator and the VNF manager. The Open NFV4 (or OP-NFV) 

initiative (under Linux Foundation) is seeking to create integration projects to have a reference implementation 

																																																								
4	https://www.opnfv.org	



of the NFV as per the ETSI requirement and architecture. The OP-NFV initiative combines upstream codes from 

projects such as Openstack (i.e., VIM), Opendaylight (i.e., SDN controller) and the Linux Kernel, while carrying 

out extensive testing, custom configuration and possibly upstream code patches. However, the main challenge 

remains on the performance of VNFs and its comparison to the performance of purpose-built network nodes. 

Although ETSI has specified the design patterns of VNFs ([5]), the VNF performance improvement is still an 

open issue. Indeed, the VNF implementation has to mainly deal with network Input/Output performance in the 

virtualized environment. This introduces non-trivial challenges when hosting the VNF on top of a hypervisor, as 

many low-level details, such as memory access patterns, cache locality, task allocation across different CPU 

cores, and synchronization primitives, may have a dramatic impact on the overall performance. An alternative to 

VMs for running VNFs is the container-based virtualization technology. Containers have emerged as a new 

technology to isolate and run applications on top of an operating system. In this approach, the operating system's 

kernel runs on the hardware node with different isolated guest VMs installed on top of it, wherein the isolated 

guests are called containers. With container-based virtualization, no overhead is associated with having each 

guest running on a completely installed operating system. Whilst this approach could improve the performance, 

since just one operating system takes care of hardware calls, one disadvantage is that each guest should use the 

same operating system the host uses. 

One recent initiative, namely ClickOS [10], aims at building a technology enabler for NFV based on open source 

tools. ClickOS is a minimal OS (Operating System) based on XEN software platform optimized for middlebox 

processing, whereby middlebox refers to all hardware-based network appliances used to run a specific network 

function (e.g., firewall, Intrusion Detection System – IDS, and Network Address Translation –NAT). ClickOS 

includes the software modular router, Click, in order to process packets and acts as a router or firewall. As one of 

the challenges of NFV is the ability to process packets as fast as hardware-based solutions, ClickOS leverages 

the XEN I/O subsystem by changing the back-end switch, virtual net devices, and back/front end-drivers. The 

results presented in [4] show that ClickOS is capable to forward packets at around 30Gbps, proving that NFV 

could achieve the same performance as hardware-based solutions. Furthermore, ClickOS is able to boot in only 

few seconds. Another emerging and well-established technology that facilitates the development of network I/O 

intensive applications and hence facilitates the VNF deployment is the Intel Data Plane Development Kit 

(DPDK). DPDK is a software framework that proposes a set of primitives that ease the creation of efficient 

VNFs on x86 platforms, in particular high-speed data plane applications. DPDK supposes that processes operate 

in pull mode in order to become more efficient and decrease the time spent by a packet traveling the server. 

Indeed, this requires that each process needs to occupy one full CPU core. In other words, DPDK processes are 

attached to a specific CPU core for optimization reasons. 

Therefore, putting all these features together, ClickOS and DPDK represent a highly relevant platform to 

implement ANYaaS services. Indeed, all mentioned functionalities required by ANYaaS services, such as 

assigning IP addresses, instantiating cache VNFs, and establishing connections to remote MTC servers, can be 

easily implemented and run on top of ClickOS and DPDK thanks to their ability to manage and forward high 

number of packets. Moreover, in order to scale up, ANYaaS services have to be instantiated instantaneously, 

which could be achieved by ClickOS VMs as they boot in only few seconds. 

 

 



4.2. Virtual CDN benchmark results 

In this part, we shed lights on some results that compare the VNF implementation of a virtual CDN, running a 

NGINX HTTP server, on top of a container and a VM. Here, the choice of NGINX is motivated by its wide 

adoption in CDN industries. For instance, Netflix platform is based on NGINX software to deliver their video 

content based on HTTP streaming. On the other hand, the container technology is based on Docker5 (with 

Ubuntu 14.04 image), while the VM OS is Ubuntu 14.04, running on a KVM-Qemu hypervisor. The host OS is 

using Ubuntu OS, running on top of an Intel Xeon  (4 CPU core, 2.8 Ghz) with 8 Gbytes of RAM. The 

conducted experiments consist in emulating a CDN system based on HTTP streaming, whereby several requests 

are sent to the NGINX HTTP server that hosts the content. Although this experiment does not reflect the whole 

ANYaaS system, it allows obtaining a clear indication on the performance of the VNF hosting the virtual CDN 

instance. We emulated two scenarios: (i) the NGINX server is run on top of Docker containers and (ii) the 

NGINX server is run on top of a VM. The shown results focus on two important performance metrics for CDN 

services: response time and the number of requests handled per second. Whilst the former gives an indication on 

the quality perceived by a user, as high values indicate high latency to access the service, the latter indicates for 

the service operator the number of services one VNF can handle.  

 
Fig. 5. Empirical CDF of the response time.  

 

Fig. 5 shows the empirical Cumulative Distribution Function (CDF) of response time; each point represents the 

percentage of requests which were served in a time less than or equal to a specific value on the x-axis. The 

number of concurrent connections to the server (VNF) was set to 1000, and the results are obtained when 

allocating one vCPU and two vCPUs to the VNF; one vCPU represents one single CPU core. The HTTP 

NGINX server hosts a low-quality video stream, wherein the chunk size is equal to 70 KBytes6. We observe that 

Docker outperforms KVM, and achieves high responsiveness regardless the number of vCPUs used. Docker 

maintains short response times, merely10 ms and 20 ms, for the case of using two vCPUs and one vCPU, 

																																																								
5	www.docker.com	
6	With	Dynamic	Adaptive	Streaming	over	HTTP	(DASH)	technologies,	multiple	quality/bitrate	representations	of	the	same	video	are	
stored	on	a	plain	HTTP	server.	A	video	 is	segmented	 in	chunks,	and	a	Media	Presentation	Description	(MPD)	 file	describes	chunk	
information.	 The	 client	 receives	 the	MPD	 file	 and	proceeds	 by	 retrieving	 the	 video	 chunk-by-chunk,	 potentially	 switching	 among	
available	qualities.	
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respectively. However, in case of KVM, 40% and 70% of the connection requests experienced a response time 

longer than 1s when using two vCPUs and one vCPU, respectively. It reaches for some connections 15 s, which 

may be inacceptable for a CDN service. These results are attributable to the fact that Docker incurs less overhead 

for interacting with the operating system and also for network I/O (i.e., especially given our host-mode 

configuration, which gives it native access to the host’s networking stack).  

 
                                 Fig. 6. Number of requests handled per second vs concurrent connections.  
Fig. 6 illustrates the performance of KVM and Docker in terms of the number of user requests handled per 

second, for different numbers of concurrent connections; high numbers of concurrent connections mean highly 

loaded server. Besides serving a low-quality video, we considered in this test serving also a high-quality video 

(i.e. chunk size is equal to 450 Kbytes). Moreover, only one single CPU (1 vCPU) is dedicated to the VNF. As 

for the response time, Docker outperforms KVM as it handles higher numbers of user requests per second for 

both video qualities. We observe that Docker accommodates more than 3000 requests per second in comparison 

to KVM for both qualities. Furthermore, it maintains approximately the same number of handled requests 

regardless the number of concurrent connections.  

Clearly, from these preliminary results, it is highly recommended to use Docker as a virtualization approach to 

implement VNF for CDNaaS. We explain this by two factors: (i) Docker is more lightweight and introduces less 

overhead when communicating with the host OS; (ii) Docker is highly suitable to application-based services 

(e.g., CDN), where there is no need for all low level components of an OS. We believe that we might find 

different results if the tested service requires low level system components such as routing, which is for instance 

the case of TOFaaS.  

5. Conclusion 
In this paper, we introduced the ANYaaS concept for the upcoming 5G mobile systems. ANYaaS relies on cloud 

computing and NFV to ease the management of mobile services that aim for optimizing usage of network 

resources. ANYaaS allows a mobile operator, in conformance with the ETSI NFV reference architecture, to 

orchestrate and manage one or multiple service instances on-demand and in a dynamic way. As a potential use 

case, we demonstrated how the ANYaaS orchestration system enables the creation and deployment of two 

important correlating services, namely CDNaaS and TOFaaS. Finally, we discussed key technologies that would 

enable the development of the ANYaaS proof of concept, and provided some experiment results focusing on the 
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performance of CDNaaS. Particularly, we have found that it is highly recommended to use Docker virtualization 

approach to build the CDNaaS VNFs. 
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