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ABSTRACT
We propose a novel approach to the verification of consis-
tency models implemented in distributed storage systems.
We base our work on a declarative semantic model defin-
ing consistency conditions as predicates expressing ordering
and visibility of operations. This model allows for a test-
ing methodology focused on correctness properties rather
than operational semantics. Finally, we present and discuss
the design and preliminary implementation of a practical
property-based consistency verification framework.

1. INTRODUCTION
Consistency is the key correctness criterion of distributed

storage systems. In spite of recent efforts proposing cons-
istency-by-construction through formal methods [29, 20], most
real world storage systems are still developed in an ad-hoc
manner. Specifically, most of the time, practitioners start
with an implementation and proceed with verification through
limited testing afterwards (e.g., using unit and integration
tests). In an attempt to bridge the gap between traditional
testing and formal techniques proposed by academia, several
approaches have been devised to provide a general way of
verifying implementations of consistency models.

Strong consistency checkers.
Several works focused on devising efficient techniques to

determine whether executions of storage systems are strongly
consistent [23, 30, 13, 17]. This basic decision problem has
then been extended to support other comparably strong se-
mantics [7] and on-the-fly, incremental verification [14].
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Read-write staleness benchmarking.
A recent approach proposes client-side staleness measure-

ments as a method to assess consistency. In this approach,
data store clients perform write and read operations in a
coordinated fashion in order to detect anomalies related
to data staleness. This technique has been applied both
to open source NoSQL databases [24] and, in a black-box
testing manner, to commercial geo-replicated cloud stores
[8, 28, 21], typically in the context of eventually consistent
systems.

Precedence graph approach.
A number of works related to transactional systems adopted

a graph-based approach in which inconsistencies are identi-
fied as cycles in a precedence (or serialization) graph [4, 32].

All these approaches, however, lack generality, as they tar-
get only a limited subset of consistency models. They also
lack a comprehensive, structured view of the entire system,
which makes them suboptimal in verifying the core seman-
tics, or composition thereof, of different consistency models.

We believe that the first step towards building an effective
and comprehensive consistency testing framework should be
the adoption of a theoretically sound model of consistency.
To this end, we advocate the use of a declarative approach
to define a set of core semantics applicable to all consistency
models. In particular, we aim at expressing both client-side
visibility of read/write operations and global state configu-
rations. By using logic predicates that encompass these two
perspectives, we define consistency semantics that capture,
in form of graph entities, the salient aspects of system ex-
ecutions, i.e. ordering and visibility of events. In this way,
verifying an implementation of a given consistency seman-
tics amounts to finding, for a given execution, the global
state configurations that validate a logic predicate, taking
into account client-side events.

In summary, we propose a declarative, property-based ap-
proach to consistency verification, in the vein of proposals
made in the context of generic software testing [11]. We ex-
periment this approach by implementing Conver, an early
prototype of a practical property-based consistency verifica-
tion framework developed in Erlang.

2. A DECLARATIVE FOUNDATION
Several works in literature (e.g., [22, 5]) illustrated the

benefits of a declarative approach in the context of database,
networking and distributed programming. Essentially, the
declarative, axiomatic approach offers a better match to
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application-level semantics than the traditional imperative,
operational approach. Therefore, the declarative approach
allows for a more expressive, clean and compact way to
describe the logic of distributed applications, fostering a
structured programming model. Additionally, declarative
approach is amenable to static checking of correctness con-
ditions, allowing distributed systems problems to be natu-
rally cast into SAT/SMT problems [6, 26, 15], which in turn
allows to leverage the efficiency and maturity of the related
state-of-the-art tools (e.g., [31, 1]).

We found a model supporting the declarative paradigm in
the work by Burckhardt [9], later extended and refined in
the context of both transactional [10] and non-transactional
semantics [27]. This model allows the definition of declar-
ative, composable consistency semantics, which can be ex-
pressed in terms of first-order logic predicates over graph
entities which, in turn, describe the visibility and ordering
of events. Table 1 overviews the most relevant entities of
this model.

Entity Description

Operation (op) Single operation.
Includes: process and object id, type, in-
put and output values, start and end time.

History (H ) The set of operations of an execution.
Described by: returns-before partial or-
der, same-session and same-object equiv-
alence relations.

Visibility (vis) Acyclic partial order on operations.
Accounts for propagation of write opera-
tions.

Arbitration (ar) Total order on operations.
Specifies how the system resolves con-
flicts.

Table 1: Summary of most relevant entities of the model
described in [27].

As an example, a consistency semantics that requires re-
specting real time ordering would include the following pred-
icate:

RealTime , rb ⊆ ar (1)

In other words, the predicate requires arbitration (ar) to
comply with the returns-before partial ordering (rb).1

3. PROPERTY-BASED CONSISTENCY
VERIFICATION

Property-based testing (PBT) [11] is an approach to generic
software testing that alleviates the burden of test case gen-
eration from the user, allowing the user to focus on spec-
ifying application-level properties that should hold for all
executions. A PBT tool, when supplied with these prop-
erties along with information about the generic format of a
valid input, generates random inputs, and then applies these
inputs to the program while constantly verifying the valid-
ity of the supplied properties throughout the execution. In
a sense, PBT combines the two old ideas of specification-
based testing [19] and random testing [16]. Additionally, to
make up for the possible “noise” induced by the random test

1A complete description of each entity involved along with
examples of other real world consistency semantics expressed
using this model are available in [27].

case generation, modern PBT tools automatically reduce the
complexity of failing tests to a minimal test case [33], thus
serving as powerful diagnostic tools. As a basic example of
PBT, given a function lsort that sorts a list of integers,
writing a property that states that the function should not
change the list length, would just require the following lines
of Erlang code:

prop_same_length () ->
?FORALL(L,list(integer ()),

length(L)=:= length(lsort(L))).

In principle, the PBT approach of expressing and test-
ing consistency as a set of predicates allows for a testing
methodology focused on correctness properties rather than
operational semantics. We embed this principle in the design
of Conver, a prototype of a practical consistency verification
framework that we developed in Erlang.2 Conver generates
test cases consisting in executions of concurrent operations
invoked on the data store under test. After each execu-
tion, Conver collects the details of all the operations and
builds the graph entities describing the client-side outcomes
(e.g., returns-before relation rb, session-order relation so,
etc.). Given client-side outcomes, Conver then builds graph
and relations entities about global ordering and visibility of
events. Essentially, Conver verifies the compliance to a given
consistency model by building and validating the required
entities for all logic terms composing the entire consistency
predicate. As an example, verifying the RealTime term ex-
pressed in (1), requires building the total order ar as a linear
extension of the partial order rb. As a result of the verifica-
tion process, Conver outputs a visualization of each failing
test case, i.e. all the executions that did not comply with a
given consistency semantics. Additionally, the visualization
highlights the anomaly that caused the test failure.

Using our preliminary implementation of Conver, we were
able to run test executions against Riak3 and ZooKeeper4

to verify some of the most common consistency semantics
(e.g., monotonic reads, monotonic writes, read-your-writes,
writes-follow-reads, causal and strong consistency).

In the following, we briefly discuss the design of several po-
tential extensions of Conver. Figure 1 provides an overview
of the functional architecture of Conver, including these ex-
tensions.

Targeted test case generation.
We envision the implementation of heuristics to generate

test case executions tailored to verify specific semantics. For
instance, depending on the consistency model under verifi-
cation, Conver could adjust the ratio between read and write
operations, or establish a loose coordination among clients
to better exercise their concurrency.

Fault injection.
Fault injection is a technique that challenges the imple-

mentation of data stores by exercising the intrinsic non-
determinism of distributed systems [18]. Thanks to its black-
box testing approach, Conver can easily be instrumented to
inject external faults, such as network partitions and process
failures.

2The source code of Conver is available at https://github.
com/pviotti/conver.
3http://basho.com/products/riak-kv/
4https://zookeeper.apache.org/
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Test case shrinking.
Similarly to what implemented in most PBT tools, once

identified the anomaly that caused the failure of a test case,
Conver could try to reproduce it by enacting a less complex
execution (i.e. an execution involving less processes and op-
erations). When using Conver as a tool for test-driven devel-
opment, this feature would substantially ease the debugging
tasks.

Consistency 
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Verification

Shrinking
Test case generation

Targeted Random

Executions
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Fault Injection

Visualization
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Figure 1: Functional architecture of the Conver verification
framework.

4. DISCUSSION
Using Conver may require the additional effort of writ-

ing property-like specifications for the data store under test.
However, we believe that this may yield better comprehen-
sion and more rigorous documentation of the software, which
would be especially beneficial for commercial systems sub-
ject to SLAs. Moreover, to minimize this effort, Conver pro-
vides a set of pre-compiled predicates for the most common
consistency models. Finally, to address the need of devel-
oping bindings for the data stores under test, we designed
Conver as a modular framework, following the example of
similar testing suites [12]. Thanks to this design, adding the
support for a new data store entails implementing a simple
interface, which usually amounts to writing less than 30 lines
of Erlang code.

We further note that the property-based testing approach
has already been applied by practitioners to verify the cor-
rectness of distributed applications. Specifically, modern
PBT tools model the state of the system as a set of vari-
ables that are verified through postconditions [3]. This state
model can only support the verification of consistency mod-
els that presume single-copy semantic, i.e. strong consis-
tency models. Even though our work respects and builds
upon the principles of property-based testing, it differs sub-
stantially from common PBT tools in the way the state of
the system is represented and verified. In particular, the
semantic model implemented by Conver describes the sys-
tem state as a graph of prior operations [9]. Hence, Conver
can verify a broader set of consistency models that apply to
generic replicated storage systems.

5. FUTURE WORK
In the following, we briefly discuss several possible exten-

sions of our work.

Client distribution and time tracking.
Because of the way it generates monotonic values and

keeps track of time within the Erlang runtime environment
[2], Conver requires hosting all data store clients on a single
machine. While this design constraint does not represent
a substantial limit in terms of scalability, it does limit the
scope of Conver, as it prevents an exhaustive testing of geo-
replicated cloud storage systems. Implementing the support
for distributed clients entails dealing with the well-known
problem of reliable time tracking in distributed systems [25].
Thus, this would require devising a solution that leverages
the techniques that have been proposed in literature to ad-
dress this problem.

Dynamic consistency verification.
Although Conver was conceived for static, offline verifi-

cation of executions, its design does not prevent the imple-
mentation of a module for incremental, on-the-fly verifica-
tion. We believe that the amount of computation required to
enable on-the-fly detection of consistency anomalies would
be sustainable so long as the number of processes involved
remains moderate.

Transactional consistency models.
Conver can be extended to support the verification of

transactional consistency models. In this regard, the state
model supported by Conver has already been adapted to
express transactional semantics [10]. Hence, this extension
would entail the support of the additional semantic entities
for expressing transactional features within the model, and
the implementation of a mechanism to detect transactional
anomalies [4].
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